Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Haptic joystick with hybrid actuator using air muscles and spherical MR-brake

Identifieur interne : 000383 ( PascalFrancis/Corpus ); précédent : 000382; suivant : 000384

Haptic joystick with hybrid actuator using air muscles and spherical MR-brake

Auteurs : Doruk Senkal ; Hakan Gurocak

Source :

RBID : Pascal:12-0036912

Descripteurs français

English descriptors

Abstract

In this research, a new 2-DOF hybrid actuator concept is explored as a powerful and compact alternative to conventional haptic actuators. The actuator combines a spherical MR-brake and three air muscles and is integrated into a joystick that can apply forces in two degrees-of-freedom. The air muscles are used to create high active forces in a compact volume and the brake compensates for the "spongy" feeling associated with air muscles. To decrease the overall size of the system an inertial measurement unit has been implemented as a position measurement solution. As high as 16 N of total force output could be achieved at the tip of the joystick. Also, up to 16 times improvement in the stable virtual wall stiffness was obtained when the MR-brake was used to compensate for force errors. Experiments with an impedance-based haptic controller with force-feedback gave satisfactory wall following performance. This device can be employed in applications including computer games, military or medical training applications, rehabilitation and in teleoperation of equipment where high force feedback in 2-DOF in a compact work volume may be desirable while interacting with rigid or elastic virtual objects.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0957-4158
A03   1    @0 Mechatronics : (Oxf.)
A05       @2 21
A06       @2 6
A08 01  1  ENG  @1 Haptic joystick with hybrid actuator using air muscles and spherical MR-brake
A11 01  1    @1 SENKAL (Doruk)
A11 02  1    @1 GUROCAK (Hakan)
A14 01      @1 School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave. @2 Vancouver, WA 98686 @3 USA @Z 1 aut. @Z 2 aut.
A20       @1 951-960
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 22113 @5 354000509945330060
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 32 ref.
A47 01  1    @0 12-0036912
A60       @1 P
A61       @0 A
A64 01  1    @0 Mechatronics : (Oxford)
A66 01      @0 GBR
C01 01    ENG  @0 In this research, a new 2-DOF hybrid actuator concept is explored as a powerful and compact alternative to conventional haptic actuators. The actuator combines a spherical MR-brake and three air muscles and is integrated into a joystick that can apply forces in two degrees-of-freedom. The air muscles are used to create high active forces in a compact volume and the brake compensates for the "spongy" feeling associated with air muscles. To decrease the overall size of the system an inertial measurement unit has been implemented as a position measurement solution. As high as 16 N of total force output could be achieved at the tip of the joystick. Also, up to 16 times improvement in the stable virtual wall stiffness was obtained when the MR-brake was used to compensate for force errors. Experiments with an impedance-based haptic controller with force-feedback gave satisfactory wall following performance. This device can be employed in applications including computer games, military or medical training applications, rehabilitation and in teleoperation of equipment where high force feedback in 2-DOF in a compact work volume may be desirable while interacting with rigid or elastic virtual objects.
C02 01  X    @0 001D02B04
C02 02  X    @0 001D12E04
C02 03  X    @0 001B40F10
C03 01  X  FRE  @0 Frein électromagnétique @5 06
C03 01  X  ENG  @0 Electromagnetic brake @5 06
C03 01  X  SPA  @0 Freno electromagnético @5 06
C03 02  X  FRE  @0 Fluide magnétorhéologique @5 07
C03 02  X  ENG  @0 Magnetorheological fluid @5 07
C03 02  X  SPA  @0 Fluido magnetoreologico @5 07
C03 03  X  FRE  @0 Actionneur @5 08
C03 03  X  ENG  @0 Actuator @5 08
C03 03  X  SPA  @0 Accionador @5 08
C03 04  X  FRE  @0 Commande pneumatique @5 09
C03 04  X  ENG  @0 Pneumatic control @5 09
C03 04  X  SPA  @0 Mando neumático @5 09
C03 05  X  FRE  @0 Commande force @5 10
C03 05  X  ENG  @0 Force control @5 10
C03 05  X  SPA  @0 Control fuerza @5 10
C03 06  X  FRE  @0 Rétroaction @5 11
C03 06  X  ENG  @0 Feedback regulation @5 11
C03 06  X  SPA  @0 Retroacción @5 11
C03 07  X  FRE  @0 Commande mouvement @5 12
C03 07  X  ENG  @0 Motion control @5 12
C03 07  X  SPA  @0 Control movimiento @5 12
C03 08  X  FRE  @0 Sensibilité tactile @5 18
C03 08  X  ENG  @0 Tactile sensitivity @5 18
C03 08  X  SPA  @0 Sensibilidad tactil @5 18
C03 09  X  FRE  @0 Interface utilisateur @5 19
C03 09  X  ENG  @0 User interface @5 19
C03 09  X  SPA  @0 Interfase usuario @5 19
C03 10  X  FRE  @0 Levier commande @5 20
C03 10  X  ENG  @0 Control lever @5 20
C03 10  X  SPA  @0 Palanca de mando @5 20
C03 11  X  FRE  @0 Muscle artificiel @5 21
C03 11  X  ENG  @0 Artificial muscle @5 21
C03 11  X  SPA  @0 Músculo artificial @5 21
C03 12  X  FRE  @0 Système 2 degrés liberté @5 22
C03 12  X  ENG  @0 System with two degrees of freedom @5 22
C03 12  X  SPA  @0 Sistema 2 grados libertad @5 22
C03 13  X  FRE  @0 Navigation inertie @5 23
C03 13  X  ENG  @0 Inertial navigation @5 23
C03 13  X  SPA  @0 Navegación por inercia @5 23
C03 14  X  FRE  @0 Mesure position @5 24
C03 14  X  ENG  @0 Position measurement @5 24
C03 14  X  SPA  @0 Medición posición @5 24
C03 15  X  FRE  @0 Rigidité @5 25
C03 15  X  ENG  @0 Stiffness @5 25
C03 15  X  SPA  @0 Rigidez @5 25
C03 16  X  FRE  @0 Equipement entrée sortie @5 28
C03 16  X  ENG  @0 Input output equipment @5 28
C03 16  X  SPA  @0 Equipo entrada salida @5 28
C03 17  X  FRE  @0 Etude expérimentale @5 33
C03 17  X  ENG  @0 Experimental study @5 33
C03 17  X  SPA  @0 Estudio experimental @5 33
C03 18  X  FRE  @0 . @4 INC @5 82
N21       @1 016
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 12-0036912 INIST
ET : Haptic joystick with hybrid actuator using air muscles and spherical MR-brake
AU : SENKAL (Doruk); GUROCAK (Hakan)
AF : School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave./Vancouver, WA 98686/Etats-Unis (1 aut., 2 aut.)
DT : Publication en série; Niveau analytique
SO : Mechatronics : (Oxford); ISSN 0957-4158; Royaume-Uni; Da. 2011; Vol. 21; No. 6; Pp. 951-960; Bibl. 32 ref.
LA : Anglais
EA : In this research, a new 2-DOF hybrid actuator concept is explored as a powerful and compact alternative to conventional haptic actuators. The actuator combines a spherical MR-brake and three air muscles and is integrated into a joystick that can apply forces in two degrees-of-freedom. The air muscles are used to create high active forces in a compact volume and the brake compensates for the "spongy" feeling associated with air muscles. To decrease the overall size of the system an inertial measurement unit has been implemented as a position measurement solution. As high as 16 N of total force output could be achieved at the tip of the joystick. Also, up to 16 times improvement in the stable virtual wall stiffness was obtained when the MR-brake was used to compensate for force errors. Experiments with an impedance-based haptic controller with force-feedback gave satisfactory wall following performance. This device can be employed in applications including computer games, military or medical training applications, rehabilitation and in teleoperation of equipment where high force feedback in 2-DOF in a compact work volume may be desirable while interacting with rigid or elastic virtual objects.
CC : 001D02B04; 001D12E04; 001B40F10
FD : Frein électromagnétique; Fluide magnétorhéologique; Actionneur; Commande pneumatique; Commande force; Rétroaction; Commande mouvement; Sensibilité tactile; Interface utilisateur; Levier commande; Muscle artificiel; Système 2 degrés liberté; Navigation inertie; Mesure position; Rigidité; Equipement entrée sortie; Etude expérimentale; .
ED : Electromagnetic brake; Magnetorheological fluid; Actuator; Pneumatic control; Force control; Feedback regulation; Motion control; Tactile sensitivity; User interface; Control lever; Artificial muscle; System with two degrees of freedom; Inertial navigation; Position measurement; Stiffness; Input output equipment; Experimental study
SD : Freno electromagnético; Fluido magnetoreologico; Accionador; Mando neumático; Control fuerza; Retroacción; Control movimiento; Sensibilidad tactil; Interfase usuario; Palanca de mando; Músculo artificial; Sistema 2 grados libertad; Navegación por inercia; Medición posición; Rigidez; Equipo entrada salida; Estudio experimental
LO : INIST-22113.354000509945330060
ID : 12-0036912

Links to Exploration step

Pascal:12-0036912

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Haptic joystick with hybrid actuator using air muscles and spherical MR-brake</title>
<author>
<name sortKey="Senkal, Doruk" sort="Senkal, Doruk" uniqKey="Senkal D" first="Doruk" last="Senkal">Doruk Senkal</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave.</s1>
<s2>Vancouver, WA 98686</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gurocak, Hakan" sort="Gurocak, Hakan" uniqKey="Gurocak H" first="Hakan" last="Gurocak">Hakan Gurocak</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave.</s1>
<s2>Vancouver, WA 98686</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0036912</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0036912 INIST</idno>
<idno type="RBID">Pascal:12-0036912</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000383</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Haptic joystick with hybrid actuator using air muscles and spherical MR-brake</title>
<author>
<name sortKey="Senkal, Doruk" sort="Senkal, Doruk" uniqKey="Senkal D" first="Doruk" last="Senkal">Doruk Senkal</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave.</s1>
<s2>Vancouver, WA 98686</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gurocak, Hakan" sort="Gurocak, Hakan" uniqKey="Gurocak H" first="Hakan" last="Gurocak">Hakan Gurocak</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave.</s1>
<s2>Vancouver, WA 98686</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Mechatronics : (Oxford)</title>
<title level="j" type="abbreviated">Mechatronics : (Oxf.)</title>
<idno type="ISSN">0957-4158</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Mechatronics : (Oxford)</title>
<title level="j" type="abbreviated">Mechatronics : (Oxf.)</title>
<idno type="ISSN">0957-4158</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actuator</term>
<term>Artificial muscle</term>
<term>Control lever</term>
<term>Electromagnetic brake</term>
<term>Experimental study</term>
<term>Feedback regulation</term>
<term>Force control</term>
<term>Inertial navigation</term>
<term>Input output equipment</term>
<term>Magnetorheological fluid</term>
<term>Motion control</term>
<term>Pneumatic control</term>
<term>Position measurement</term>
<term>Stiffness</term>
<term>System with two degrees of freedom</term>
<term>Tactile sensitivity</term>
<term>User interface</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Frein électromagnétique</term>
<term>Fluide magnétorhéologique</term>
<term>Actionneur</term>
<term>Commande pneumatique</term>
<term>Commande force</term>
<term>Rétroaction</term>
<term>Commande mouvement</term>
<term>Sensibilité tactile</term>
<term>Interface utilisateur</term>
<term>Levier commande</term>
<term>Muscle artificiel</term>
<term>Système 2 degrés liberté</term>
<term>Navigation inertie</term>
<term>Mesure position</term>
<term>Rigidité</term>
<term>Equipement entrée sortie</term>
<term>Etude expérimentale</term>
<term>.</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this research, a new 2-DOF hybrid actuator concept is explored as a powerful and compact alternative to conventional haptic actuators. The actuator combines a spherical MR-brake and three air muscles and is integrated into a joystick that can apply forces in two degrees-of-freedom. The air muscles are used to create high active forces in a compact volume and the brake compensates for the "spongy" feeling associated with air muscles. To decrease the overall size of the system an inertial measurement unit has been implemented as a position measurement solution. As high as 16 N of total force output could be achieved at the tip of the joystick. Also, up to 16 times improvement in the stable virtual wall stiffness was obtained when the MR-brake was used to compensate for force errors. Experiments with an impedance-based haptic controller with force-feedback gave satisfactory wall following performance. This device can be employed in applications including computer games, military or medical training applications, rehabilitation and in teleoperation of equipment where high force feedback in 2-DOF in a compact work volume may be desirable while interacting with rigid or elastic virtual objects.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4158</s0>
</fA01>
<fA03 i2="1">
<s0>Mechatronics : (Oxf.)</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Haptic joystick with hybrid actuator using air muscles and spherical MR-brake</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SENKAL (Doruk)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GUROCAK (Hakan)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave.</s1>
<s2>Vancouver, WA 98686</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>951-960</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22113</s2>
<s5>354000509945330060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>32 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0036912</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Mechatronics : (Oxford)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this research, a new 2-DOF hybrid actuator concept is explored as a powerful and compact alternative to conventional haptic actuators. The actuator combines a spherical MR-brake and three air muscles and is integrated into a joystick that can apply forces in two degrees-of-freedom. The air muscles are used to create high active forces in a compact volume and the brake compensates for the "spongy" feeling associated with air muscles. To decrease the overall size of the system an inertial measurement unit has been implemented as a position measurement solution. As high as 16 N of total force output could be achieved at the tip of the joystick. Also, up to 16 times improvement in the stable virtual wall stiffness was obtained when the MR-brake was used to compensate for force errors. Experiments with an impedance-based haptic controller with force-feedback gave satisfactory wall following performance. This device can be employed in applications including computer games, military or medical training applications, rehabilitation and in teleoperation of equipment where high force feedback in 2-DOF in a compact work volume may be desirable while interacting with rigid or elastic virtual objects.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02B04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D12E04</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001B40F10</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Frein électromagnétique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Electromagnetic brake</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Freno electromagnético</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Fluide magnétorhéologique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Magnetorheological fluid</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Fluido magnetoreologico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Actionneur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Actuator</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Accionador</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Commande pneumatique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Pneumatic control</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Mando neumático</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Commande force</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Force control</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Control fuerza</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Rétroaction</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Feedback regulation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Retroacción</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Commande mouvement</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Motion control</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Control movimiento</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>18</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>User interface</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>19</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Levier commande</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Control lever</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Palanca de mando</s0>
<s5>20</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Muscle artificiel</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Artificial muscle</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Músculo artificial</s0>
<s5>21</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Système 2 degrés liberté</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>System with two degrees of freedom</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Sistema 2 grados libertad</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Navigation inertie</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Inertial navigation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Navegación por inercia</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Mesure position</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Position measurement</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Medición posición</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Rigidité</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Stiffness</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Rigidez</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Equipement entrée sortie</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Input output equipment</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Equipo entrada salida</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>33</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>016</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 12-0036912 INIST</NO>
<ET>Haptic joystick with hybrid actuator using air muscles and spherical MR-brake</ET>
<AU>SENKAL (Doruk); GUROCAK (Hakan)</AU>
<AF>School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave./Vancouver, WA 98686/Etats-Unis (1 aut., 2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Mechatronics : (Oxford); ISSN 0957-4158; Royaume-Uni; Da. 2011; Vol. 21; No. 6; Pp. 951-960; Bibl. 32 ref.</SO>
<LA>Anglais</LA>
<EA>In this research, a new 2-DOF hybrid actuator concept is explored as a powerful and compact alternative to conventional haptic actuators. The actuator combines a spherical MR-brake and three air muscles and is integrated into a joystick that can apply forces in two degrees-of-freedom. The air muscles are used to create high active forces in a compact volume and the brake compensates for the "spongy" feeling associated with air muscles. To decrease the overall size of the system an inertial measurement unit has been implemented as a position measurement solution. As high as 16 N of total force output could be achieved at the tip of the joystick. Also, up to 16 times improvement in the stable virtual wall stiffness was obtained when the MR-brake was used to compensate for force errors. Experiments with an impedance-based haptic controller with force-feedback gave satisfactory wall following performance. This device can be employed in applications including computer games, military or medical training applications, rehabilitation and in teleoperation of equipment where high force feedback in 2-DOF in a compact work volume may be desirable while interacting with rigid or elastic virtual objects.</EA>
<CC>001D02B04; 001D12E04; 001B40F10</CC>
<FD>Frein électromagnétique; Fluide magnétorhéologique; Actionneur; Commande pneumatique; Commande force; Rétroaction; Commande mouvement; Sensibilité tactile; Interface utilisateur; Levier commande; Muscle artificiel; Système 2 degrés liberté; Navigation inertie; Mesure position; Rigidité; Equipement entrée sortie; Etude expérimentale; .</FD>
<ED>Electromagnetic brake; Magnetorheological fluid; Actuator; Pneumatic control; Force control; Feedback regulation; Motion control; Tactile sensitivity; User interface; Control lever; Artificial muscle; System with two degrees of freedom; Inertial navigation; Position measurement; Stiffness; Input output equipment; Experimental study</ED>
<SD>Freno electromagnético; Fluido magnetoreologico; Accionador; Mando neumático; Control fuerza; Retroacción; Control movimiento; Sensibilidad tactil; Interfase usuario; Palanca de mando; Músculo artificial; Sistema 2 grados libertad; Navegación por inercia; Medición posición; Rigidez; Equipo entrada salida; Estudio experimental</SD>
<LO>INIST-22113.354000509945330060</LO>
<ID>12-0036912</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000383 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000383 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0036912
   |texte=   Haptic joystick with hybrid actuator using air muscles and spherical MR-brake
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024