Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Virtual needle insertion with haptic feedback using a hybrid actuator with DC servomotor and MR-brake with Hall-effect sensor

Identifieur interne : 000224 ( PascalFrancis/Corpus ); précédent : 000223; suivant : 000225

Virtual needle insertion with haptic feedback using a hybrid actuator with DC servomotor and MR-brake with Hall-effect sensor

Auteurs : Berk Gonenc ; Hakan Gurocak

Source :

RBID : Pascal:13-0076475

Descripteurs français

English descriptors

Abstract

In many haptics applications, fast and stable force response with high strength is highly desired. While the existing active and passive actuators cannot fully satisfy these requirements alone, their cooperation could provide better results. This study aimed at the development of a hybrid actuator by combining a DC servomotor and a magnetorheological (MR) brake. Serpentine flux path architecture was used to design a compact MR-brake. By embedding a Hall-effect sensor in the brake, the hysteresis challenges and residual off-state torque were eliminated. In this approach, the sensor measures the flux across the MR-fluid while a PI controller directly manipulates the magnetic induction level. To the best of our knowledge, this is the first such design incorporated into an MR-brake. The control scheme determines the motor and brake inputs separately based on their capabilities. During operation, the brake is activated to provide an average force profile while the motor superimposes the finer details on this profile. The hybrid actuator can provide a stiff wall collision effect when the needle touches a bone. It can also enable fast tracking during sudden force variations as they happen during virtual needle insertion and removal into virtual tissue layers.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0957-4158
A03   1    @0 Mechatronics : (Oxf.)
A05       @2 22
A06       @2 8
A08 01  1  ENG  @1 Virtual needle insertion with haptic feedback using a hybrid actuator with DC servomotor and MR-brake with Hall-effect sensor
A11 01  1    @1 GONENC (Berk)
A11 02  1    @1 GUROCAK (Hakan)
A14 01      @1 School of Engineering and Computer Science, Washington State University Vancouver @3 USA @Z 1 aut. @Z 2 aut.
A20       @1 1161-1176
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 22113 @5 354000505469940130
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 27 ref.
A47 01  1    @0 13-0076475
A60       @1 P
A61       @0 A
A64 01  1    @0 Mechatronics : (Oxford)
A66 01      @0 GBR
C01 01    ENG  @0 In many haptics applications, fast and stable force response with high strength is highly desired. While the existing active and passive actuators cannot fully satisfy these requirements alone, their cooperation could provide better results. This study aimed at the development of a hybrid actuator by combining a DC servomotor and a magnetorheological (MR) brake. Serpentine flux path architecture was used to design a compact MR-brake. By embedding a Hall-effect sensor in the brake, the hysteresis challenges and residual off-state torque were eliminated. In this approach, the sensor measures the flux across the MR-fluid while a PI controller directly manipulates the magnetic induction level. To the best of our knowledge, this is the first such design incorporated into an MR-brake. The control scheme determines the motor and brake inputs separately based on their capabilities. During operation, the brake is activated to provide an average force profile while the motor superimposes the finer details on this profile. The hybrid actuator can provide a stiff wall collision effect when the needle touches a bone. It can also enable fast tracking during sudden force variations as they happen during virtual needle insertion and removal into virtual tissue layers.
C02 01  3    @0 001B00G07M
C03 01  3  FRE  @0 Actionneur @5 02
C03 01  3  ENG  @0 Actuators @5 02
C03 02  3  FRE  @0 Frein @5 03
C03 02  3  ENG  @0 Brakes @5 03
C03 03  3  FRE  @0 Capteur magnétique @5 04
C03 03  3  ENG  @0 Magnetic sensors @5 04
C03 04  3  FRE  @0 Hystérésis magnétique @5 06
C03 04  3  ENG  @0 Magnetic hysteresis @5 06
C03 05  3  FRE  @0 Dispositif effet Hall @5 11
C03 05  3  ENG  @0 Hall effect devices @5 11
C03 06  3  FRE  @0 Servomoteur @5 12
C03 06  3  ENG  @0 Servomotors @5 12
C03 07  3  FRE  @0 Boucle réaction @5 13
C03 07  3  ENG  @0 Feedback @5 13
C03 08  3  FRE  @0 Interface haptique @5 15
C03 08  3  ENG  @0 Haptic interfaces @5 15
C03 09  3  FRE  @0 Système commande @5 16
C03 09  3  ENG  @0 Control systems @5 16
N21       @1 049

Format Inist (serveur)

NO : PASCAL 13-0076475 INIST
ET : Virtual needle insertion with haptic feedback using a hybrid actuator with DC servomotor and MR-brake with Hall-effect sensor
AU : GONENC (Berk); GUROCAK (Hakan)
AF : School of Engineering and Computer Science, Washington State University Vancouver/Etats-Unis (1 aut., 2 aut.)
DT : Publication en série; Niveau analytique
SO : Mechatronics : (Oxford); ISSN 0957-4158; Royaume-Uni; Da. 2012; Vol. 22; No. 8; Pp. 1161-1176; Bibl. 27 ref.
LA : Anglais
EA : In many haptics applications, fast and stable force response with high strength is highly desired. While the existing active and passive actuators cannot fully satisfy these requirements alone, their cooperation could provide better results. This study aimed at the development of a hybrid actuator by combining a DC servomotor and a magnetorheological (MR) brake. Serpentine flux path architecture was used to design a compact MR-brake. By embedding a Hall-effect sensor in the brake, the hysteresis challenges and residual off-state torque were eliminated. In this approach, the sensor measures the flux across the MR-fluid while a PI controller directly manipulates the magnetic induction level. To the best of our knowledge, this is the first such design incorporated into an MR-brake. The control scheme determines the motor and brake inputs separately based on their capabilities. During operation, the brake is activated to provide an average force profile while the motor superimposes the finer details on this profile. The hybrid actuator can provide a stiff wall collision effect when the needle touches a bone. It can also enable fast tracking during sudden force variations as they happen during virtual needle insertion and removal into virtual tissue layers.
CC : 001B00G07M
FD : Actionneur; Frein; Capteur magnétique; Hystérésis magnétique; Dispositif effet Hall; Servomoteur; Boucle réaction; Interface haptique; Système commande
ED : Actuators; Brakes; Magnetic sensors; Magnetic hysteresis; Hall effect devices; Servomotors; Feedback; Haptic interfaces; Control systems
LO : INIST-22113.354000505469940130
ID : 13-0076475

Links to Exploration step

Pascal:13-0076475

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Virtual needle insertion with haptic feedback using a hybrid actuator with DC servomotor and MR-brake with Hall-effect sensor</title>
<author>
<name sortKey="Gonenc, Berk" sort="Gonenc, Berk" uniqKey="Gonenc B" first="Berk" last="Gonenc">Berk Gonenc</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University Vancouver</s1>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gurocak, Hakan" sort="Gurocak, Hakan" uniqKey="Gurocak H" first="Hakan" last="Gurocak">Hakan Gurocak</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University Vancouver</s1>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0076475</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0076475 INIST</idno>
<idno type="RBID">Pascal:13-0076475</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000224</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Virtual needle insertion with haptic feedback using a hybrid actuator with DC servomotor and MR-brake with Hall-effect sensor</title>
<author>
<name sortKey="Gonenc, Berk" sort="Gonenc, Berk" uniqKey="Gonenc B" first="Berk" last="Gonenc">Berk Gonenc</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University Vancouver</s1>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gurocak, Hakan" sort="Gurocak, Hakan" uniqKey="Gurocak H" first="Hakan" last="Gurocak">Hakan Gurocak</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University Vancouver</s1>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Mechatronics : (Oxford)</title>
<title level="j" type="abbreviated">Mechatronics : (Oxf.)</title>
<idno type="ISSN">0957-4158</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Mechatronics : (Oxford)</title>
<title level="j" type="abbreviated">Mechatronics : (Oxf.)</title>
<idno type="ISSN">0957-4158</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actuators</term>
<term>Brakes</term>
<term>Control systems</term>
<term>Feedback</term>
<term>Hall effect devices</term>
<term>Haptic interfaces</term>
<term>Magnetic hysteresis</term>
<term>Magnetic sensors</term>
<term>Servomotors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Actionneur</term>
<term>Frein</term>
<term>Capteur magnétique</term>
<term>Hystérésis magnétique</term>
<term>Dispositif effet Hall</term>
<term>Servomoteur</term>
<term>Boucle réaction</term>
<term>Interface haptique</term>
<term>Système commande</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In many haptics applications, fast and stable force response with high strength is highly desired. While the existing active and passive actuators cannot fully satisfy these requirements alone, their cooperation could provide better results. This study aimed at the development of a hybrid actuator by combining a DC servomotor and a magnetorheological (MR) brake. Serpentine flux path architecture was used to design a compact MR-brake. By embedding a Hall-effect sensor in the brake, the hysteresis challenges and residual off-state torque were eliminated. In this approach, the sensor measures the flux across the MR-fluid while a PI controller directly manipulates the magnetic induction level. To the best of our knowledge, this is the first such design incorporated into an MR-brake. The control scheme determines the motor and brake inputs separately based on their capabilities. During operation, the brake is activated to provide an average force profile while the motor superimposes the finer details on this profile. The hybrid actuator can provide a stiff wall collision effect when the needle touches a bone. It can also enable fast tracking during sudden force variations as they happen during virtual needle insertion and removal into virtual tissue layers.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4158</s0>
</fA01>
<fA03 i2="1">
<s0>Mechatronics : (Oxf.)</s0>
</fA03>
<fA05>
<s2>22</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Virtual needle insertion with haptic feedback using a hybrid actuator with DC servomotor and MR-brake with Hall-effect sensor</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GONENC (Berk)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GUROCAK (Hakan)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Engineering and Computer Science, Washington State University Vancouver</s1>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1161-1176</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22113</s2>
<s5>354000505469940130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0076475</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Mechatronics : (Oxford)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In many haptics applications, fast and stable force response with high strength is highly desired. While the existing active and passive actuators cannot fully satisfy these requirements alone, their cooperation could provide better results. This study aimed at the development of a hybrid actuator by combining a DC servomotor and a magnetorheological (MR) brake. Serpentine flux path architecture was used to design a compact MR-brake. By embedding a Hall-effect sensor in the brake, the hysteresis challenges and residual off-state torque were eliminated. In this approach, the sensor measures the flux across the MR-fluid while a PI controller directly manipulates the magnetic induction level. To the best of our knowledge, this is the first such design incorporated into an MR-brake. The control scheme determines the motor and brake inputs separately based on their capabilities. During operation, the brake is activated to provide an average force profile while the motor superimposes the finer details on this profile. The hybrid actuator can provide a stiff wall collision effect when the needle touches a bone. It can also enable fast tracking during sudden force variations as they happen during virtual needle insertion and removal into virtual tissue layers.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00G07M</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Actionneur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Actuators</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Frein</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Brakes</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Capteur magnétique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Magnetic sensors</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Hystérésis magnétique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Magnetic hysteresis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Dispositif effet Hall</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Hall effect devices</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Servomoteur</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Servomotors</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Boucle réaction</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Feedback</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Interface haptique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Haptic interfaces</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Système commande</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Control systems</s0>
<s5>16</s5>
</fC03>
<fN21>
<s1>049</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 13-0076475 INIST</NO>
<ET>Virtual needle insertion with haptic feedback using a hybrid actuator with DC servomotor and MR-brake with Hall-effect sensor</ET>
<AU>GONENC (Berk); GUROCAK (Hakan)</AU>
<AF>School of Engineering and Computer Science, Washington State University Vancouver/Etats-Unis (1 aut., 2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Mechatronics : (Oxford); ISSN 0957-4158; Royaume-Uni; Da. 2012; Vol. 22; No. 8; Pp. 1161-1176; Bibl. 27 ref.</SO>
<LA>Anglais</LA>
<EA>In many haptics applications, fast and stable force response with high strength is highly desired. While the existing active and passive actuators cannot fully satisfy these requirements alone, their cooperation could provide better results. This study aimed at the development of a hybrid actuator by combining a DC servomotor and a magnetorheological (MR) brake. Serpentine flux path architecture was used to design a compact MR-brake. By embedding a Hall-effect sensor in the brake, the hysteresis challenges and residual off-state torque were eliminated. In this approach, the sensor measures the flux across the MR-fluid while a PI controller directly manipulates the magnetic induction level. To the best of our knowledge, this is the first such design incorporated into an MR-brake. The control scheme determines the motor and brake inputs separately based on their capabilities. During operation, the brake is activated to provide an average force profile while the motor superimposes the finer details on this profile. The hybrid actuator can provide a stiff wall collision effect when the needle touches a bone. It can also enable fast tracking during sudden force variations as they happen during virtual needle insertion and removal into virtual tissue layers.</EA>
<CC>001B00G07M</CC>
<FD>Actionneur; Frein; Capteur magnétique; Hystérésis magnétique; Dispositif effet Hall; Servomoteur; Boucle réaction; Interface haptique; Système commande</FD>
<ED>Actuators; Brakes; Magnetic sensors; Magnetic hysteresis; Hall effect devices; Servomotors; Feedback; Haptic interfaces; Control systems</ED>
<LO>INIST-22113.354000505469940130</LO>
<ID>13-0076475</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000224 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000224 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0076475
   |texte=   Virtual needle insertion with haptic feedback using a hybrid actuator with DC servomotor and MR-brake with Hall-effect sensor
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024