Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The integration of haptically acquired size information in the programming of precision grip.

Identifieur interne : 001475 ( Ncbi/Merge ); précédent : 001474; suivant : 001476

The integration of haptically acquired size information in the programming of precision grip.

Auteurs : A M Gordon [Suède] ; H. Forssberg ; R S Johansson ; G. Westling

Source :

RBID : pubmed:2026191

English descriptors

Abstract

Recent evidence for the use of visual cues in the programming of the precision grip has been given by Gordon et al. (1991). Visually invoked size-related information influenced the physical forces used to produce a lift, even when it was not consistent with other sensory information. In the present study, blind-folded subjects were required to feel the size of an object by haptic exploration prior to lifting it. Two boxes of equal weight and unequal size were used for the lift objects and were attached to an instrumented (grip) handle. Grip force and load force, their rates, and the vertical movement of the object were measured. Most subjects reported that the small box was heavier, which is consistent with size-weight illusion predictions. However, peak grip force, grip force rate, peak load force, and load force rate were greater for the large box when the boxes were randomly presented, but not when the same boxes were lifted consecutively. If subjects did not feel the box prior to a lift, these parameters were scaled in between those normally employed for the large and small box. Most subjects apparently programmed the parallel increase of the grip and load force during the loading phase as one force rate pulse. This represented a "target strategy" in which an internal neural representation of the objects weight determined the actual target parameter (i.e. just enough force required to overcome gravity). The other subjects exhibited a slower stepwise increase in grip and load force rate. The subjects choosing this "probing strategy" did not scale the force parameters differently for the two boxes.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed: 2026191

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:2026191

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The integration of haptically acquired size information in the programming of precision grip.</title>
<author>
<name sortKey="Gordon, A M" sort="Gordon, A M" uniqKey="Gordon A" first="A M" last="Gordon">A M Gordon</name>
<affiliation wicri:level="3">
<nlm:affiliation>Nobel Institute for Neurophysiology, Karolinska Institute, Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Nobel Institute for Neurophysiology, Karolinska Institute, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Forssberg, H" sort="Forssberg, H" uniqKey="Forssberg H" first="H" last="Forssberg">H. Forssberg</name>
</author>
<author>
<name sortKey="Johansson, R S" sort="Johansson, R S" uniqKey="Johansson R" first="R S" last="Johansson">R S Johansson</name>
</author>
<author>
<name sortKey="Westling, G" sort="Westling, G" uniqKey="Westling G" first="G" last="Westling">G. Westling</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1991">1991</date>
<idno type="RBID">pubmed:2026191</idno>
<idno type="pmid">2026191</idno>
<idno type="wicri:Area/PubMed/Corpus">002219</idno>
<idno type="wicri:Area/PubMed/Curation">002219</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001F30</idno>
<idno type="wicri:Area/Ncbi/Merge">001475</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The integration of haptically acquired size information in the programming of precision grip.</title>
<author>
<name sortKey="Gordon, A M" sort="Gordon, A M" uniqKey="Gordon A" first="A M" last="Gordon">A M Gordon</name>
<affiliation wicri:level="3">
<nlm:affiliation>Nobel Institute for Neurophysiology, Karolinska Institute, Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Nobel Institute for Neurophysiology, Karolinska Institute, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Forssberg, H" sort="Forssberg, H" uniqKey="Forssberg H" first="H" last="Forssberg">H. Forssberg</name>
</author>
<author>
<name sortKey="Johansson, R S" sort="Johansson, R S" uniqKey="Johansson R" first="R S" last="Johansson">R S Johansson</name>
</author>
<author>
<name sortKey="Westling, G" sort="Westling, G" uniqKey="Westling G" first="G" last="Westling">G. Westling</name>
</author>
</analytic>
<series>
<title level="j">Experimental brain research</title>
<idno type="ISSN">0014-4819</idno>
<imprint>
<date when="1991" type="published">1991</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Female</term>
<term>Hand (physiology)</term>
<term>Humans</term>
<term>Isometric Contraction</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Movement</term>
<term>Muscles (innervation)</term>
<term>Vision, Ocular</term>
<term>Visual Perception</term>
</keywords>
<keywords scheme="MESH" qualifier="innervation" xml:lang="en">
<term>Muscles</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Hand</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Female</term>
<term>Humans</term>
<term>Isometric Contraction</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Movement</term>
<term>Vision, Ocular</term>
<term>Visual Perception</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recent evidence for the use of visual cues in the programming of the precision grip has been given by Gordon et al. (1991). Visually invoked size-related information influenced the physical forces used to produce a lift, even when it was not consistent with other sensory information. In the present study, blind-folded subjects were required to feel the size of an object by haptic exploration prior to lifting it. Two boxes of equal weight and unequal size were used for the lift objects and were attached to an instrumented (grip) handle. Grip force and load force, their rates, and the vertical movement of the object were measured. Most subjects reported that the small box was heavier, which is consistent with size-weight illusion predictions. However, peak grip force, grip force rate, peak load force, and load force rate were greater for the large box when the boxes were randomly presented, but not when the same boxes were lifted consecutively. If subjects did not feel the box prior to a lift, these parameters were scaled in between those normally employed for the large and small box. Most subjects apparently programmed the parallel increase of the grip and load force during the loading phase as one force rate pulse. This represented a "target strategy" in which an internal neural representation of the objects weight determined the actual target parameter (i.e. just enough force required to overcome gravity). The other subjects exhibited a slower stepwise increase in grip and load force rate. The subjects choosing this "probing strategy" did not scale the force parameters differently for the two boxes.(ABSTRACT TRUNCATED AT 250 WORDS)</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">2026191</PMID>
<DateCreated>
<Year>1991</Year>
<Month>06</Month>
<Day>07</Day>
</DateCreated>
<DateCompleted>
<Year>1991</Year>
<Month>06</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>12</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0014-4819</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>83</Volume>
<Issue>3</Issue>
<PubDate>
<Year>1991</Year>
</PubDate>
</JournalIssue>
<Title>Experimental brain research</Title>
<ISOAbbreviation>Exp Brain Res</ISOAbbreviation>
</Journal>
<ArticleTitle>The integration of haptically acquired size information in the programming of precision grip.</ArticleTitle>
<Pagination>
<MedlinePgn>483-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Recent evidence for the use of visual cues in the programming of the precision grip has been given by Gordon et al. (1991). Visually invoked size-related information influenced the physical forces used to produce a lift, even when it was not consistent with other sensory information. In the present study, blind-folded subjects were required to feel the size of an object by haptic exploration prior to lifting it. Two boxes of equal weight and unequal size were used for the lift objects and were attached to an instrumented (grip) handle. Grip force and load force, their rates, and the vertical movement of the object were measured. Most subjects reported that the small box was heavier, which is consistent with size-weight illusion predictions. However, peak grip force, grip force rate, peak load force, and load force rate were greater for the large box when the boxes were randomly presented, but not when the same boxes were lifted consecutively. If subjects did not feel the box prior to a lift, these parameters were scaled in between those normally employed for the large and small box. Most subjects apparently programmed the parallel increase of the grip and load force during the loading phase as one force rate pulse. This represented a "target strategy" in which an internal neural representation of the objects weight determined the actual target parameter (i.e. just enough force required to overcome gravity). The other subjects exhibited a slower stepwise increase in grip and load force rate. The subjects choosing this "probing strategy" did not scale the force parameters differently for the two boxes.(ABSTRACT TRUNCATED AT 250 WORDS)</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gordon</LastName>
<ForeName>A M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Nobel Institute for Neurophysiology, Karolinska Institute, Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Forssberg</LastName>
<ForeName>H</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Johansson</LastName>
<ForeName>R S</ForeName>
<Initials>RS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Westling</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>GERMANY</Country>
<MedlineTA>Exp Brain Res</MedlineTA>
<NlmUniqueID>0043312</NlmUniqueID>
<ISSNLinking>0014-4819</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CitationSubset>S</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006225">Hand</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D007537">Isometric Contraction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008875">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009068">Movement</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009132">Muscles</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000294">innervation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014785">Vision, Ocular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014796">Visual Perception</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1991</Year>
<Month>1</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1991</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1991</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">2026191</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
<region>
<li>Svealand</li>
</region>
<settlement>
<li>Stockholm</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Forssberg, H" sort="Forssberg, H" uniqKey="Forssberg H" first="H" last="Forssberg">H. Forssberg</name>
<name sortKey="Johansson, R S" sort="Johansson, R S" uniqKey="Johansson R" first="R S" last="Johansson">R S Johansson</name>
<name sortKey="Westling, G" sort="Westling, G" uniqKey="Westling G" first="G" last="Westling">G. Westling</name>
</noCountry>
<country name="Suède">
<region name="Svealand">
<name sortKey="Gordon, A M" sort="Gordon, A M" uniqKey="Gordon A" first="A M" last="Gordon">A M Gordon</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001475 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 001475 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:2026191
   |texte=   The integration of haptically acquired size information in the programming of precision grip.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:2026191" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024