Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Change in Fingertip Contact Area as a Novel Proprioceptive Cue

Identifieur interne : 004165 ( Ncbi/Merge ); précédent : 004164; suivant : 004166

The Change in Fingertip Contact Area as a Novel Proprioceptive Cue

Auteurs : Alessandro Moscatelli [Allemagne, Italie] ; Matteo Bianchi [Italie] ; Alessandro Serio [Italie] ; Alexander Terekhov [France] ; Vincent Hayward [France] ; Marc O. Ernst [Allemagne] ; Antonio Bicchi [Italie]

Source :

RBID : PMC:4865678

Abstract

Summary

Humans, many animals, and certain robotic hands have deformable fingertip pads [1, 2]. Deformable pads have the advantage of conforming to the objects that are being touched, ensuring a stable grasp for a large range of forces and shapes. Pad deformations change with finger displacements during touch. Pushing a finger against an external surface typically provokes an increase of the gross contact area [3], potentially providing a relative motion cue, a situation comparable to looming in vision [4]. The rate of increase of the area of contact also depends on the compliance of the object [5]. Because objects normally do not suddenly change compliance, participants may interpret an artificially induced variation in compliance, which coincides with a change in the gross contact area, as a change in finger displacement, and consequently they may misestimate their finger’s position relative to the touched object. To test this, we asked participants to compare the perceived displacements of their finger while contacting an object varying pseudo-randomly in compliance from trial to trial. Results indicate a bias in the perception of finger displacement induced by the change in compliance, hence in contact area, indicating that participants interpreted the altered cutaneous input as a cue to proprioception. This situation highlights the capacity of the brain to take advantage of knowledge of the mechanical properties of the body and of the external environment.


Url:
DOI: 10.1016/j.cub.2016.02.052
PubMed: 27068417
PubMed Central: 4865678

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4865678

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Change in Fingertip Contact Area as a Novel Proprioceptive Cue</title>
<author>
<name sortKey="Moscatelli, Alessandro" sort="Moscatelli, Alessandro" uniqKey="Moscatelli A" first="Alessandro" last="Moscatelli">Alessandro Moscatelli</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Department of Cognitive Neuroscience, Universität Bielefeld, 33615 Bielefeld, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Cognitive Neuroscience, Universität Bielefeld, 33615 Bielefeld</wicri:regionArea>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">Cognitive Interaction Technology Centre of Excellence, Universität Bielefeld, 33615 Bielefeld, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Cognitive Interaction Technology Centre of Excellence, Universität Bielefeld, 33615 Bielefeld</wicri:regionArea>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff3">Department of Systems Medicine and Centre of Space Bio-Medicine, Università di Roma “Tor Vergata,” 00173 Rome, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Systems Medicine and Centre of Space Bio-Medicine, Università di Roma “Tor Vergata,” 00173 Rome</wicri:regionArea>
<wicri:noRegion>” 00173 Rome</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bianchi, Matteo" sort="Bianchi, Matteo" uniqKey="Bianchi M" first="Matteo" last="Bianchi">Matteo Bianchi</name>
<affiliation wicri:level="1">
<nlm:aff id="aff4">Advanced Robotics Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Advanced Robotics Department, Istituto Italiano di Tecnologia, 16163 Genova</wicri:regionArea>
<wicri:noRegion>16163 Genova</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff5">Università di Pisa, Centro di Ricerca E. Piaggio, 56122 Pisa, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Università di Pisa, Centro di Ricerca E. Piaggio, 56122 Pisa</wicri:regionArea>
<wicri:noRegion>56122 Pisa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Serio, Alessandro" sort="Serio, Alessandro" uniqKey="Serio A" first="Alessandro" last="Serio">Alessandro Serio</name>
<affiliation wicri:level="1">
<nlm:aff id="aff5">Università di Pisa, Centro di Ricerca E. Piaggio, 56122 Pisa, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Università di Pisa, Centro di Ricerca E. Piaggio, 56122 Pisa</wicri:regionArea>
<wicri:noRegion>56122 Pisa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Terekhov, Alexander" sort="Terekhov, Alexander" uniqKey="Terekhov A" first="Alexander" last="Terekhov">Alexander Terekhov</name>
<affiliation wicri:level="4">
<nlm:aff id="aff6">Laboratoire de Psychologie de la Perception, CNRS and Université Paris Descartes, 75006 Paris, France</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Psychologie de la Perception, CNRS and Université Paris Descartes, 75006 Paris</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
<orgName type="university">Université Paris Descartes</orgName>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="aff7">Sorbonne Universités, UPMC Université Paris 06, UMR 7222, ISIR, 75005 Paris, France</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>Sorbonne Universités, UPMC Université Paris 06, UMR 7222, ISIR, 75005 Paris</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hayward, Vincent" sort="Hayward, Vincent" uniqKey="Hayward V" first="Vincent" last="Hayward">Vincent Hayward</name>
<affiliation wicri:level="3">
<nlm:aff id="aff7">Sorbonne Universités, UPMC Université Paris 06, UMR 7222, ISIR, 75005 Paris, France</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>Sorbonne Universités, UPMC Université Paris 06, UMR 7222, ISIR, 75005 Paris</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ernst, Marc O" sort="Ernst, Marc O" uniqKey="Ernst M" first="Marc O." last="Ernst">Marc O. Ernst</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Department of Cognitive Neuroscience, Universität Bielefeld, 33615 Bielefeld, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Cognitive Neuroscience, Universität Bielefeld, 33615 Bielefeld</wicri:regionArea>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">Cognitive Interaction Technology Centre of Excellence, Universität Bielefeld, 33615 Bielefeld, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Cognitive Interaction Technology Centre of Excellence, Universität Bielefeld, 33615 Bielefeld</wicri:regionArea>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="aff8">Applied Cognitive Psychology, Ulm University, 89081 Ulm, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Applied Cognitive Psychology, Ulm University, 89081 Ulm</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bicchi, Antonio" sort="Bicchi, Antonio" uniqKey="Bicchi A" first="Antonio" last="Bicchi">Antonio Bicchi</name>
<affiliation wicri:level="1">
<nlm:aff id="aff4">Advanced Robotics Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Advanced Robotics Department, Istituto Italiano di Tecnologia, 16163 Genova</wicri:regionArea>
<wicri:noRegion>16163 Genova</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff5">Università di Pisa, Centro di Ricerca E. Piaggio, 56122 Pisa, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Università di Pisa, Centro di Ricerca E. Piaggio, 56122 Pisa</wicri:regionArea>
<wicri:noRegion>56122 Pisa</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27068417</idno>
<idno type="pmc">4865678</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865678</idno>
<idno type="RBID">PMC:4865678</idno>
<idno type="doi">10.1016/j.cub.2016.02.052</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000C54</idno>
<idno type="wicri:Area/Pmc/Curation">000C54</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000031</idno>
<idno type="wicri:Area/Ncbi/Merge">004165</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The Change in Fingertip Contact Area as a Novel Proprioceptive Cue</title>
<author>
<name sortKey="Moscatelli, Alessandro" sort="Moscatelli, Alessandro" uniqKey="Moscatelli A" first="Alessandro" last="Moscatelli">Alessandro Moscatelli</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Department of Cognitive Neuroscience, Universität Bielefeld, 33615 Bielefeld, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Cognitive Neuroscience, Universität Bielefeld, 33615 Bielefeld</wicri:regionArea>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">Cognitive Interaction Technology Centre of Excellence, Universität Bielefeld, 33615 Bielefeld, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Cognitive Interaction Technology Centre of Excellence, Universität Bielefeld, 33615 Bielefeld</wicri:regionArea>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff3">Department of Systems Medicine and Centre of Space Bio-Medicine, Università di Roma “Tor Vergata,” 00173 Rome, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Systems Medicine and Centre of Space Bio-Medicine, Università di Roma “Tor Vergata,” 00173 Rome</wicri:regionArea>
<wicri:noRegion>” 00173 Rome</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bianchi, Matteo" sort="Bianchi, Matteo" uniqKey="Bianchi M" first="Matteo" last="Bianchi">Matteo Bianchi</name>
<affiliation wicri:level="1">
<nlm:aff id="aff4">Advanced Robotics Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Advanced Robotics Department, Istituto Italiano di Tecnologia, 16163 Genova</wicri:regionArea>
<wicri:noRegion>16163 Genova</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff5">Università di Pisa, Centro di Ricerca E. Piaggio, 56122 Pisa, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Università di Pisa, Centro di Ricerca E. Piaggio, 56122 Pisa</wicri:regionArea>
<wicri:noRegion>56122 Pisa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Serio, Alessandro" sort="Serio, Alessandro" uniqKey="Serio A" first="Alessandro" last="Serio">Alessandro Serio</name>
<affiliation wicri:level="1">
<nlm:aff id="aff5">Università di Pisa, Centro di Ricerca E. Piaggio, 56122 Pisa, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Università di Pisa, Centro di Ricerca E. Piaggio, 56122 Pisa</wicri:regionArea>
<wicri:noRegion>56122 Pisa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Terekhov, Alexander" sort="Terekhov, Alexander" uniqKey="Terekhov A" first="Alexander" last="Terekhov">Alexander Terekhov</name>
<affiliation wicri:level="4">
<nlm:aff id="aff6">Laboratoire de Psychologie de la Perception, CNRS and Université Paris Descartes, 75006 Paris, France</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Psychologie de la Perception, CNRS and Université Paris Descartes, 75006 Paris</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
<orgName type="university">Université Paris Descartes</orgName>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="aff7">Sorbonne Universités, UPMC Université Paris 06, UMR 7222, ISIR, 75005 Paris, France</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>Sorbonne Universités, UPMC Université Paris 06, UMR 7222, ISIR, 75005 Paris</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hayward, Vincent" sort="Hayward, Vincent" uniqKey="Hayward V" first="Vincent" last="Hayward">Vincent Hayward</name>
<affiliation wicri:level="3">
<nlm:aff id="aff7">Sorbonne Universités, UPMC Université Paris 06, UMR 7222, ISIR, 75005 Paris, France</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea>Sorbonne Universités, UPMC Université Paris 06, UMR 7222, ISIR, 75005 Paris</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ernst, Marc O" sort="Ernst, Marc O" uniqKey="Ernst M" first="Marc O." last="Ernst">Marc O. Ernst</name>
<affiliation wicri:level="1">
<nlm:aff id="aff1">Department of Cognitive Neuroscience, Universität Bielefeld, 33615 Bielefeld, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Cognitive Neuroscience, Universität Bielefeld, 33615 Bielefeld</wicri:regionArea>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff2">Cognitive Interaction Technology Centre of Excellence, Universität Bielefeld, 33615 Bielefeld, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Cognitive Interaction Technology Centre of Excellence, Universität Bielefeld, 33615 Bielefeld</wicri:regionArea>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
<wicri:noRegion>33615 Bielefeld</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<nlm:aff id="aff8">Applied Cognitive Psychology, Ulm University, 89081 Ulm, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Applied Cognitive Psychology, Ulm University, 89081 Ulm</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bicchi, Antonio" sort="Bicchi, Antonio" uniqKey="Bicchi A" first="Antonio" last="Bicchi">Antonio Bicchi</name>
<affiliation wicri:level="1">
<nlm:aff id="aff4">Advanced Robotics Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Advanced Robotics Department, Istituto Italiano di Tecnologia, 16163 Genova</wicri:regionArea>
<wicri:noRegion>16163 Genova</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="aff5">Università di Pisa, Centro di Ricerca E. Piaggio, 56122 Pisa, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Università di Pisa, Centro di Ricerca E. Piaggio, 56122 Pisa</wicri:regionArea>
<wicri:noRegion>56122 Pisa</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current Biology</title>
<idno type="ISSN">0960-9822</idno>
<idno type="eISSN">1879-0445</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Summary</title>
<p>Humans, many animals, and certain robotic hands have deformable fingertip pads [
<xref rid="bib1" ref-type="bibr">1</xref>
,
<xref rid="bib2" ref-type="bibr">2</xref>
]. Deformable pads have the advantage of conforming to the objects that are being touched, ensuring a stable grasp for a large range of forces and shapes. Pad deformations change with finger displacements during touch. Pushing a finger against an external surface typically provokes an increase of the gross contact area [
<xref rid="bib3" ref-type="bibr">3</xref>
], potentially providing a relative motion cue, a situation comparable to looming in vision [
<xref rid="bib4" ref-type="bibr">4</xref>
]. The rate of increase of the area of contact also depends on the compliance of the object [
<xref rid="bib5" ref-type="bibr">5</xref>
]. Because objects normally do not suddenly change compliance, participants may interpret an artificially induced variation in compliance, which coincides with a change in the gross contact area, as a change in finger displacement, and consequently they may misestimate their finger’s position relative to the touched object. To test this, we asked participants to compare the perceived displacements of their finger while contacting an object varying pseudo-randomly in compliance from trial to trial. Results indicate a bias in the perception of finger displacement induced by the change in compliance, hence in contact area, indicating that participants interpreted the altered cutaneous input as a cue to proprioception. This situation highlights the capacity of the brain to take advantage of knowledge of the mechanical properties of the body and of the external environment.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Cartmill, M" uniqKey="Cartmill M">M. Cartmill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arimoto, S" uniqKey="Arimoto S">S. Arimoto</name>
</author>
<author>
<name sortKey="Nguyen, P T A" uniqKey="Nguyen P">P.T.A. Nguyen</name>
</author>
<author>
<name sortKey="Han, H Y" uniqKey="Han H">H.-Y. Han</name>
</author>
<author>
<name sortKey="Doulgeri, Z" uniqKey="Doulgeri Z">Z. Doulgeri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Serina, E R" uniqKey="Serina E">E.R. Serina</name>
</author>
<author>
<name sortKey="Mockensturm, E" uniqKey="Mockensturm E">E. Mockensturm</name>
</author>
<author>
<name sortKey="Mote, C D" uniqKey="Mote C">C.D. Mote</name>
</author>
<author>
<name sortKey="Rempel, D" uniqKey="Rempel D">D. Rempel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palmer, S E" uniqKey="Palmer S">S.E. Palmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bicchi, A" uniqKey="Bicchi A">A. Bicchi</name>
</author>
<author>
<name sortKey="Scilingo, E P" uniqKey="Scilingo E">E.P. Scilingo</name>
</author>
<author>
<name sortKey="De Rossi, D" uniqKey="De Rossi D">D. De Rossi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez Conde, S" uniqKey="Martinez Conde S">S. Martinez-Conde</name>
</author>
<author>
<name sortKey="Macknik, S L" uniqKey="Macknik S">S.L. Macknik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Regan, D" uniqKey="Regan D">D. Regan</name>
</author>
<author>
<name sortKey="Beverley, K I" uniqKey="Beverley K">K.I. Beverley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Regan, D" uniqKey="Regan D">D. Regan</name>
</author>
<author>
<name sortKey="Vincent, A" uniqKey="Vincent A">A. Vincent</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brenner, E" uniqKey="Brenner E">E. Brenner</name>
</author>
<author>
<name sortKey="Van Den Berg, A V" uniqKey="Van Den Berg A">A.V. Van Den Berg</name>
</author>
<author>
<name sortKey="Van Damme, W J" uniqKey="Van Damme W">W.J. Van Damme</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johansson, R S" uniqKey="Johansson R">R.S. Johansson</name>
</author>
<author>
<name sortKey="Birznieks, I" uniqKey="Birznieks I">I. Birznieks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adams, M J" uniqKey="Adams M">M.J. Adams</name>
</author>
<author>
<name sortKey="Johnson, S A" uniqKey="Johnson S">S.A. Johnson</name>
</author>
<author>
<name sortKey="Lefevre, P" uniqKey="Lefevre P">P. Lefèvre</name>
</author>
<author>
<name sortKey="Levesque, V" uniqKey="Levesque V">V. Lévesque</name>
</author>
<author>
<name sortKey="Hayward, V" uniqKey="Hayward V">V. Hayward</name>
</author>
<author>
<name sortKey="Andre, T" uniqKey="Andre T">T. André</name>
</author>
<author>
<name sortKey="Thonnard, J L" uniqKey="Thonnard J">J.L. Thonnard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jorntell, H" uniqKey="Jorntell H">H. Jörntell</name>
</author>
<author>
<name sortKey="Bengtsson, F" uniqKey="Bengtsson F">F. Bengtsson</name>
</author>
<author>
<name sortKey="Geborek, P" uniqKey="Geborek P">P. Geborek</name>
</author>
<author>
<name sortKey="Spanne, A" uniqKey="Spanne A">A. Spanne</name>
</author>
<author>
<name sortKey="Terekhov, A V" uniqKey="Terekhov A">A.V. Terekhov</name>
</author>
<author>
<name sortKey="Hayward, V" uniqKey="Hayward V">V. Hayward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di Luca, M" uniqKey="Di Luca M">M. Di Luca</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bianchi, M" uniqKey="Bianchi M">M. Bianchi</name>
</author>
<author>
<name sortKey="Serio, A" uniqKey="Serio A">A. Serio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moscatelli, A" uniqKey="Moscatelli A">A. Moscatelli</name>
</author>
<author>
<name sortKey="Mezzetti, M" uniqKey="Mezzetti M">M. Mezzetti</name>
</author>
<author>
<name sortKey="Lacquaniti, F" uniqKey="Lacquaniti F">F. Lacquaniti</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Landy, M S" uniqKey="Landy M">M.S. Landy</name>
</author>
<author>
<name sortKey="Maloney, L T" uniqKey="Maloney L">L.T. Maloney</name>
</author>
<author>
<name sortKey="Johnston, E B" uniqKey="Johnston E">E.B. Johnston</name>
</author>
<author>
<name sortKey="Young, M" uniqKey="Young M">M. Young</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Catalano, M G" uniqKey="Catalano M">M.G. Catalano</name>
</author>
<author>
<name sortKey="Grioli, G" uniqKey="Grioli G">G. Grioli</name>
</author>
<author>
<name sortKey="Farnioli, E" uniqKey="Farnioli E">E. Farnioli</name>
</author>
<author>
<name sortKey="Serio, A" uniqKey="Serio A">A. Serio</name>
</author>
<author>
<name sortKey="Piazza, C" uniqKey="Piazza C">C. Piazza</name>
</author>
<author>
<name sortKey="Bicchi, A" uniqKey="Bicchi A">A. Bicchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bicchi, A" uniqKey="Bicchi A">A. Bicchi</name>
</author>
<author>
<name sortKey="Scilingo, E P" uniqKey="Scilingo E">E.P. Scilingo</name>
</author>
<author>
<name sortKey="Ricciardi, E" uniqKey="Ricciardi E">E. Ricciardi</name>
</author>
<author>
<name sortKey="Pietrini, P" uniqKey="Pietrini P">P. Pietrini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moscatelli, A" uniqKey="Moscatelli A">A. Moscatelli</name>
</author>
<author>
<name sortKey="Naceri, A" uniqKey="Naceri A">A. Naceri</name>
</author>
<author>
<name sortKey="Ernst, M O" uniqKey="Ernst M">M.O. Ernst</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dostmohamed, H" uniqKey="Dostmohamed H">H. Dostmohamed</name>
</author>
<author>
<name sortKey="Hayward, V" uniqKey="Hayward V">V. Hayward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Proske, U" uniqKey="Proske U">U. Proske</name>
</author>
<author>
<name sortKey="Gandevia, S C" uniqKey="Gandevia S">S.C. Gandevia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edin, B B" uniqKey="Edin B">B.B. Edin</name>
</author>
<author>
<name sortKey="Abbs, J H" uniqKey="Abbs J">J.H. Abbs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Terekhov, A V" uniqKey="Terekhov A">A.V. Terekhov</name>
</author>
<author>
<name sortKey="Hayward, V" uniqKey="Hayward V">V. Hayward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Collins, D F" uniqKey="Collins D">D.F. Collins</name>
</author>
<author>
<name sortKey="Refshauge, K M" uniqKey="Refshauge K">K.M. Refshauge</name>
</author>
<author>
<name sortKey="Gandevia, S C" uniqKey="Gandevia S">S.C. Gandevia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edin, B B" uniqKey="Edin B">B.B. Edin</name>
</author>
<author>
<name sortKey="Johansson, N" uniqKey="Johansson N">N. Johansson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Collins, D F" uniqKey="Collins D">D.F. Collins</name>
</author>
<author>
<name sortKey="Refshauge, K M" uniqKey="Refshauge K">K.M. Refshauge</name>
</author>
<author>
<name sortKey="Todd, G" uniqKey="Todd G">G. Todd</name>
</author>
<author>
<name sortKey="Gandevia, S C" uniqKey="Gandevia S">S.C. Gandevia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pack, C C" uniqKey="Pack C">C.C. Pack</name>
</author>
<author>
<name sortKey="Bensmaia, S J" uniqKey="Bensmaia S">S.J. Bensmaia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ghazanfar, A A" uniqKey="Ghazanfar A">A.A. Ghazanfar</name>
</author>
<author>
<name sortKey="Neuhoff, J G" uniqKey="Neuhoff J">J.G. Neuhoff</name>
</author>
<author>
<name sortKey="Logothetis, N K" uniqKey="Logothetis N">N.K. Logothetis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maier, J X" uniqKey="Maier J">J.X. Maier</name>
</author>
<author>
<name sortKey="Ghazanfar, A A" uniqKey="Ghazanfar A">A.A. Ghazanfar</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="brief-report">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Curr Biol</journal-id>
<journal-id journal-id-type="iso-abbrev">Curr. Biol</journal-id>
<journal-title-group>
<journal-title>Current Biology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0960-9822</issn>
<issn pub-type="epub">1879-0445</issn>
<publisher>
<publisher-name>Cell Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27068417</article-id>
<article-id pub-id-type="pmc">4865678</article-id>
<article-id pub-id-type="publisher-id">S0960-9822(16)30134-8</article-id>
<article-id pub-id-type="doi">10.1016/j.cub.2016.02.052</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Report</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The Change in Fingertip Contact Area as a Novel Proprioceptive Cue</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Moscatelli</surname>
<given-names>Alessandro</given-names>
</name>
<email>alessandro.moscatelli@uni-bielefeld.de</email>
<xref rid="aff1" ref-type="aff">1</xref>
<xref rid="aff2" ref-type="aff">2</xref>
<xref rid="aff3" ref-type="aff">3</xref>
<xref rid="fn1" ref-type="fn">9</xref>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bianchi</surname>
<given-names>Matteo</given-names>
</name>
<email>matteo.bianchi@centropiaggio.unipi.it</email>
<xref rid="aff4" ref-type="aff">4</xref>
<xref rid="aff5" ref-type="aff">5</xref>
<xref rid="fn1" ref-type="fn">9</xref>
<xref rid="cor2" ref-type="corresp">∗∗</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Serio</surname>
<given-names>Alessandro</given-names>
</name>
<xref rid="aff5" ref-type="aff">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Terekhov</surname>
<given-names>Alexander</given-names>
</name>
<xref rid="aff6" ref-type="aff">6</xref>
<xref rid="aff7" ref-type="aff">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hayward</surname>
<given-names>Vincent</given-names>
</name>
<xref rid="aff7" ref-type="aff">7</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ernst</surname>
<given-names>Marc O.</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
<xref rid="aff2" ref-type="aff">2</xref>
<xref rid="aff8" ref-type="aff">8</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bicchi</surname>
<given-names>Antonio</given-names>
</name>
<xref rid="aff4" ref-type="aff">4</xref>
<xref rid="aff5" ref-type="aff">5</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
Department of Cognitive Neuroscience, Universität Bielefeld, 33615 Bielefeld, Germany</aff>
<aff id="aff2">
<label>2</label>
Cognitive Interaction Technology Centre of Excellence, Universität Bielefeld, 33615 Bielefeld, Germany</aff>
<aff id="aff3">
<label>3</label>
Department of Systems Medicine and Centre of Space Bio-Medicine, Università di Roma “Tor Vergata,” 00173 Rome, Italy</aff>
<aff id="aff4">
<label>4</label>
Advanced Robotics Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy</aff>
<aff id="aff5">
<label>5</label>
Università di Pisa, Centro di Ricerca E. Piaggio, 56122 Pisa, Italy</aff>
<aff id="aff6">
<label>6</label>
Laboratoire de Psychologie de la Perception, CNRS and Université Paris Descartes, 75006 Paris, France</aff>
<aff id="aff7">
<label>7</label>
Sorbonne Universités, UPMC Université Paris 06, UMR 7222, ISIR, 75005 Paris, France</aff>
<aff id="aff8">
<label>8</label>
Applied Cognitive Psychology, Ulm University, 89081 Ulm, Germany</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Corresponding author
<email>alessandro.moscatelli@uni-bielefeld.de</email>
</corresp>
<corresp id="cor2">
<label>∗∗</label>
Corresponding author
<email>matteo.bianchi@centropiaggio.unipi.it</email>
</corresp>
<fn id="fn1">
<label>9</label>
<p id="ntpara0010">Co-first author</p>
</fn>
</author-notes>
<pub-date pub-type="pmc-release">
<day>09</day>
<month>5</month>
<year>2016</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<day>09</day>
<month>5</month>
<year>2016</year>
</pub-date>
<volume>26</volume>
<issue>9</issue>
<fpage>1159</fpage>
<lpage>1163</lpage>
<history>
<date date-type="received">
<day>16</day>
<month>9</month>
<year>2015</year>
</date>
<date date-type="rev-recd">
<day>3</day>
<month>2</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>19</day>
<month>2</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>© 2016 The Authors</copyright-statement>
<copyright-year>2016</copyright-year>
<license license-type="CC BY-NC-ND" xlink:href="http://creativecommons.org/licenses/by-nc-nd/4.0/">
<license-p>This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).</license-p>
</license>
</permissions>
<abstract>
<title>Summary</title>
<p>Humans, many animals, and certain robotic hands have deformable fingertip pads [
<xref rid="bib1" ref-type="bibr">1</xref>
,
<xref rid="bib2" ref-type="bibr">2</xref>
]. Deformable pads have the advantage of conforming to the objects that are being touched, ensuring a stable grasp for a large range of forces and shapes. Pad deformations change with finger displacements during touch. Pushing a finger against an external surface typically provokes an increase of the gross contact area [
<xref rid="bib3" ref-type="bibr">3</xref>
], potentially providing a relative motion cue, a situation comparable to looming in vision [
<xref rid="bib4" ref-type="bibr">4</xref>
]. The rate of increase of the area of contact also depends on the compliance of the object [
<xref rid="bib5" ref-type="bibr">5</xref>
]. Because objects normally do not suddenly change compliance, participants may interpret an artificially induced variation in compliance, which coincides with a change in the gross contact area, as a change in finger displacement, and consequently they may misestimate their finger’s position relative to the touched object. To test this, we asked participants to compare the perceived displacements of their finger while contacting an object varying pseudo-randomly in compliance from trial to trial. Results indicate a bias in the perception of finger displacement induced by the change in compliance, hence in contact area, indicating that participants interpreted the altered cutaneous input as a cue to proprioception. This situation highlights the capacity of the brain to take advantage of knowledge of the mechanical properties of the body and of the external environment.</p>
</abstract>
<abstract abstract-type="author-highlights">
<title>Highlights</title>
<p>
<list list-type="simple">
<list-item id="u0010">
<label></label>
<p>Pushing a finger against a soft surface provokes an increase of the contact area</p>
</list-item>
<list-item id="u0015">
<label></label>
<p>This increase in contact area potentially provides a cue to finger displacement</p>
</list-item>
<list-item id="u0020">
<label></label>
<p>We ran psychophysical experiments to test this hypothesis</p>
</list-item>
<list-item id="u0025">
<label></label>
<p>Results revealed a novel proprioceptive cue, i.e., the change in contact area</p>
</list-item>
</list>
</p>
</abstract>
<abstract abstract-type="teaser">
<p>Pushing a finger against an external surface provokes an increase of the contact area. Moscatelli, Bianchi, et al. show with psychophysical experiments that this increase in contact area provides a cue to finger displacement, similarly to looming in vision. Their results show that the change in contact area provides a novel proprioceptive cue.</p>
</abstract>
</article-meta>
<notes>
<p id="misc0010">Published: April 7, 2016</p>
</notes>
</front>
<body>
<sec id="sec1">
<title>Results</title>
<p>The size of the image that an object projects on the retina, referred to as the retinal size of the object, changes with the distance of the object to the observer. In order to use the retinal size as a depth cue, observers assume heuristically that two otherwise identical objects in the visual scene, such as two identical columns in a colonnade, have the same physical size [
<xref rid="bib4" ref-type="bibr">4</xref>
]. A violation of this assumption produces a misestimate in the perceived depth. For instance, the baroque architect Borromini scaled the physical size of the columns in the colonnade of Galleria Spada to produce an illusory sensation of depth [
<xref rid="bib6" ref-type="bibr">6</xref>
]. Similarly, a progressive increase in the retinal size of an object produces the sensation of the object approaching the observer, a phenomenon known as visual looming [
<xref rid="bib7" ref-type="bibr">7</xref>
,
<xref rid="bib8" ref-type="bibr">8</xref>
,
<xref rid="bib9" ref-type="bibr">9</xref>
]. In this study, we investigated whether an analog of looming exists in the sense of touch and whether the tactile system can be deceived, similarly to vision, by altering unbeknownst to the observer some of the object properties that are usually assumed to remain stable.</p>
<p>The formation of contact between the skin of the fingertip and an external object produces a progressive recruitment of strained tissue that evokes characteristic neural responses [
<xref rid="bib10" ref-type="bibr">10</xref>
,
<xref rid="bib11" ref-type="bibr">11</xref>
,
<xref rid="bib12" ref-type="bibr">12</xref>
]. Thus, in principle, an observer could infer the relative displacement of the finger from this change in the area of contact, because a larger area corresponds to a greater finger displacement from initial contact (
<xref rid="fig1" ref-type="fig">Figure 1</xref>
). The rate of change of the area of contact also depends on the compliance of the object that the observer can estimate by combining multisensory cues and prior knowledge [
<xref rid="bib5" ref-type="bibr">5</xref>
,
<xref rid="bib13" ref-type="bibr">13</xref>
]. Compliance is usually a stable property of each specific object. If the compliance of a given object would suddenly change between two sequential tactual interactions, an observer might attribute the resulting change in the contact area to a difference in the finger indentation. This occurrence should result in a misestimate of the relative finger displacement. Therefore, by modifying the compliance of an object in a controlled manner, we can quantitatively assess the contribution of the change in gross contact area as a cue to relative finger displacement.</p>
<p>Each trial consisted of a reference and a comparison stimulus randomly presented in two sequential time intervals. In each interval, the elastic surface of the apparatus (
<xref rid="fig2" ref-type="fig">Figure 2</xref>
) was lifted to come in contact with the participant’s index finger and to passively move it up and down. Participants reported in which of the two intervals the extent of the angular displacement of the finger (i.e., the angle
<inline-formula>
<mml:math id="M1" altimg="si1.gif" overflow="scroll">
<mml:mi>γ</mml:mi>
</mml:math>
</inline-formula>
in
<xref rid="fig2" ref-type="fig">Figure 2</xref>
B) was greater. In each of the two intervals and before the elastic surface contacted the finger, we modified its compliance by means of a computer-controlled device that adjusted the stretch of the surface [
<xref rid="bib14" ref-type="bibr">14</xref>
,
<xref rid="bib15" ref-type="bibr">15</xref>
]. The experimental apparatus also ensured that the actual finger displacements and interaction forces were uncorrelated with the surface compliance (
<xref rid="mmc1" ref-type="supplementary-material">Supplemental Experimental Procedures</xref>
). The participants were not informed that the compliance could change between the two intervals. In two different blocks, the surface was either “softer” or “stiffer” in the comparison than in the reference, thus leading, for equal finger displacements, to a “larger” or “smaller” contact area in the comparison, respectively (
<xref rid="fig3" ref-type="fig">Figure 3</xref>
A). The order of the blocks (subsequently named “large versus small” condition) was counterbalanced across participants. The testing procedures were approved by the Ethical Committee of the University of Pisa, in accordance with the guidelines of the Declaration of Helsinki for research involving human subjects. Informed written consent was obtained from all participants involved in the study.</p>
<p>We considered three possible hypotheses: (1) participants were not sensitive to the change in the area of contact; (2) participants were sensitive to the change in the area of contact and attributed it to the change in compliance of the object; or (3) participants were sensitive to the change in the area of contact and attribute it, mostly or entirely, to the indentation of the finger, hence to its relative displacement. If hypotheses 1 or 2 were true, the change in the area of contact should not have affected the perceived finger displacement. In contrast, hypothesis 3 would predict a perceptual bias. To test these hypotheses, we fit the binary responses of each participant with two psychometric functions, one for the large and one for the small condition (
<xref rid="fig3" ref-type="fig">Figure 3</xref>
B). In order to quantify perceptual biases, we computed the point of subjective equality (PSE) from each psychometric function corresponding to the stimulus value yielding a response probability of 0.5. If participants used the change of the contact area as a cue for the finger displacement, as in hypothesis 3, the PSEs would be significantly different between the two experimental conditions, with
<inline-formula>
<mml:math id="M2" altimg="si2.gif" overflow="scroll">
<mml:mrow>
<mml:mi>P</mml:mi>
<mml:mi>S</mml:mi>
<mml:msub>
<mml:mi>E</mml:mi>
<mml:mrow>
<mml:mi>l</mml:mi>
<mml:mi>a</mml:mi>
<mml:mi>r</mml:mi>
<mml:mi>g</mml:mi>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo><</mml:mo>
<mml:mi>P</mml:mi>
<mml:mi>S</mml:mi>
<mml:msub>
<mml:mi>E</mml:mi>
<mml:mrow>
<mml:mi>s</mml:mi>
<mml:mi>m</mml:mi>
<mml:mi>a</mml:mi>
<mml:mi>l</mml:mi>
<mml:mi>l</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:math>
</inline-formula>
. We analyzed the data of all participants (n = 11) using a paired t test and confirmed the result with a generalized linear mixed model (GLMM) [
<xref rid="bib16" ref-type="bibr">16</xref>
].</p>
<p>Overall, the value of the
<inline-formula>
<mml:math id="M3" altimg="si3.gif" overflow="scroll">
<mml:mrow>
<mml:mi>P</mml:mi>
<mml:mi>S</mml:mi>
<mml:msub>
<mml:mi>E</mml:mi>
<mml:mrow>
<mml:mi>l</mml:mi>
<mml:mi>a</mml:mi>
<mml:mi>r</mml:mi>
<mml:mi>g</mml:mi>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:math>
</inline-formula>
was significantly lower than the
<inline-formula>
<mml:math id="M4" altimg="si4.gif" overflow="scroll">
<mml:mrow>
<mml:mi>P</mml:mi>
<mml:mi>S</mml:mi>
<mml:msub>
<mml:mi>E</mml:mi>
<mml:mrow>
<mml:mi>s</mml:mi>
<mml:mi>m</mml:mi>
<mml:mi>a</mml:mi>
<mml:mi>l</mml:mi>
<mml:mi>l</mml:mi>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:math>
</inline-formula>
(paired t test;
<inline-formula>
<mml:math id="M5" altimg="si5.gif" overflow="scroll">
<mml:mrow>
<mml:msub>
<mml:mi>t</mml:mi>
<mml:mrow>
<mml:mn>10</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:math>
</inline-formula>
 = 4.47; p = 0.001), in accordance with hypothesis 3 (
<xref rid="fig3" ref-type="fig">Figure 3</xref>
C). The mean of the difference was 2.2°, corresponding to 18% of the reference stimulus (12°). The GLMM confirmed the result of the t test. Accordingly, the 95% confidence interval (CI) of the difference in PSEs did not include zero (95% CI of the difference ranging from 1.5° to 2.7°). The PSE was significantly lower than the reference stimulus in the large condition (
<inline-formula>
<mml:math id="M6" altimg="si6.gif" overflow="scroll">
<mml:mrow>
<mml:mi>P</mml:mi>
<mml:mi>S</mml:mi>
<mml:msub>
<mml:mi>E</mml:mi>
<mml:mrow>
<mml:mi>l</mml:mi>
<mml:mi>a</mml:mi>
<mml:mi>r</mml:mi>
<mml:mi>g</mml:mi>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mn>10.7</mml:mn>
<mml:mo>°</mml:mo>
<mml:mo>;</mml:mo>
<mml:mn>95</mml:mn>
<mml:mo>%</mml:mo>
<mml:mi>C</mml:mi>
<mml:mi>I</mml:mi>
<mml:mo>:</mml:mo>
<mml:mn>10.1</mml:mn>
<mml:mo>°</mml:mo>
<mml:mo></mml:mo>
<mml:mn>11.3</mml:mn>
<mml:mo>°</mml:mo>
</mml:mrow>
</mml:math>
</inline-formula>
) and significantly higher in the small condition (
<inline-formula>
<mml:math id="M7" altimg="si7.gif" overflow="scroll">
<mml:mrow>
<mml:mi>P</mml:mi>
<mml:mi>S</mml:mi>
<mml:msub>
<mml:mi>E</mml:mi>
<mml:mrow>
<mml:mi>s</mml:mi>
<mml:mi>m</mml:mi>
<mml:mi>a</mml:mi>
<mml:mi>l</mml:mi>
<mml:mi>l</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mn>12.7</mml:mn>
<mml:mo>°</mml:mo>
<mml:mo>;</mml:mo>
<mml:mn>95</mml:mn>
<mml:mo>%</mml:mo>
<mml:mi>C</mml:mi>
<mml:mi>I</mml:mi>
<mml:mo>:</mml:mo>
<mml:mn>12.2</mml:mn>
<mml:mo>°</mml:mo>
<mml:mo></mml:mo>
<mml:mn>13.2</mml:mn>
<mml:mo>°</mml:mo>
</mml:mrow>
</mml:math>
</inline-formula>
). The GLMM fit is illustrated in
<xref rid="mmc1" ref-type="supplementary-material">Figure S1</xref>
and shows that the effect sign was consistent across participants. In summary, a more-compliant surface produced a greater expansion of the area of contact, which was in turn associated with a greater perceived angular displacement of the finger.</p>
<p>In experiment 1, the difference in compliance between the two conditions generated small differences in finger kinematics. The initial movement of the lift (
<xref rid="fig2" ref-type="fig">Figure 2</xref>
) produced an increase in the contact area, i.e., an indentation of the finger in the compliant surface, without any finger or joint movement. Because of the difference in compliance, the duration of this indentation phase, hence the finger motion onset, differed between the two experimental conditions. We performed a second experiment (experiment 2a) to ascertain that this difference had a negligible impact on the perceptual bias of finger displacement. Participants wore a rigid thimble covering the pad of their index finger that contacted the device. Apart from the use of the thimble, the apparatus and the task were the same as in experiment 1. As in the first experiment, the more- and the less-compliant conditions (subsequently termed “soft versus stiff” condition) differed in terms of finger kinematics, duration of the indentation phase, the temporal evolution of the load on the finger pad (the stiff condition was associated with a steeper increase of the load), and possibly other cues such as duration of uncontrolled vibrations in the apparatus. The soft and the stiff conditions, however, were identical in terms of change in gross contact area. An absence of perceptual bias, estimated from the difference in PSE, would imply that the effect in the first experiment was primarily due to a change in contact area and not due to any of the other differences between the two conditions. In experiment 2b with covered fingertip, the PSEs were not significantly different between the soft and the stiff conditions (mean of the difference = 0.03°;
<inline-formula>
<mml:math id="M8" altimg="si5.gif" overflow="scroll">
<mml:mrow>
<mml:msub>
<mml:mi>t</mml:mi>
<mml:mrow>
<mml:mn>10</mml:mn>
</mml:mrow>
</mml:msub>
</mml:mrow>
</mml:math>
</inline-formula>
 = 0.05; p = 0.96). Likewise, the 95% CI of the difference in PSEs included zero (95% CI ranging from −0.8° to 0.3°), indicating the importance of the contact area spread as a cue to proprioception. The GLMM fit is illustrated in
<xref rid="mmc1" ref-type="supplementary-material">Figure S2</xref>
. We further analyzed the PSEs of experiments 1 and 2a together using a 2 × 2 nested ANOVA with factors experiment (1 versus 2a) and stimulus type (more versus less compliant). The interaction between the two factors was statistically significant (
<inline-formula>
<mml:math id="M9" altimg="si8.gif" overflow="scroll">
<mml:mrow>
<mml:msub>
<mml:mi>F</mml:mi>
<mml:mn>1</mml:mn>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mn>12.71</mml:mn>
<mml:mo>,</mml:mo>
<mml:mspace width="0.25em"></mml:mspace>
<mml:mi>p</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>0.018</mml:mn>
</mml:mrow>
</mml:math>
</inline-formula>
), confirming the different effect of stimulus type in the two experiments. In an additional control experiment (experiment 2b), we reproduced the delays of the motion onset observed in experiment 1 by controlling the movement of a rigid platform lifting the participants’ bare fingertip. Experiment 2b confirmed that the delay of the motion onset did not produce any significant perceptual bias (
<xref rid="mmc1" ref-type="supplementary-material">Supplemental Experimental Procedures</xref>
).</p>
<p>Our results imply that observers were sensitive to a change in the area of contact. Hence, if we informed the participants that the compliance could change across trials, they should have been able to discriminate the difference in compliance based on the change in the area of contact. To verify this hypothesis, we conducted a third experiment (
<xref rid="mmc1" ref-type="supplementary-material">Supplemental Experimental Procedures</xref>
) where the finger was immobilized and where participants were instructed to discriminate the differences in compliance of the surface based on the differences in the area of contact. In accordance with previous studies [
<xref rid="bib5" ref-type="bibr">5</xref>
,
<xref rid="bib17" ref-type="bibr">17</xref>
,
<xref rid="bib18" ref-type="bibr">18</xref>
,
<xref rid="bib19" ref-type="bibr">19</xref>
], participants were able to discriminate the stimuli. That is, the slope parameter of the GLMM, which reflected discriminability for compliance, was significantly different from zero (slope = 1.36; p < 0.001). The just noticeable difference (JND) was equal to 0.49 mm N
<sup>−1</sup>
(95% CI ranging from 0.33 to 0.96 mm N
<sup>−1</sup>
).</p>
<p>In summary, we provided evidence that observers were sensitive to the change of the area of contact with an external surface and used it as a cue to the relative motion of the finger, i.e., as a cue for proprioception. The change in contact area is qualitatively different from other displacement cues because it provides information that is expressible in units of surface and not in units of length. This observation raises the question about the integration of this newly described cue with other proprioceptive cues. Landy et al. proposed a model for the integration of qualitatively different cues in vision, known as “modified weak fusion” [
<xref rid="bib20" ref-type="bibr">20</xref>
]. We applied a similar model to our results (
<xref rid="mmc1" ref-type="supplementary-material">Supplemental Experimental Procedures</xref>
and
<xref rid="mmc1" ref-type="supplementary-material">Figure S3</xref>
). The model was based on a two-step algorithm. The contact area cue was first calibrated (or promoted) using auxiliary information (i.e., with auxiliary proprioceptive cues conveying information expressed in units of length). In the second step, the calibrated cue was combined with the other cues to provide the fused estimate. The model predicted that the perceptual bias was proportional to the difference in contact area (computed at the same angular displacement of 12°) between the reference and the comparison stimulus. Hence, the model predicted a negative bias for the large condition and positive bias for the small condition and a larger absolute value of the bias in case of the large condition. The two predictions were consistent with the results of the experiment 1. The weight of the area-based cue in the fused estimate changed between the two experimental conditions, in accordance with a robust estimation hypothesis [
<xref rid="bib20" ref-type="bibr">20</xref>
].</p>
<p>Visual and tactile looming are both ambiguous cues. In vision, the retinal size of an object depends multiplicatively on its actual size and on its proximity to the viewer. In touch, the tactile size of a deformable object depends multiplicatively on its compliance and on finger displacement. In touch, as in vision, the observer can resolve these ambiguities by assuming object constancy, i.e., by assuming that objects have a constant size [
<xref rid="bib4" ref-type="bibr">4</xref>
], or a constant compliance. A Bayesian model assuming an observer’s prior belief that the compliance of a given object does not change fits our behavioral data with the consequence that a violation of the constancy assumption generates a perceptual illusion. To use Palmer’s words [
<xref rid="bib4" ref-type="bibr">4</xref>
], “constancy and illusion are therefore opposite sides of the same perceptual coin.”</p>
</sec>
<sec id="sec2">
<title>Discussion</title>
<p>Many mammals, birds, and other species have soft pads on the volar side of their extremities. The soft pads rapidly conform to external surfaces ensuring secure grips and stable interactions with objects [
<xref rid="bib1" ref-type="bibr">1</xref>
]. Soft fingers have been also used in robotic hands to increase grasp stability [
<xref rid="bib2" ref-type="bibr">2</xref>
,
<xref rid="bib21" ref-type="bibr">21</xref>
]. Besides having advantages for grasping, the patterns of pad deformation (such as the change in contact area and the deformation due to slip and roll motion) also provide rich information to the tactile system [
<xref rid="bib12" ref-type="bibr">12</xref>
]. The evolution of skin strain patterns during tactile slip provides relative motion information similar to optic flow in vision [
<xref rid="bib22" ref-type="bibr">22</xref>
]. Observers can reproduce displacement paths by integrating tactile slip motion over time [
<xref rid="bib23" ref-type="bibr">23</xref>
] and experience the shape of curved objects from a rolling interaction of finger pads with an object [
<xref rid="bib24" ref-type="bibr">24</xref>
]. The evolution of the gross contact area provides information about the softness of touched objects [
<xref rid="bib5" ref-type="bibr">5</xref>
,
<xref rid="bib15" ref-type="bibr">15</xref>
,
<xref rid="bib17" ref-type="bibr">17</xref>
,
<xref rid="bib18" ref-type="bibr">18</xref>
,
<xref rid="bib19" ref-type="bibr">19</xref>
], a finding which is confirmed by our third experiment.</p>
<p>Although the role of pad deformation in cutaneous touch is well established, its contribution to proprioception is less clear. In the present study, we demonstrated that a change in the contact area provides a cue to finger displacement relative to an object. According to classical studies in physiology, muscle spindles, Golgi tendon organs, and receptors in the joints provide crucial information on the static position and movement of our limbs [
<xref rid="bib25" ref-type="bibr">25</xref>
]. Information from cutaneous mechanoreceptors also contributes to our sense of position [
<xref rid="bib26" ref-type="bibr">26</xref>
,
<xref rid="bib27" ref-type="bibr">27</xref>
,
<xref rid="bib28" ref-type="bibr">28</xref>
]. Stretching the skin around the proximal interphalangeal joint, i.e., around the second knuckle, induced a vivid sensation of movement in anesthetized fingers [
<xref rid="bib29" ref-type="bibr">29</xref>
]. Furthermore, during the movement of the elbow joint, skin stretch in a direction in line with muscle stretch applied simultaneously with external vibrations increased the perceived movement sensation [
<xref rid="bib30" ref-type="bibr">30</xref>
]. The literature has largely overlooked the role of finger pad deformation due to object interaction as a cue to relative motion. In the current study, changes in the gross contact area produced during the indentation of an elastic surface induced a sensation of relative finger motion. Recently, it was found that, when pushing with a finger against a stiff, stationary object, microscopic fluctuations in the counter-surface could elicit a sensation of finger displacement [
<xref rid="bib27" ref-type="bibr">27</xref>
]. These results provide converging evidence that an important source of proprioceptive information comes from skin deformation during interaction with external objects.</p>
<p>In the experiments presented here, the change in gross contact area provided a motion cue that could be compared to looming in vision. This effect, termed “tactile looming,” supports the hypothesis that similar motion detection processes are implemented in vision and touch [
<xref rid="bib31" ref-type="bibr">31</xref>
]. In the two sensory systems, a 2D sensory sheet (i.e., the retina or the skin) provides important information about the relative motion of our own body with respect to external objects. Moreover, previous studies showed an analog of visual looming in audition [
<xref rid="bib32" ref-type="bibr">32</xref>
,
<xref rid="bib33" ref-type="bibr">33</xref>
], which might suggest a canonical computation of looming stimuli across different senses.</p>
</sec>
<sec id="sec3">
<title>Author Contributions</title>
<p>A.M., M.B., A.S., V.H., M.O.E., and A.B. conceived and designed the experiments. M.B., A.M., and A.S. performed the experiments. A.M. and M.B. analyzed the data. A.T. developed the explanatory model. All authors interpreted results of experiments. A.M., M.B., and A.S. prepared figures. A.M. and M.B. drafted the manuscript. All authors edited, revised, and approved the final version of the manuscript.</p>
</sec>
</body>
<back>
<ref-list>
<title>References</title>
<ref id="bib1">
<label>1</label>
<element-citation publication-type="journal" id="sref1">
<person-group person-group-type="author">
<name>
<surname>Cartmill</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>The volar skin of primates: its frictional characteristics and their functional significance</article-title>
<source>Am. J. Phys. Anthropol.</source>
<volume>50</volume>
<year>1979</year>
<fpage>497</fpage>
<lpage>509</lpage>
<pub-id pub-id-type="pmid">111555</pub-id>
</element-citation>
</ref>
<ref id="bib2">
<label>2</label>
<element-citation publication-type="journal" id="sref2">
<person-group person-group-type="author">
<name>
<surname>Arimoto</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>P.T.A.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>H.-Y.</given-names>
</name>
<name>
<surname>Doulgeri</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Dynamics and control of a set of dual fingers with soft tips</article-title>
<source>Robotica</source>
<volume>18</volume>
<year>2000</year>
<fpage>71</fpage>
<lpage>80</lpage>
</element-citation>
</ref>
<ref id="bib3">
<label>3</label>
<element-citation publication-type="journal" id="sref3">
<person-group person-group-type="author">
<name>
<surname>Serina</surname>
<given-names>E.R.</given-names>
</name>
<name>
<surname>Mockensturm</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Mote</surname>
<given-names>C.D.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Rempel</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>A structural model of the forced compression of the fingertip pulp</article-title>
<source>J. Biomech.</source>
<volume>31</volume>
<year>1998</year>
<fpage>639</fpage>
<lpage>646</lpage>
<pub-id pub-id-type="pmid">9796686</pub-id>
</element-citation>
</ref>
<ref id="bib4">
<label>4</label>
<element-citation publication-type="book" id="sref4">
<person-group person-group-type="author">
<name>
<surname>Palmer</surname>
<given-names>S.E.</given-names>
</name>
</person-group>
<chapter-title>Vision Science: Photons to Phenomenology</chapter-title>
<year>1999</year>
<publisher-name>MIT Press</publisher-name>
</element-citation>
</ref>
<ref id="bib5">
<label>5</label>
<element-citation publication-type="journal" id="sref5">
<person-group person-group-type="author">
<name>
<surname>Bicchi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Scilingo</surname>
<given-names>E.P.</given-names>
</name>
<name>
<surname>De Rossi</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Haptic discrimination of softness in teleoperation: the role of the contact area spread rate</article-title>
<source>IEEE Trans. Robot. Autom.</source>
<volume>16</volume>
<year>2000</year>
<fpage>496</fpage>
<lpage>504</lpage>
</element-citation>
</ref>
<ref id="bib6">
<label>6</label>
<element-citation publication-type="journal" id="sref6">
<person-group person-group-type="author">
<name>
<surname>Martinez-Conde</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Macknik</surname>
<given-names>S.L.</given-names>
</name>
</person-group>
<article-title>The neuroscience of illusion</article-title>
<source>Sci. Am. Mind</source>
<volume>22</volume>
<year>2013</year>
<fpage>6</fpage>
<lpage>9</lpage>
</element-citation>
</ref>
<ref id="bib7">
<label>7</label>
<element-citation publication-type="journal" id="sref7">
<person-group person-group-type="author">
<name>
<surname>Regan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Beverley</surname>
<given-names>K.I.</given-names>
</name>
</person-group>
<article-title>Looming detectors in the human visual pathway</article-title>
<source>Vision Res.</source>
<volume>18</volume>
<year>1978</year>
<fpage>415</fpage>
<lpage>421</lpage>
<pub-id pub-id-type="pmid">664320</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<label>8</label>
<element-citation publication-type="journal" id="sref8">
<person-group person-group-type="author">
<name>
<surname>Regan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Vincent</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Visual processing of looming and time to contact throughout the visual field</article-title>
<source>Vision Res.</source>
<volume>35</volume>
<year>1995</year>
<fpage>1845</fpage>
<lpage>1857</lpage>
<pub-id pub-id-type="pmid">7660591</pub-id>
</element-citation>
</ref>
<ref id="bib9">
<label>9</label>
<element-citation publication-type="journal" id="sref9">
<person-group person-group-type="author">
<name>
<surname>Brenner</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Van Den Berg</surname>
<given-names>A.V.</given-names>
</name>
<name>
<surname>Van Damme</surname>
<given-names>W.J.</given-names>
</name>
</person-group>
<article-title>Perceived motion in depth</article-title>
<source>Vision Res.</source>
<volume>36</volume>
<year>1996</year>
<fpage>699</fpage>
<lpage>706</lpage>
<pub-id pub-id-type="pmid">8762300</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<label>10</label>
<element-citation publication-type="journal" id="sref10">
<person-group person-group-type="author">
<name>
<surname>Johansson</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Birznieks</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>First spikes in ensembles of human tactile afferents code complex spatial fingertip events</article-title>
<source>Nat. Neurosci.</source>
<volume>7</volume>
<year>2004</year>
<fpage>170</fpage>
<lpage>177</lpage>
<pub-id pub-id-type="pmid">14730306</pub-id>
</element-citation>
</ref>
<ref id="bib11">
<label>11</label>
<element-citation publication-type="journal" id="sref11">
<person-group person-group-type="author">
<name>
<surname>Adams</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>S.A.</given-names>
</name>
<name>
<surname>Lefèvre</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Lévesque</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Hayward</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>André</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Thonnard</surname>
<given-names>J.L.</given-names>
</name>
</person-group>
<article-title>Finger pad friction and its role in grip and touch</article-title>
<source>J. R. Soc. Interface</source>
<volume>10</volume>
<year>2012</year>
<fpage>20120467</fpage>
<pub-id pub-id-type="pmid">23256185</pub-id>
</element-citation>
</ref>
<ref id="bib12">
<label>12</label>
<element-citation publication-type="journal" id="sref12">
<person-group person-group-type="author">
<name>
<surname>Jörntell</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Bengtsson</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Geborek</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Spanne</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Terekhov</surname>
<given-names>A.V.</given-names>
</name>
<name>
<surname>Hayward</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Segregation of tactile input features in neurons of the cuneate nucleus</article-title>
<source>Neuron</source>
<volume>83</volume>
<year>2014</year>
<fpage>1444</fpage>
<lpage>1452</lpage>
<pub-id pub-id-type="pmid">25175880</pub-id>
</element-citation>
</ref>
<ref id="bib13">
<label>13</label>
<element-citation publication-type="book" id="sref13">
<person-group person-group-type="editor">
<name>
<surname>Di Luca</surname>
<given-names>M.</given-names>
</name>
</person-group>
<source>Multisensory Softness</source>
<year>2014</year>
<publisher-name>Springer London</publisher-name>
</element-citation>
</ref>
<ref id="bib14">
<label>14</label>
<mixed-citation publication-type="other" id="sref14">Serio, A., Bianchi, M., and Bicchi, A. (2013). A device for mimicking the contact force/contact area relationship of different materials with applications to softness rendering. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4484–4490.</mixed-citation>
</ref>
<ref id="bib15">
<label>15</label>
<element-citation publication-type="journal" id="sref15">
<person-group person-group-type="author">
<name>
<surname>Bianchi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Serio</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Design and characterization of a fabric-based softness display</article-title>
<source>IEEE Trans. Haptics</source>
<volume>8</volume>
<year>2015</year>
<fpage>152</fpage>
<lpage>163</lpage>
<pub-id pub-id-type="pmid">25720018</pub-id>
</element-citation>
</ref>
<ref id="bib16">
<label>16</label>
<element-citation publication-type="journal" id="sref16">
<person-group person-group-type="author">
<name>
<surname>Moscatelli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mezzetti</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lacquaniti</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Modeling psychophysical data at the population-level: the generalized linear mixed model</article-title>
<source>J. Vis.</source>
<volume>12</volume>
<year>2012</year>
<fpage>1</fpage>
<lpage>17</lpage>
</element-citation>
</ref>
<ref id="bib17">
<label>17</label>
<mixed-citation publication-type="other" id="sref17">Fujita, K., and Ohmori, H. (2001). A new softness display interface by dynamic fingertip contact area control. Proceedings of the 5th World Multiconference on Systemics, Cybernetics and Informatics, pp. 78–82.</mixed-citation>
</ref>
<ref id="bib18">
<label>18</label>
<mixed-citation publication-type="other" id="sref18">Yokota, H., Yamamoto, A., Yamamoto, H., and Higuchi, T. (2007). Producing softness sensation on an electrostatic texture display for rendering diverse tactile feelings. Proceedings of the 2nd Joint IEEE EuroHaptics Conference, 2007 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 584–585.</mixed-citation>
</ref>
<ref id="bib19">
<label>19</label>
<mixed-citation publication-type="other" id="sref19">Kimura, F., Yamamoto, A., and Higuchi, T. (2009). Development of a contact width sensor for tactile tele-presentation of softness. Proceedings of the 18th IEEE International Symposium on Robot Human Interactive Communication, pp. 34–39.</mixed-citation>
</ref>
<ref id="bib20">
<label>20</label>
<element-citation publication-type="journal" id="sref20">
<person-group person-group-type="author">
<name>
<surname>Landy</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Maloney</surname>
<given-names>L.T.</given-names>
</name>
<name>
<surname>Johnston</surname>
<given-names>E.B.</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Measurement and modeling of depth cue combination: in defense of weak fusion</article-title>
<source>Vision Res.</source>
<volume>35</volume>
<year>1995</year>
<fpage>389</fpage>
<lpage>412</lpage>
<pub-id pub-id-type="pmid">7892735</pub-id>
</element-citation>
</ref>
<ref id="bib21">
<label>21</label>
<element-citation publication-type="journal" id="sref21">
<person-group person-group-type="author">
<name>
<surname>Catalano</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Grioli</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Farnioli</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Serio</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Piazza</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bicchi</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Adaptive synergies for the design and control of the Pisa/IIT SoftHand</article-title>
<source>Int. J. Robot. Res.</source>
<volume>33</volume>
<year>2014</year>
<fpage>768</fpage>
<lpage>782</lpage>
</element-citation>
</ref>
<ref id="bib22">
<label>22</label>
<element-citation publication-type="journal" id="sref22">
<person-group person-group-type="author">
<name>
<surname>Bicchi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Scilingo</surname>
<given-names>E.P.</given-names>
</name>
<name>
<surname>Ricciardi</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Pietrini</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Tactile flow explains haptic counterparts of common visual illusions</article-title>
<source>Brain Res. Bull.</source>
<volume>75</volume>
<year>2008</year>
<fpage>737</fpage>
<lpage>741</lpage>
<pub-id pub-id-type="pmid">18394519</pub-id>
</element-citation>
</ref>
<ref id="bib23">
<label>23</label>
<element-citation publication-type="journal" id="sref23">
<person-group person-group-type="author">
<name>
<surname>Moscatelli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Naceri</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ernst</surname>
<given-names>M.O.</given-names>
</name>
</person-group>
<article-title>Path integration in tactile perception of shapes</article-title>
<source>Behav. Brain Res.</source>
<volume>274</volume>
<year>2014</year>
<fpage>355</fpage>
<lpage>364</lpage>
<pub-id pub-id-type="pmid">25151621</pub-id>
</element-citation>
</ref>
<ref id="bib24">
<label>24</label>
<element-citation publication-type="journal" id="sref24">
<person-group person-group-type="author">
<name>
<surname>Dostmohamed</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hayward</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Trajectory of contact region on the fingerpad gives the illusion of haptic shape</article-title>
<source>Exp. Brain Res.</source>
<volume>164</volume>
<year>2005</year>
<fpage>387</fpage>
<lpage>394</lpage>
<pub-id pub-id-type="pmid">15883809</pub-id>
</element-citation>
</ref>
<ref id="bib25">
<label>25</label>
<element-citation publication-type="journal" id="sref25">
<person-group person-group-type="author">
<name>
<surname>Proske</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Gandevia</surname>
<given-names>S.C.</given-names>
</name>
</person-group>
<article-title>The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force</article-title>
<source>Physiol. Rev.</source>
<volume>92</volume>
<year>2012</year>
<fpage>1651</fpage>
<lpage>1697</lpage>
<pub-id pub-id-type="pmid">23073629</pub-id>
</element-citation>
</ref>
<ref id="bib26">
<label>26</label>
<element-citation publication-type="journal" id="sref26">
<person-group person-group-type="author">
<name>
<surname>Edin</surname>
<given-names>B.B.</given-names>
</name>
<name>
<surname>Abbs</surname>
<given-names>J.H.</given-names>
</name>
</person-group>
<article-title>Finger movement responses of cutaneous mechanoreceptors in the dorsal skin of the human hand</article-title>
<source>J. Neurophysiol.</source>
<volume>65</volume>
<year>1991</year>
<fpage>657</fpage>
<lpage>670</lpage>
<pub-id pub-id-type="pmid">2051199</pub-id>
</element-citation>
</ref>
<ref id="bib27">
<label>27</label>
<element-citation publication-type="journal" id="sref27">
<person-group person-group-type="author">
<name>
<surname>Terekhov</surname>
<given-names>A.V.</given-names>
</name>
<name>
<surname>Hayward</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>The brain uses extrasomatic information to estimate limb displacement</article-title>
<source>Proc. R. Soc. B Biol. Sci.</source>
<volume>282</volume>
<year>2015</year>
<fpage>20151661</fpage>
</element-citation>
</ref>
<ref id="bib28">
<label>28</label>
<element-citation publication-type="journal" id="sref28">
<person-group person-group-type="author">
<name>
<surname>Collins</surname>
<given-names>D.F.</given-names>
</name>
<name>
<surname>Refshauge</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Gandevia</surname>
<given-names>S.C.</given-names>
</name>
</person-group>
<article-title>Sensory integration in the perception of movements at the human metacarpophalangeal joint</article-title>
<source>J. Physiol.</source>
<volume>529</volume>
<year>2000</year>
<fpage>505</fpage>
<lpage>515</lpage>
<pub-id pub-id-type="pmid">11101658</pub-id>
</element-citation>
</ref>
<ref id="bib29">
<label>29</label>
<element-citation publication-type="journal" id="sref29">
<person-group person-group-type="author">
<name>
<surname>Edin</surname>
<given-names>B.B.</given-names>
</name>
<name>
<surname>Johansson</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Skin strain patterns provide kinaesthetic information to the human central nervous system</article-title>
<source>J. Physiol.</source>
<volume>487</volume>
<year>1995</year>
<fpage>243</fpage>
<lpage>251</lpage>
<pub-id pub-id-type="pmid">7473253</pub-id>
</element-citation>
</ref>
<ref id="bib30">
<label>30</label>
<element-citation publication-type="journal" id="sref30">
<person-group person-group-type="author">
<name>
<surname>Collins</surname>
<given-names>D.F.</given-names>
</name>
<name>
<surname>Refshauge</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Todd</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Gandevia</surname>
<given-names>S.C.</given-names>
</name>
</person-group>
<article-title>Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee</article-title>
<source>J. Neurophysiol.</source>
<volume>94</volume>
<year>2005</year>
<fpage>1699</fpage>
<lpage>1706</lpage>
<pub-id pub-id-type="pmid">15917323</pub-id>
</element-citation>
</ref>
<ref id="bib31">
<label>31</label>
<element-citation publication-type="journal" id="sref31">
<person-group person-group-type="author">
<name>
<surname>Pack</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Bensmaia</surname>
<given-names>S.J.</given-names>
</name>
</person-group>
<article-title>Seeing and feeling motion: canonical computations in vision and touch</article-title>
<source>PLoS Biol.</source>
<volume>13</volume>
<year>2015</year>
<fpage>e1002271</fpage>
<pub-id pub-id-type="pmid">26418156</pub-id>
</element-citation>
</ref>
<ref id="bib32">
<label>32</label>
<element-citation publication-type="journal" id="sref32">
<person-group person-group-type="author">
<name>
<surname>Ghazanfar</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Neuhoff</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>Logothetis</surname>
<given-names>N.K.</given-names>
</name>
</person-group>
<article-title>Auditory looming perception in rhesus monkeys</article-title>
<source>Proc. Natl. Acad. Sci. USA</source>
<volume>99</volume>
<year>2002</year>
<fpage>15755</fpage>
<lpage>15757</lpage>
<pub-id pub-id-type="pmid">12429855</pub-id>
</element-citation>
</ref>
<ref id="bib33">
<label>33</label>
<element-citation publication-type="journal" id="sref33">
<person-group person-group-type="author">
<name>
<surname>Maier</surname>
<given-names>J.X.</given-names>
</name>
<name>
<surname>Ghazanfar</surname>
<given-names>A.A.</given-names>
</name>
</person-group>
<article-title>Looming biases in monkey auditory cortex</article-title>
<source>J. Neurosci.</source>
<volume>27</volume>
<year>2007</year>
<fpage>4093</fpage>
<lpage>4100</lpage>
<pub-id pub-id-type="pmid">17428987</pub-id>
</element-citation>
</ref>
</ref-list>
<sec id="app2" sec-type="supplementary-material">
<title>Supplemental Information</title>
<p>
<supplementary-material content-type="local-data" id="mmc1">
<caption>
<title>Document S1. Figures S1–S3 and Supplemental Experimental Procedures</title>
</caption>
<media xlink:href="mmc1.pdf"></media>
</supplementary-material>
<supplementary-material content-type="local-data" id="mmc2">
<caption>
<title>Document S2. Article plus Supplemental Information</title>
</caption>
<media xlink:href="mmc2.pdf"></media>
</supplementary-material>
</p>
</sec>
<ack id="ack0010">
<title>Acknowledgments</title>
<p>This work was partially supported by the European Commission funded projects WEARHAP (project 601165), SOMA (project 645599), and SOFTPRO (project 688857) and by ERC Advanced Grants 291166 SoftHands and 247300 Patch. Preliminary results from experiment 1 (sample size = six participants) were presented at the Eurohaptics Conference 2014 (Paris) and were awarded the Best Paper Award (poster presentation). We thank Simone Fani, Omar Al Atassi, Simone Ciotti, and Mattia Poggiani for helping with the apparatus and Irene Senna, Cesare V. Parise, Jessica Hartcher-O’Brien, and Francesco Lacquaniti for useful comments and suggestions.</p>
</ack>
<fn-group>
<fn id="app1" fn-type="supplementary-material">
<p>Supplemental Information includes three figures and Supplemental Experimental Procedures and can be found with this article online at
<ext-link ext-link-type="doi" xlink:href="10.1016/j.cub.2016.02.052" id="intref0010">http://dx.doi.org/10.1016/j.cub.2016.02.052</ext-link>
.</p>
</fn>
</fn-group>
</back>
<floats-group>
<fig id="fig1">
<label>Figure 1</label>
<caption>
<p>The Change in Contact Area</p>
<p>(A) The area of contact between the skin and the silicon increases as the finger moves toward the bottom edge of the object.</p>
<p>(B) The increase in the area recorded from the camera of the softness display for a surface compliance comparable with the silicon. The expanding contact area can be seen as successive frames of a movie of a looming stimulus.</p>
<p>(C and D) A more-compliant object is associated with a higher rate of change of the area of contact.</p>
</caption>
<graphic xlink:href="gr1"></graphic>
</fig>
<fig id="fig2">
<label>Figure 2</label>
<caption>
<p>Experimental Setup and Protocol</p>
<p>(A) The setup included the lift, the softness display FYD-2, and the angle encoder. The FYD-2 modified the compliance of an elastic contact surface by adjusting its stretching state. A rotational spring produced a linear increase of the force exerted by the finger on the surface through the lifting phase of the stimulus. (Adapted with permission from Moscatelli, Bianchi, et al., Eurohaptics Conference 2014, Paris.)</p>
<p>(B) In each interval, the elastic surface (in red in the figure) was lifted to contact the participant’s index finger and to passively move it up and down. The angle of the metacarpo-phalangeal joint, γ, was measured from the angle encoder and used to control the movement of the lift.</p>
</caption>
<graphic xlink:href="gr2"></graphic>
</fig>
<fig id="fig3">
<label>Figure 3</label>
<caption>
<p>Results</p>
<p>(A) The area of contact between the fingertip and the surface changes with the displacement of the finger and the compliance of the surface (results from a representative participant). The tonality of gray of each curve, from black to light gray, stands for the compliance of the surface. In (A)–(C), the dashed line indicates the extent of the finger displacement in the reference stimulus, γ
<sup>0</sup>
 =12°.</p>
<p>(B) The psychometric functions and the responses of a representative participant in the two experimental conditions. The horizontal bars indicate the PSE ± the SE (PSE
<sub>large</sub>
 = 9.7° ± 0.5°; PSE
<sub>small</sub>
 = 12.8° ± 0.6°).</p>
<p>(C) The PSE ± 95% confidence interval in the two experimental conditions (n = 11).</p>
<p>See also
<xref rid="mmc1" ref-type="supplementary-material">Figures S1–S3</xref>
.</p>
</caption>
<graphic xlink:href="gr3"></graphic>
</fig>
</floats-group>
</pmc>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>France</li>
<li>Italie</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Tübingen</li>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
<li>Ulm</li>
</settlement>
<orgName>
<li>Université Paris Descartes</li>
</orgName>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Moscatelli, Alessandro" sort="Moscatelli, Alessandro" uniqKey="Moscatelli A" first="Alessandro" last="Moscatelli">Alessandro Moscatelli</name>
</noRegion>
<name sortKey="Ernst, Marc O" sort="Ernst, Marc O" uniqKey="Ernst M" first="Marc O." last="Ernst">Marc O. Ernst</name>
<name sortKey="Ernst, Marc O" sort="Ernst, Marc O" uniqKey="Ernst M" first="Marc O." last="Ernst">Marc O. Ernst</name>
<name sortKey="Ernst, Marc O" sort="Ernst, Marc O" uniqKey="Ernst M" first="Marc O." last="Ernst">Marc O. Ernst</name>
<name sortKey="Moscatelli, Alessandro" sort="Moscatelli, Alessandro" uniqKey="Moscatelli A" first="Alessandro" last="Moscatelli">Alessandro Moscatelli</name>
</country>
<country name="Italie">
<noRegion>
<name sortKey="Moscatelli, Alessandro" sort="Moscatelli, Alessandro" uniqKey="Moscatelli A" first="Alessandro" last="Moscatelli">Alessandro Moscatelli</name>
</noRegion>
<name sortKey="Bianchi, Matteo" sort="Bianchi, Matteo" uniqKey="Bianchi M" first="Matteo" last="Bianchi">Matteo Bianchi</name>
<name sortKey="Bianchi, Matteo" sort="Bianchi, Matteo" uniqKey="Bianchi M" first="Matteo" last="Bianchi">Matteo Bianchi</name>
<name sortKey="Bicchi, Antonio" sort="Bicchi, Antonio" uniqKey="Bicchi A" first="Antonio" last="Bicchi">Antonio Bicchi</name>
<name sortKey="Bicchi, Antonio" sort="Bicchi, Antonio" uniqKey="Bicchi A" first="Antonio" last="Bicchi">Antonio Bicchi</name>
<name sortKey="Serio, Alessandro" sort="Serio, Alessandro" uniqKey="Serio A" first="Alessandro" last="Serio">Alessandro Serio</name>
</country>
<country name="France">
<region name="Île-de-France">
<name sortKey="Terekhov, Alexander" sort="Terekhov, Alexander" uniqKey="Terekhov A" first="Alexander" last="Terekhov">Alexander Terekhov</name>
</region>
<name sortKey="Hayward, Vincent" sort="Hayward, Vincent" uniqKey="Hayward V" first="Vincent" last="Hayward">Vincent Hayward</name>
<name sortKey="Terekhov, Alexander" sort="Terekhov, Alexander" uniqKey="Terekhov A" first="Alexander" last="Terekhov">Alexander Terekhov</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004165 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 004165 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:4865678
   |texte=   The Change in Fingertip Contact Area as a Novel Proprioceptive Cue
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:27068417" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024