Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Perception of Springs With Visual and Proprioceptive Motion Cues: Implications for Prosthetics

Identifieur interne : 000263 ( PascalFrancis/Corpus ); précédent : 000262; suivant : 000264

Perception of Springs With Visual and Proprioceptive Motion Cues: Implications for Prosthetics

Auteurs : Netta Gurari ; Katherine J. Kuchenbecker ; Allison M. Okamura

Source :

RBID : Francis:13-0182195

Descripteurs français

English descriptors

Abstract

Manipulating objects with an upper limb prosthesis requires significantly more visual attention than doing the same task with an intact limb. Prior work and comments from individuals lacking proprioception indicate that conveying prosthesis motion through a nonvisual sensory channel would reduce and possibly remove the need to watch the prosthesis. To motivate the design of suitable sensory substitution devices, this study investigates the difference between seeing a virtual prosthetic limb move and feeling one's real limb move. Fifteen intact subjects controlled a virtual prosthetic finger in a one-degree-of-freedom rotational spring discrimination task. A custom haptic device was used to measure both real finger position and applied finger force, and the resulting prosthetic finger movement was displayed visually (on a computer screen) and/or proprioceptively (by allowing the subject's real finger to move). Spring discrimination performance was tested for three experimental sensory conditions-visual motion, proprioceptive motion, and visual and proprioceptive motion-using the method of constant stimuli, with a reference stiffness of 290 N/m. During each trial, subjects sequentially pressed the right index finger on a pair of hard-surfaced virtual springs and decided which was stiffer. No significant performance differences were found between the three experimental sensory conditions, but subjects perceived proprioceptive motion to be significantly more useful than visual motion. These results imply that relaying proprioceptive information through a nonvisual channel could reduce visual attention during prosthesis control while maintaining task performance, thus improving the upper limb prosthesis experience.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 2168-2291
A03   1    @0 IEEE trans. hum.-mach. syst. : (Print)
A05       @2 43
A06       @2 1
A08 01  1  ENG  @1 Perception of Springs With Visual and Proprioceptive Motion Cues: Implications for Prosthetics
A11 01  1    @1 GURARI (Netta)
A11 02  1    @1 KUCHENBECKER (Katherine J.)
A11 03  1    @1 OKAMURA (Allison M.)
A14 01      @1 Department of Robotics, Brain, and Cognitive Sciences, Istituto Italiano di Tecnologia @2 16163 Genova @3 ITA @Z 1 aut.
A14 02      @1 University of Pennsylvania @2 Philadelphia, PA 19104 @3 USA @Z 2 aut.
A14 03      @1 Stanford University @2 Stanford, CA 94305 @3 USA @Z 3 aut.
A20       @1 102-114
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 222H8 @5 354000509062710090
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 45 ref.
A47 01  1    @0 13-0182195
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE transactions on human-machine systems : (Print)
A66 01      @0 USA
C01 01    ENG  @0 Manipulating objects with an upper limb prosthesis requires significantly more visual attention than doing the same task with an intact limb. Prior work and comments from individuals lacking proprioception indicate that conveying prosthesis motion through a nonvisual sensory channel would reduce and possibly remove the need to watch the prosthesis. To motivate the design of suitable sensory substitution devices, this study investigates the difference between seeing a virtual prosthetic limb move and feeling one's real limb move. Fifteen intact subjects controlled a virtual prosthetic finger in a one-degree-of-freedom rotational spring discrimination task. A custom haptic device was used to measure both real finger position and applied finger force, and the resulting prosthetic finger movement was displayed visually (on a computer screen) and/or proprioceptively (by allowing the subject's real finger to move). Spring discrimination performance was tested for three experimental sensory conditions-visual motion, proprioceptive motion, and visual and proprioceptive motion-using the method of constant stimuli, with a reference stiffness of 290 N/m. During each trial, subjects sequentially pressed the right index finger on a pair of hard-surfaced virtual springs and decided which was stiffer. No significant performance differences were found between the three experimental sensory conditions, but subjects perceived proprioceptive motion to be significantly more useful than visual motion. These results imply that relaying proprioceptive information through a nonvisual channel could reduce visual attention during prosthesis control while maintaining task performance, thus improving the upper limb prosthesis experience.
C02 01  X    @0 770B05B @1 II
C02 02  X    @0 770B05G @1 II
C02 03  X    @0 770B05C @1 II
C03 01  X  FRE  @0 Ressort @5 06
C03 01  X  ENG  @0 Spring @5 06
C03 01  X  SPA  @0 Resorte @5 06
C03 02  X  FRE  @0 Substitution @5 07
C03 02  X  ENG  @0 Substitution @5 07
C03 02  X  SPA  @0 Substitución @5 07
C03 03  X  FRE  @0 Asservissement visuel @5 08
C03 03  X  ENG  @0 Visual servoing @5 08
C03 03  X  SPA  @0 Servomando visual @5 08
C03 04  X  FRE  @0 Commande force @5 09
C03 04  X  ENG  @0 Force control @5 09
C03 04  X  SPA  @0 Control fuerza @5 09
C03 05  X  FRE  @0 Robotique @5 10
C03 05  X  ENG  @0 Robotics @5 10
C03 05  X  SPA  @0 Robótica @5 10
C03 06  X  FRE  @0 Robot @5 11
C03 06  X  ENG  @0 Robot @5 11
C03 06  X  SPA  @0 Robot @5 11
C03 07  X  FRE  @0 Repère visuel @5 18
C03 07  X  ENG  @0 Visual cue @5 18
C03 07  X  SPA  @0 Marca visual @5 18
C03 08  X  FRE  @0 Stimulus visuel @5 19
C03 08  X  ENG  @0 Visual stimulus @5 19
C03 08  X  SPA  @0 Estimulo visual @5 19
C03 09  X  FRE  @0 Proprioception @5 20
C03 09  X  ENG  @0 Proprioception @5 20
C03 09  X  SPA  @0 Propiocepción @5 20
C03 10  X  FRE  @0 Psychophysique @5 21
C03 10  X  ENG  @0 Psychophysics @5 21
C03 10  X  SPA  @0 Psicofísica @5 21
C03 11  X  FRE  @0 Mouvement stimulus @5 22
C03 11  X  ENG  @0 Stimulus movement @5 22
C03 11  X  SPA  @0 Movimiento estímulo @5 22
C03 12  X  FRE  @0 Prothèse @5 23
C03 12  X  ENG  @0 Prosthesis @5 23
C03 12  X  SPA  @0 Prótesis @5 23
C03 13  X  FRE  @0 Membre supérieur @5 24
C03 13  X  ENG  @0 Upper limb @5 24
C03 13  X  SPA  @0 Miembro superior @5 24
C03 14  X  FRE  @0 Attention visuelle @5 25
C03 14  X  ENG  @0 Visual attention @5 25
C03 14  X  SPA  @0 Atención visual @5 25
C03 15  X  FRE  @0 Doigt @5 26
C03 15  X  ENG  @0 Finger @5 26
C03 15  X  SPA  @0 Dedo @5 26
C03 16  X  FRE  @0 Discrimination @5 27
C03 16  X  ENG  @0 Discrimination @5 27
C03 16  X  SPA  @0 Discriminación @5 27
C03 17  X  FRE  @0 Rigidité @5 28
C03 17  X  ENG  @0 Stiffness @5 28
C03 17  X  SPA  @0 Rigidez @5 28
C03 18  X  FRE  @0 Maximum vraisemblance @5 29
C03 18  X  ENG  @0 Maximum likelihood @5 29
C03 18  X  SPA  @0 Maxima verosimilitud @5 29
C03 19  X  FRE  @0 Etude expérimentale @5 33
C03 19  X  ENG  @0 Experimental study @5 33
C03 19  X  SPA  @0 Estudio experimental @5 33
C03 20  X  FRE  @0 Sensibilité tactile @5 41
C03 20  X  ENG  @0 Tactile sensitivity @5 41
C03 20  X  SPA  @0 Sensibilidad tactil @5 41
N21       @1 161
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : FRANCIS 13-0182195 INIST
ET : Perception of Springs With Visual and Proprioceptive Motion Cues: Implications for Prosthetics
AU : GURARI (Netta); KUCHENBECKER (Katherine J.); OKAMURA (Allison M.)
AF : Department of Robotics, Brain, and Cognitive Sciences, Istituto Italiano di Tecnologia/16163 Genova/Italie (1 aut.); University of Pennsylvania/Philadelphia, PA 19104/Etats-Unis (2 aut.); Stanford University/Stanford, CA 94305/Etats-Unis (3 aut.)
DT : Publication en série; Niveau analytique
SO : IEEE transactions on human-machine systems : (Print); ISSN 2168-2291; Etats-Unis; Da. 2013; Vol. 43; No. 1; Pp. 102-114; Bibl. 45 ref.
LA : Anglais
EA : Manipulating objects with an upper limb prosthesis requires significantly more visual attention than doing the same task with an intact limb. Prior work and comments from individuals lacking proprioception indicate that conveying prosthesis motion through a nonvisual sensory channel would reduce and possibly remove the need to watch the prosthesis. To motivate the design of suitable sensory substitution devices, this study investigates the difference between seeing a virtual prosthetic limb move and feeling one's real limb move. Fifteen intact subjects controlled a virtual prosthetic finger in a one-degree-of-freedom rotational spring discrimination task. A custom haptic device was used to measure both real finger position and applied finger force, and the resulting prosthetic finger movement was displayed visually (on a computer screen) and/or proprioceptively (by allowing the subject's real finger to move). Spring discrimination performance was tested for three experimental sensory conditions-visual motion, proprioceptive motion, and visual and proprioceptive motion-using the method of constant stimuli, with a reference stiffness of 290 N/m. During each trial, subjects sequentially pressed the right index finger on a pair of hard-surfaced virtual springs and decided which was stiffer. No significant performance differences were found between the three experimental sensory conditions, but subjects perceived proprioceptive motion to be significantly more useful than visual motion. These results imply that relaying proprioceptive information through a nonvisual channel could reduce visual attention during prosthesis control while maintaining task performance, thus improving the upper limb prosthesis experience.
CC : 770B05B; 770B05G; 770B05C
FD : Ressort; Substitution; Asservissement visuel; Commande force; Robotique; Robot; Repère visuel; Stimulus visuel; Proprioception; Psychophysique; Mouvement stimulus; Prothèse; Membre supérieur; Attention visuelle; Doigt; Discrimination; Rigidité; Maximum vraisemblance; Etude expérimentale; Sensibilité tactile
ED : Spring; Substitution; Visual servoing; Force control; Robotics; Robot; Visual cue; Visual stimulus; Proprioception; Psychophysics; Stimulus movement; Prosthesis; Upper limb; Visual attention; Finger; Discrimination; Stiffness; Maximum likelihood; Experimental study; Tactile sensitivity
SD : Resorte; Substitución; Servomando visual; Control fuerza; Robótica; Robot; Marca visual; Estimulo visual; Propiocepción; Psicofísica; Movimiento estímulo; Prótesis; Miembro superior; Atención visual; Dedo; Discriminación; Rigidez; Maxima verosimilitud; Estudio experimental; Sensibilidad tactil
LO : INIST-222H8.354000509062710090
ID : 13-0182195

Links to Exploration step

Francis:13-0182195

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Perception of Springs With Visual and Proprioceptive Motion Cues: Implications for Prosthetics</title>
<author>
<name sortKey="Gurari, Netta" sort="Gurari, Netta" uniqKey="Gurari N" first="Netta" last="Gurari">Netta Gurari</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Robotics, Brain, and Cognitive Sciences, Istituto Italiano di Tecnologia</s1>
<s2>16163 Genova</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kuchenbecker, Katherine J" sort="Kuchenbecker, Katherine J" uniqKey="Kuchenbecker K" first="Katherine J." last="Kuchenbecker">Katherine J. Kuchenbecker</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of Pennsylvania</s1>
<s2>Philadelphia, PA 19104</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Okamura, Allison M" sort="Okamura, Allison M" uniqKey="Okamura A" first="Allison M." last="Okamura">Allison M. Okamura</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Stanford University</s1>
<s2>Stanford, CA 94305</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0182195</idno>
<date when="2013">2013</date>
<idno type="stanalyst">FRANCIS 13-0182195 INIST</idno>
<idno type="RBID">Francis:13-0182195</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000263</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Perception of Springs With Visual and Proprioceptive Motion Cues: Implications for Prosthetics</title>
<author>
<name sortKey="Gurari, Netta" sort="Gurari, Netta" uniqKey="Gurari N" first="Netta" last="Gurari">Netta Gurari</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Robotics, Brain, and Cognitive Sciences, Istituto Italiano di Tecnologia</s1>
<s2>16163 Genova</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kuchenbecker, Katherine J" sort="Kuchenbecker, Katherine J" uniqKey="Kuchenbecker K" first="Katherine J." last="Kuchenbecker">Katherine J. Kuchenbecker</name>
<affiliation>
<inist:fA14 i1="02">
<s1>University of Pennsylvania</s1>
<s2>Philadelphia, PA 19104</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Okamura, Allison M" sort="Okamura, Allison M" uniqKey="Okamura A" first="Allison M." last="Okamura">Allison M. Okamura</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Stanford University</s1>
<s2>Stanford, CA 94305</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on human-machine systems : (Print)</title>
<title level="j" type="abbreviated">IEEE trans. hum.-mach. syst. : (Print)</title>
<idno type="ISSN">2168-2291</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on human-machine systems : (Print)</title>
<title level="j" type="abbreviated">IEEE trans. hum.-mach. syst. : (Print)</title>
<idno type="ISSN">2168-2291</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Discrimination</term>
<term>Experimental study</term>
<term>Finger</term>
<term>Force control</term>
<term>Maximum likelihood</term>
<term>Proprioception</term>
<term>Prosthesis</term>
<term>Psychophysics</term>
<term>Robot</term>
<term>Robotics</term>
<term>Spring</term>
<term>Stiffness</term>
<term>Stimulus movement</term>
<term>Substitution</term>
<term>Tactile sensitivity</term>
<term>Upper limb</term>
<term>Visual attention</term>
<term>Visual cue</term>
<term>Visual servoing</term>
<term>Visual stimulus</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ressort</term>
<term>Substitution</term>
<term>Asservissement visuel</term>
<term>Commande force</term>
<term>Robotique</term>
<term>Robot</term>
<term>Repère visuel</term>
<term>Stimulus visuel</term>
<term>Proprioception</term>
<term>Psychophysique</term>
<term>Mouvement stimulus</term>
<term>Prothèse</term>
<term>Membre supérieur</term>
<term>Attention visuelle</term>
<term>Doigt</term>
<term>Discrimination</term>
<term>Rigidité</term>
<term>Maximum vraisemblance</term>
<term>Etude expérimentale</term>
<term>Sensibilité tactile</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Manipulating objects with an upper limb prosthesis requires significantly more visual attention than doing the same task with an intact limb. Prior work and comments from individuals lacking proprioception indicate that conveying prosthesis motion through a nonvisual sensory channel would reduce and possibly remove the need to watch the prosthesis. To motivate the design of suitable sensory substitution devices, this study investigates the difference between seeing a virtual prosthetic limb move and feeling one's real limb move. Fifteen intact subjects controlled a virtual prosthetic finger in a one-degree-of-freedom rotational spring discrimination task. A custom haptic device was used to measure both real finger position and applied finger force, and the resulting prosthetic finger movement was displayed visually (on a computer screen) and/or proprioceptively (by allowing the subject's real finger to move). Spring discrimination performance was tested for three experimental sensory conditions-visual motion, proprioceptive motion, and visual and proprioceptive motion-using the method of constant stimuli, with a reference stiffness of 290 N/m. During each trial, subjects sequentially pressed the right index finger on a pair of hard-surfaced virtual springs and decided which was stiffer. No significant performance differences were found between the three experimental sensory conditions, but subjects perceived proprioceptive motion to be significantly more useful than visual motion. These results imply that relaying proprioceptive information through a nonvisual channel could reduce visual attention during prosthesis control while maintaining task performance, thus improving the upper limb prosthesis experience.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>2168-2291</s0>
</fA01>
<fA03 i2="1">
<s0>IEEE trans. hum.-mach. syst. : (Print)</s0>
</fA03>
<fA05>
<s2>43</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Perception of Springs With Visual and Proprioceptive Motion Cues: Implications for Prosthetics</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GURARI (Netta)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KUCHENBECKER (Katherine J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>OKAMURA (Allison M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Robotics, Brain, and Cognitive Sciences, Istituto Italiano di Tecnologia</s1>
<s2>16163 Genova</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>University of Pennsylvania</s1>
<s2>Philadelphia, PA 19104</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Stanford University</s1>
<s2>Stanford, CA 94305</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>102-114</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222H8</s2>
<s5>354000509062710090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>45 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0182195</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on human-machine systems : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Manipulating objects with an upper limb prosthesis requires significantly more visual attention than doing the same task with an intact limb. Prior work and comments from individuals lacking proprioception indicate that conveying prosthesis motion through a nonvisual sensory channel would reduce and possibly remove the need to watch the prosthesis. To motivate the design of suitable sensory substitution devices, this study investigates the difference between seeing a virtual prosthetic limb move and feeling one's real limb move. Fifteen intact subjects controlled a virtual prosthetic finger in a one-degree-of-freedom rotational spring discrimination task. A custom haptic device was used to measure both real finger position and applied finger force, and the resulting prosthetic finger movement was displayed visually (on a computer screen) and/or proprioceptively (by allowing the subject's real finger to move). Spring discrimination performance was tested for three experimental sensory conditions-visual motion, proprioceptive motion, and visual and proprioceptive motion-using the method of constant stimuli, with a reference stiffness of 290 N/m. During each trial, subjects sequentially pressed the right index finger on a pair of hard-surfaced virtual springs and decided which was stiffer. No significant performance differences were found between the three experimental sensory conditions, but subjects perceived proprioceptive motion to be significantly more useful than visual motion. These results imply that relaying proprioceptive information through a nonvisual channel could reduce visual attention during prosthesis control while maintaining task performance, thus improving the upper limb prosthesis experience.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>770B05B</s0>
<s1>II</s1>
</fC02>
<fC02 i1="02" i2="X">
<s0>770B05G</s0>
<s1>II</s1>
</fC02>
<fC02 i1="03" i2="X">
<s0>770B05C</s0>
<s1>II</s1>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Ressort</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Spring</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Resorte</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Substitution</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Substitution</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Substitución</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Asservissement visuel</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Visual servoing</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Servomando visual</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Commande force</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Force control</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Control fuerza</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Robot</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Robot</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Robot</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Repère visuel</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Visual cue</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Marca visual</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Stimulus visuel</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Visual stimulus</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estimulo visual</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Proprioception</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Proprioception</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Propiocepción</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Psychophysique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Psychophysics</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Psicofísica</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Mouvement stimulus</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Stimulus movement</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Movimiento estímulo</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Prothèse</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Prosthesis</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Prótesis</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Membre supérieur</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Upper limb</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Miembro superior</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Attention visuelle</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Visual attention</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Atención visual</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Doigt</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Finger</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Dedo</s0>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Discrimination</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Discrimination</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Discriminación</s0>
<s5>27</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Rigidité</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Stiffness</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Rigidez</s0>
<s5>28</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Maximum vraisemblance</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Maximum likelihood</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Maxima verosimilitud</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>41</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>41</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>41</s5>
</fC03>
<fN21>
<s1>161</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>FRANCIS 13-0182195 INIST</NO>
<ET>Perception of Springs With Visual and Proprioceptive Motion Cues: Implications for Prosthetics</ET>
<AU>GURARI (Netta); KUCHENBECKER (Katherine J.); OKAMURA (Allison M.)</AU>
<AF>Department of Robotics, Brain, and Cognitive Sciences, Istituto Italiano di Tecnologia/16163 Genova/Italie (1 aut.); University of Pennsylvania/Philadelphia, PA 19104/Etats-Unis (2 aut.); Stanford University/Stanford, CA 94305/Etats-Unis (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>IEEE transactions on human-machine systems : (Print); ISSN 2168-2291; Etats-Unis; Da. 2013; Vol. 43; No. 1; Pp. 102-114; Bibl. 45 ref.</SO>
<LA>Anglais</LA>
<EA>Manipulating objects with an upper limb prosthesis requires significantly more visual attention than doing the same task with an intact limb. Prior work and comments from individuals lacking proprioception indicate that conveying prosthesis motion through a nonvisual sensory channel would reduce and possibly remove the need to watch the prosthesis. To motivate the design of suitable sensory substitution devices, this study investigates the difference between seeing a virtual prosthetic limb move and feeling one's real limb move. Fifteen intact subjects controlled a virtual prosthetic finger in a one-degree-of-freedom rotational spring discrimination task. A custom haptic device was used to measure both real finger position and applied finger force, and the resulting prosthetic finger movement was displayed visually (on a computer screen) and/or proprioceptively (by allowing the subject's real finger to move). Spring discrimination performance was tested for three experimental sensory conditions-visual motion, proprioceptive motion, and visual and proprioceptive motion-using the method of constant stimuli, with a reference stiffness of 290 N/m. During each trial, subjects sequentially pressed the right index finger on a pair of hard-surfaced virtual springs and decided which was stiffer. No significant performance differences were found between the three experimental sensory conditions, but subjects perceived proprioceptive motion to be significantly more useful than visual motion. These results imply that relaying proprioceptive information through a nonvisual channel could reduce visual attention during prosthesis control while maintaining task performance, thus improving the upper limb prosthesis experience.</EA>
<CC>770B05B; 770B05G; 770B05C</CC>
<FD>Ressort; Substitution; Asservissement visuel; Commande force; Robotique; Robot; Repère visuel; Stimulus visuel; Proprioception; Psychophysique; Mouvement stimulus; Prothèse; Membre supérieur; Attention visuelle; Doigt; Discrimination; Rigidité; Maximum vraisemblance; Etude expérimentale; Sensibilité tactile</FD>
<ED>Spring; Substitution; Visual servoing; Force control; Robotics; Robot; Visual cue; Visual stimulus; Proprioception; Psychophysics; Stimulus movement; Prosthesis; Upper limb; Visual attention; Finger; Discrimination; Stiffness; Maximum likelihood; Experimental study; Tactile sensitivity</ED>
<SD>Resorte; Substitución; Servomando visual; Control fuerza; Robótica; Robot; Marca visual; Estimulo visual; Propiocepción; Psicofísica; Movimiento estímulo; Prótesis; Miembro superior; Atención visual; Dedo; Discriminación; Rigidez; Maxima verosimilitud; Estudio experimental; Sensibilidad tactil</SD>
<LO>INIST-222H8.354000509062710090</LO>
<ID>13-0182195</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000263 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000263 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Francis:13-0182195
   |texte=   Perception of Springs With Visual and Proprioceptive Motion Cues: Implications for Prosthetics
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024