Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nanomanipulation Experiments Exploring Frictional and Mechanical Properties of Carbon Nanotubes.

Identifieur interne : 008C22 ( Main/Merge ); précédent : 008C21; suivant : 008C23

Nanomanipulation Experiments Exploring Frictional and Mechanical Properties of Carbon Nanotubes.

Auteurs : Falvo [États-Unis] ; Clary ; Helser ; Paulson ; Taylor ; Chi ; Brooks ; Washburn ; Superfine

Source :

RBID : pubmed:9990873

Abstract

: In many cases in experimental science, the instrument interface becomes a limiting factor in the efficacy of carrying out unusual experiments or prevents the complete understanding of the acquired data. We have developed an advanced interface for scanning probe microscopy (SPM) that allows intuitive rendering of data sets and natural instrument control, all in real time. The interface, called the nanoManipulator, combines a high-performance graphics engine for real-time data rendering with a haptic interface that places the human operator directly into the feedback loop that controls surface manipulations. Using a hand-held stylus, the operator moves the stylus laterally, directing the movement of the SPM tip across the sample. The haptic interface enables the user to "feel" the surface by forcing the stylus to move up and down in response to the surface topography. In this way the user understands the immediate location of the tip on the sample and can quickly and precisely maneuver nanometer-scale objects. We have applied this interface to studies of the mechanical properties of nanotubes and to substrate-nanotube interactions. The mechanical properties of carbon nanotubes have been demonstrated to be extraordinary. They have an elastic modulus rivaling that of the stiffest material known, diamond, while maintaining a remarkable resistance to fracture. We have used atomic-force microscopy (AFM) to manipulate the nanotubes through a series of configuration that reveal buckling behavior and high-strain resilience. Nanotubes also serve as test objects for nanometer-scale contact mechanics. We have found that nanotubes will roll under certain conditions. This has been determined through changes in the images and through the acquisition of lateral force during manipulation. The lateral force data show periodic stick-slip behavior with a periodicity matching the perimeter of the nanotube.

PubMed: 9990873

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:9990873

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nanomanipulation Experiments Exploring Frictional and Mechanical Properties of Carbon Nanotubes.</title>
<author>
<name sortKey="Falvo" sort="Falvo" uniqKey="Falvo" last="Falvo">Falvo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Physics and Astronomy, University of North Carolina, Chapel Hill</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Clary" sort="Clary" uniqKey="Clary" last="Clary">Clary</name>
</author>
<author>
<name sortKey="Helser" sort="Helser" uniqKey="Helser" last="Helser">Helser</name>
</author>
<author>
<name sortKey="Paulson" sort="Paulson" uniqKey="Paulson" last="Paulson">Paulson</name>
</author>
<author>
<name sortKey="Taylor" sort="Taylor" uniqKey="Taylor" last="Taylor">Taylor</name>
</author>
<author>
<name sortKey="Chi" sort="Chi" uniqKey="Chi" last="Chi">Chi</name>
</author>
<author>
<name sortKey="Brooks" sort="Brooks" uniqKey="Brooks" last="Brooks">Brooks</name>
</author>
<author>
<name sortKey="Washburn" sort="Washburn" uniqKey="Washburn" last="Washburn">Washburn</name>
</author>
<author>
<name sortKey="Superfine" sort="Superfine" uniqKey="Superfine" last="Superfine">Superfine</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1998">1998</date>
<idno type="RBID">pubmed:9990873</idno>
<idno type="pmid">9990873</idno>
<idno type="wicri:Area/PubMed/Corpus">001F16</idno>
<idno type="wicri:Area/PubMed/Curation">001F16</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001C86</idno>
<idno type="wicri:Area/Ncbi/Merge">004759</idno>
<idno type="wicri:Area/Ncbi/Curation">004759</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">004759</idno>
<idno type="wicri:Area/Main/Merge">008C22</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nanomanipulation Experiments Exploring Frictional and Mechanical Properties of Carbon Nanotubes.</title>
<author>
<name sortKey="Falvo" sort="Falvo" uniqKey="Falvo" last="Falvo">Falvo</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Physics and Astronomy, University of North Carolina, Chapel Hill</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Clary" sort="Clary" uniqKey="Clary" last="Clary">Clary</name>
</author>
<author>
<name sortKey="Helser" sort="Helser" uniqKey="Helser" last="Helser">Helser</name>
</author>
<author>
<name sortKey="Paulson" sort="Paulson" uniqKey="Paulson" last="Paulson">Paulson</name>
</author>
<author>
<name sortKey="Taylor" sort="Taylor" uniqKey="Taylor" last="Taylor">Taylor</name>
</author>
<author>
<name sortKey="Chi" sort="Chi" uniqKey="Chi" last="Chi">Chi</name>
</author>
<author>
<name sortKey="Brooks" sort="Brooks" uniqKey="Brooks" last="Brooks">Brooks</name>
</author>
<author>
<name sortKey="Washburn" sort="Washburn" uniqKey="Washburn" last="Washburn">Washburn</name>
</author>
<author>
<name sortKey="Superfine" sort="Superfine" uniqKey="Superfine" last="Superfine">Superfine</name>
</author>
</analytic>
<series>
<title level="j">Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada</title>
<idno type="eISSN">1435-8115</idno>
<imprint>
<date when="1998" type="published">1998</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">: In many cases in experimental science, the instrument interface becomes a limiting factor in the efficacy of carrying out unusual experiments or prevents the complete understanding of the acquired data. We have developed an advanced interface for scanning probe microscopy (SPM) that allows intuitive rendering of data sets and natural instrument control, all in real time. The interface, called the nanoManipulator, combines a high-performance graphics engine for real-time data rendering with a haptic interface that places the human operator directly into the feedback loop that controls surface manipulations. Using a hand-held stylus, the operator moves the stylus laterally, directing the movement of the SPM tip across the sample. The haptic interface enables the user to "feel" the surface by forcing the stylus to move up and down in response to the surface topography. In this way the user understands the immediate location of the tip on the sample and can quickly and precisely maneuver nanometer-scale objects. We have applied this interface to studies of the mechanical properties of nanotubes and to substrate-nanotube interactions. The mechanical properties of carbon nanotubes have been demonstrated to be extraordinary. They have an elastic modulus rivaling that of the stiffest material known, diamond, while maintaining a remarkable resistance to fracture. We have used atomic-force microscopy (AFM) to manipulate the nanotubes through a series of configuration that reveal buckling behavior and high-strain resilience. Nanotubes also serve as test objects for nanometer-scale contact mechanics. We have found that nanotubes will roll under certain conditions. This has been determined through changes in the images and through the acquisition of lateral force during manipulation. The lateral force data show periodic stick-slip behavior with a periodicity matching the perimeter of the nanotube.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 008C22 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 008C22 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:9990873
   |texte=   Nanomanipulation Experiments Exploring Frictional and Mechanical Properties of Carbon Nanotubes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Merge/RBID.i   -Sk "pubmed:9990873" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024