Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Haptics and graphic analogies for the understanding of atomic force microscopy

Identifieur interne : 000194 ( PascalFrancis/Corpus ); précédent : 000193; suivant : 000195

Haptics and graphic analogies for the understanding of atomic force microscopy

Auteurs : Guillaume Millet ; Anatole Lecuyer ; Jean-Marie Burkhardt ; Sinan Haliyo ; Stephane Regnier

Source :

RBID : Pascal:13-0207631

Descripteurs français

English descriptors

Abstract

This paper aims to evaluate the benefits of using virtual reality and force-feedback to help teaching nanoscale applications. We propose a teaching aid that combines graphic analogies and haptics intended to improve the grasp of non-intuitive nanoscale phenomena for people without prior knowledge of nanophysics. We look specifically at the most important nanophysical phenomenon, namely, the behavior of the probe of an Atomic Force Microscope (AFM) as it approaches a sample. The results from experiments carried out with 45 students indicate that a "magnet-spring" analogy helped beginners to establish the link between the behavior of a probe and its force-distance curve. The addition of haptic feedback increased focus about forces and improved the interpretation of the effect of cantilever stiffness. Haptic feedback and the analogical representation were very much appreciated by the subjects and had an impact on the construction of a mental model. Taken together, our results show a positive influence of using haptic feedback and graphic analogies, especially when students are first exposed to the notions that are in effect at the nanoscale.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1071-5819
A03   1    @0 Int .j. hum.-comput. stud.
A05       @2 71
A06       @2 5
A08 01  1  ENG  @1 Haptics and graphic analogies for the understanding of atomic force microscopy
A11 01  1    @1 MILLET (Guillaume)
A11 02  1    @1 LECUYER (Anatole)
A11 03  1    @1 BURKHARDT (Jean-Marie)
A11 04  1    @1 HALIYO (Sinan)
A11 05  1    @1 REGNIER (Stephane)
A14 01      @1 UPMC Univ Paris 06, UMR 7222, ISIR @2 75005 Paris @3 FRA @Z 1 aut. @Z 4 aut. @Z 5 aut.
A14 02      @1 INRIA/IRISA, Campus universitaire de Beaulieu @2 35042 Rennes @3 FRA @Z 2 aut.
A14 03      @1 IFSTTAR. LPC @2 78000 Versailles @3 FRA @Z 3 aut.
A20       @1 608-626
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 14299 @5 354000504115200060
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/2
A47 01  1    @0 13-0207631
A60       @1 P
A61       @0 A
A64 01  1    @0 International journal of human-computer studies
A66 01      @0 GBR
C01 01    ENG  @0 This paper aims to evaluate the benefits of using virtual reality and force-feedback to help teaching nanoscale applications. We propose a teaching aid that combines graphic analogies and haptics intended to improve the grasp of non-intuitive nanoscale phenomena for people without prior knowledge of nanophysics. We look specifically at the most important nanophysical phenomenon, namely, the behavior of the probe of an Atomic Force Microscope (AFM) as it approaches a sample. The results from experiments carried out with 45 students indicate that a "magnet-spring" analogy helped beginners to establish the link between the behavior of a probe and its force-distance curve. The addition of haptic feedback increased focus about forces and improved the interpretation of the effect of cantilever stiffness. Haptic feedback and the analogical representation were very much appreciated by the subjects and had an impact on the construction of a mental model. Taken together, our results show a positive influence of using haptic feedback and graphic analogies, especially when students are first exposed to the notions that are in effect at the nanoscale.
C02 01  X    @0 001D02B04
C02 02  3    @0 001B00G79L
C02 03  X    @0 001D00B
C02 04  X    @0 001D02D11
C03 01  X  FRE  @0 Représentation graphique @5 06
C03 01  X  ENG  @0 Graphics @5 06
C03 01  X  SPA  @0 Grafo (curva) @5 06
C03 02  X  FRE  @0 Réalité virtuelle @5 07
C03 02  X  ENG  @0 Virtual reality @5 07
C03 02  X  SPA  @0 Realidad virtual @5 07
C03 03  X  FRE  @0 Enseignement @5 08
C03 03  X  ENG  @0 Teaching @5 08
C03 03  X  SPA  @0 Enseñanza @5 08
C03 04  X  FRE  @0 Cognition @5 09
C03 04  X  ENG  @0 Cognition @5 09
C03 04  X  SPA  @0 Cognición @5 09
C03 05  X  FRE  @0 Education @5 10
C03 05  X  ENG  @0 Education @5 10
C03 05  X  SPA  @0 Educación @5 10
C03 06  X  FRE  @0 Sensibilité tactile @5 18
C03 06  X  ENG  @0 Tactile sensitivity @5 18
C03 06  X  SPA  @0 Sensibilidad tactil @5 18
C03 07  X  FRE  @0 Microscopie force atomique @5 19
C03 07  X  ENG  @0 Atomic force microscopy @5 19
C03 07  X  SPA  @0 Microscopía fuerza atómica @5 19
C03 08  X  FRE  @0 Nanostructure @5 20
C03 08  X  ENG  @0 Nanostructure @5 20
C03 08  X  SPA  @0 Nanoestructura @5 20
C03 09  X  FRE  @0 Préhension @5 21
C03 09  X  ENG  @0 Gripping @5 21
C03 09  X  SPA  @0 Prension @5 21
C03 10  X  FRE  @0 Rétroaction @5 22
C03 10  X  ENG  @0 Feedback regulation @5 22
C03 10  X  SPA  @0 Retroacción @5 22
C03 11  X  FRE  @0 Encorbellement @5 23
C03 11  X  ENG  @0 Cantilever @5 23
C03 11  X  SPA  @0 Salidizo @5 23
C03 12  X  FRE  @0 Rigidité @5 24
C03 12  X  ENG  @0 Stiffness @5 24
C03 12  X  SPA  @0 Rigidez @5 24
C03 13  X  FRE  @0 Modèle mental @5 25
C03 13  X  ENG  @0 Mental model @5 25
C03 13  X  SPA  @0 Modelo mental @5 25
C03 14  X  FRE  @0 Equipement entrée sortie @5 26
C03 14  X  ENG  @0 Input output equipment @5 26
C03 14  X  SPA  @0 Equipo entrada salida @5 26
C03 15  X  FRE  @0 Nanotechnologie @5 27
C03 15  X  ENG  @0 Nanotechnology @5 27
C03 15  X  SPA  @0 Nanotecnología @5 27
C03 16  X  FRE  @0 Facteur humain @5 41
C03 16  X  ENG  @0 Human factor @5 41
C03 16  X  SPA  @0 Factor humano @5 41
N21       @1 189
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 13-0207631 INIST
ET : Haptics and graphic analogies for the understanding of atomic force microscopy
AU : MILLET (Guillaume); LECUYER (Anatole); BURKHARDT (Jean-Marie); HALIYO (Sinan); REGNIER (Stephane)
AF : UPMC Univ Paris 06, UMR 7222, ISIR/75005 Paris/France (1 aut., 4 aut., 5 aut.); INRIA/IRISA, Campus universitaire de Beaulieu/35042 Rennes/France (2 aut.); IFSTTAR. LPC/78000 Versailles/France (3 aut.)
DT : Publication en série; Niveau analytique
SO : International journal of human-computer studies; ISSN 1071-5819; Royaume-Uni; Da. 2013; Vol. 71; No. 5; Pp. 608-626; Bibl. 1 p.1/2
LA : Anglais
EA : This paper aims to evaluate the benefits of using virtual reality and force-feedback to help teaching nanoscale applications. We propose a teaching aid that combines graphic analogies and haptics intended to improve the grasp of non-intuitive nanoscale phenomena for people without prior knowledge of nanophysics. We look specifically at the most important nanophysical phenomenon, namely, the behavior of the probe of an Atomic Force Microscope (AFM) as it approaches a sample. The results from experiments carried out with 45 students indicate that a "magnet-spring" analogy helped beginners to establish the link between the behavior of a probe and its force-distance curve. The addition of haptic feedback increased focus about forces and improved the interpretation of the effect of cantilever stiffness. Haptic feedback and the analogical representation were very much appreciated by the subjects and had an impact on the construction of a mental model. Taken together, our results show a positive influence of using haptic feedback and graphic analogies, especially when students are first exposed to the notions that are in effect at the nanoscale.
CC : 001D02B04; 001B00G79L; 001D00B; 001D02D11
FD : Représentation graphique; Réalité virtuelle; Enseignement; Cognition; Education; Sensibilité tactile; Microscopie force atomique; Nanostructure; Préhension; Rétroaction; Encorbellement; Rigidité; Modèle mental; Equipement entrée sortie; Nanotechnologie; Facteur humain
ED : Graphics; Virtual reality; Teaching; Cognition; Education; Tactile sensitivity; Atomic force microscopy; Nanostructure; Gripping; Feedback regulation; Cantilever; Stiffness; Mental model; Input output equipment; Nanotechnology; Human factor
SD : Grafo (curva); Realidad virtual; Enseñanza; Cognición; Educación; Sensibilidad tactil; Microscopía fuerza atómica; Nanoestructura; Prension; Retroacción; Salidizo; Rigidez; Modelo mental; Equipo entrada salida; Nanotecnología; Factor humano
LO : INIST-14299.354000504115200060
ID : 13-0207631

Links to Exploration step

Pascal:13-0207631

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Haptics and graphic analogies for the understanding of atomic force microscopy</title>
<author>
<name sortKey="Millet, Guillaume" sort="Millet, Guillaume" uniqKey="Millet G" first="Guillaume" last="Millet">Guillaume Millet</name>
<affiliation>
<inist:fA14 i1="01">
<s1>UPMC Univ Paris 06, UMR 7222, ISIR</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lecuyer, Anatole" sort="Lecuyer, Anatole" uniqKey="Lecuyer A" first="Anatole" last="Lecuyer">Anatole Lecuyer</name>
<affiliation>
<inist:fA14 i1="02">
<s1>INRIA/IRISA, Campus universitaire de Beaulieu</s1>
<s2>35042 Rennes</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Burkhardt, Jean Marie" sort="Burkhardt, Jean Marie" uniqKey="Burkhardt J" first="Jean-Marie" last="Burkhardt">Jean-Marie Burkhardt</name>
<affiliation>
<inist:fA14 i1="03">
<s1>IFSTTAR. LPC</s1>
<s2>78000 Versailles</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Haliyo, Sinan" sort="Haliyo, Sinan" uniqKey="Haliyo S" first="Sinan" last="Haliyo">Sinan Haliyo</name>
<affiliation>
<inist:fA14 i1="01">
<s1>UPMC Univ Paris 06, UMR 7222, ISIR</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Regnier, Stephane" sort="Regnier, Stephane" uniqKey="Regnier S" first="Stephane" last="Regnier">Stephane Regnier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>UPMC Univ Paris 06, UMR 7222, ISIR</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0207631</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0207631 INIST</idno>
<idno type="RBID">Pascal:13-0207631</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000194</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Haptics and graphic analogies for the understanding of atomic force microscopy</title>
<author>
<name sortKey="Millet, Guillaume" sort="Millet, Guillaume" uniqKey="Millet G" first="Guillaume" last="Millet">Guillaume Millet</name>
<affiliation>
<inist:fA14 i1="01">
<s1>UPMC Univ Paris 06, UMR 7222, ISIR</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lecuyer, Anatole" sort="Lecuyer, Anatole" uniqKey="Lecuyer A" first="Anatole" last="Lecuyer">Anatole Lecuyer</name>
<affiliation>
<inist:fA14 i1="02">
<s1>INRIA/IRISA, Campus universitaire de Beaulieu</s1>
<s2>35042 Rennes</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Burkhardt, Jean Marie" sort="Burkhardt, Jean Marie" uniqKey="Burkhardt J" first="Jean-Marie" last="Burkhardt">Jean-Marie Burkhardt</name>
<affiliation>
<inist:fA14 i1="03">
<s1>IFSTTAR. LPC</s1>
<s2>78000 Versailles</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Haliyo, Sinan" sort="Haliyo, Sinan" uniqKey="Haliyo S" first="Sinan" last="Haliyo">Sinan Haliyo</name>
<affiliation>
<inist:fA14 i1="01">
<s1>UPMC Univ Paris 06, UMR 7222, ISIR</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Regnier, Stephane" sort="Regnier, Stephane" uniqKey="Regnier S" first="Stephane" last="Regnier">Stephane Regnier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>UPMC Univ Paris 06, UMR 7222, ISIR</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">International journal of human-computer studies</title>
<title level="j" type="abbreviated">Int .j. hum.-comput. stud.</title>
<idno type="ISSN">1071-5819</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">International journal of human-computer studies</title>
<title level="j" type="abbreviated">Int .j. hum.-comput. stud.</title>
<idno type="ISSN">1071-5819</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Cantilever</term>
<term>Cognition</term>
<term>Education</term>
<term>Feedback regulation</term>
<term>Graphics</term>
<term>Gripping</term>
<term>Human factor</term>
<term>Input output equipment</term>
<term>Mental model</term>
<term>Nanostructure</term>
<term>Nanotechnology</term>
<term>Stiffness</term>
<term>Tactile sensitivity</term>
<term>Teaching</term>
<term>Virtual reality</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Représentation graphique</term>
<term>Réalité virtuelle</term>
<term>Enseignement</term>
<term>Cognition</term>
<term>Education</term>
<term>Sensibilité tactile</term>
<term>Microscopie force atomique</term>
<term>Nanostructure</term>
<term>Préhension</term>
<term>Rétroaction</term>
<term>Encorbellement</term>
<term>Rigidité</term>
<term>Modèle mental</term>
<term>Equipement entrée sortie</term>
<term>Nanotechnologie</term>
<term>Facteur humain</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper aims to evaluate the benefits of using virtual reality and force-feedback to help teaching nanoscale applications. We propose a teaching aid that combines graphic analogies and haptics intended to improve the grasp of non-intuitive nanoscale phenomena for people without prior knowledge of nanophysics. We look specifically at the most important nanophysical phenomenon, namely, the behavior of the probe of an Atomic Force Microscope (AFM) as it approaches a sample. The results from experiments carried out with 45 students indicate that a "magnet-spring" analogy helped beginners to establish the link between the behavior of a probe and its force-distance curve. The addition of haptic feedback increased focus about forces and improved the interpretation of the effect of cantilever stiffness. Haptic feedback and the analogical representation were very much appreciated by the subjects and had an impact on the construction of a mental model. Taken together, our results show a positive influence of using haptic feedback and graphic analogies, especially when students are first exposed to the notions that are in effect at the nanoscale.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1071-5819</s0>
</fA01>
<fA03 i2="1">
<s0>Int .j. hum.-comput. stud.</s0>
</fA03>
<fA05>
<s2>71</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Haptics and graphic analogies for the understanding of atomic force microscopy</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MILLET (Guillaume)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LECUYER (Anatole)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BURKHARDT (Jean-Marie)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HALIYO (Sinan)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>REGNIER (Stephane)</s1>
</fA11>
<fA14 i1="01">
<s1>UPMC Univ Paris 06, UMR 7222, ISIR</s1>
<s2>75005 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>INRIA/IRISA, Campus universitaire de Beaulieu</s1>
<s2>35042 Rennes</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>IFSTTAR. LPC</s1>
<s2>78000 Versailles</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>608-626</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14299</s2>
<s5>354000504115200060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/2</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0207631</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>International journal of human-computer studies</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper aims to evaluate the benefits of using virtual reality and force-feedback to help teaching nanoscale applications. We propose a teaching aid that combines graphic analogies and haptics intended to improve the grasp of non-intuitive nanoscale phenomena for people without prior knowledge of nanophysics. We look specifically at the most important nanophysical phenomenon, namely, the behavior of the probe of an Atomic Force Microscope (AFM) as it approaches a sample. The results from experiments carried out with 45 students indicate that a "magnet-spring" analogy helped beginners to establish the link between the behavior of a probe and its force-distance curve. The addition of haptic feedback increased focus about forces and improved the interpretation of the effect of cantilever stiffness. Haptic feedback and the analogical representation were very much appreciated by the subjects and had an impact on the construction of a mental model. Taken together, our results show a positive influence of using haptic feedback and graphic analogies, especially when students are first exposed to the notions that are in effect at the nanoscale.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02B04</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00G79L</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D00B</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Représentation graphique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Graphics</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Grafo (curva)</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Réalité virtuelle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Virtual reality</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Realidad virtual</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Enseignement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Teaching</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Enseñanza</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Cognition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Cognition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Cognición</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Education</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Education</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Educación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>18</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Nanostructure</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Nanostructure</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Nanoestructura</s0>
<s5>20</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Préhension</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Gripping</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Prension</s0>
<s5>21</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Rétroaction</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Feedback regulation</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Retroacción</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Encorbellement</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Cantilever</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Salidizo</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Rigidité</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Stiffness</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Rigidez</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Modèle mental</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Mental model</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Modelo mental</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Equipement entrée sortie</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Input output equipment</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Equipo entrada salida</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nanotechnologie</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Nanotechnology</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Nanotecnología</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Facteur humain</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Human factor</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Factor humano</s0>
<s5>41</s5>
</fC03>
<fN21>
<s1>189</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 13-0207631 INIST</NO>
<ET>Haptics and graphic analogies for the understanding of atomic force microscopy</ET>
<AU>MILLET (Guillaume); LECUYER (Anatole); BURKHARDT (Jean-Marie); HALIYO (Sinan); REGNIER (Stephane)</AU>
<AF>UPMC Univ Paris 06, UMR 7222, ISIR/75005 Paris/France (1 aut., 4 aut., 5 aut.); INRIA/IRISA, Campus universitaire de Beaulieu/35042 Rennes/France (2 aut.); IFSTTAR. LPC/78000 Versailles/France (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>International journal of human-computer studies; ISSN 1071-5819; Royaume-Uni; Da. 2013; Vol. 71; No. 5; Pp. 608-626; Bibl. 1 p.1/2</SO>
<LA>Anglais</LA>
<EA>This paper aims to evaluate the benefits of using virtual reality and force-feedback to help teaching nanoscale applications. We propose a teaching aid that combines graphic analogies and haptics intended to improve the grasp of non-intuitive nanoscale phenomena for people without prior knowledge of nanophysics. We look specifically at the most important nanophysical phenomenon, namely, the behavior of the probe of an Atomic Force Microscope (AFM) as it approaches a sample. The results from experiments carried out with 45 students indicate that a "magnet-spring" analogy helped beginners to establish the link between the behavior of a probe and its force-distance curve. The addition of haptic feedback increased focus about forces and improved the interpretation of the effect of cantilever stiffness. Haptic feedback and the analogical representation were very much appreciated by the subjects and had an impact on the construction of a mental model. Taken together, our results show a positive influence of using haptic feedback and graphic analogies, especially when students are first exposed to the notions that are in effect at the nanoscale.</EA>
<CC>001D02B04; 001B00G79L; 001D00B; 001D02D11</CC>
<FD>Représentation graphique; Réalité virtuelle; Enseignement; Cognition; Education; Sensibilité tactile; Microscopie force atomique; Nanostructure; Préhension; Rétroaction; Encorbellement; Rigidité; Modèle mental; Equipement entrée sortie; Nanotechnologie; Facteur humain</FD>
<ED>Graphics; Virtual reality; Teaching; Cognition; Education; Tactile sensitivity; Atomic force microscopy; Nanostructure; Gripping; Feedback regulation; Cantilever; Stiffness; Mental model; Input output equipment; Nanotechnology; Human factor</ED>
<SD>Grafo (curva); Realidad virtual; Enseñanza; Cognición; Educación; Sensibilidad tactil; Microscopía fuerza atómica; Nanoestructura; Prension; Retroacción; Salidizo; Rigidez; Modelo mental; Equipo entrada salida; Nanotecnología; Factor humano</SD>
<LO>INIST-14299.354000504115200060</LO>
<ID>13-0207631</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000194 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000194 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0207631
   |texte=   Haptics and graphic analogies for the understanding of atomic force microscopy
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024