Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Brain-Computer Interfaces in Medicine

Identifieur interne : 002562 ( Main/Merge ); précédent : 002561; suivant : 002563

Brain-Computer Interfaces in Medicine

Auteurs : Jerry J. Shih [États-Unis] ; Dean J. Krusienski [États-Unis] ; Jonathan R. Wolpaw

Source :

RBID : PMC:3497935

Abstract

Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function.


Url:
DOI: 10.1016/j.mayocp.2011.12.008
PubMed: 22325364
PubMed Central: 3497935

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3497935

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Brain-Computer Interfaces in Medicine</title>
<author>
<name sortKey="Shih, Jerry J" sort="Shih, Jerry J" uniqKey="Shih J" first="Jerry J." last="Shih">Jerry J. Shih</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Department of Neurology, Mayo Clinic, Jacksonville, FL</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
<wicri:cityArea>Department of Neurology, Mayo Clinic, Jacksonville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Krusienski, Dean J" sort="Krusienski, Dean J" uniqKey="Krusienski D" first="Dean J." last="Krusienski">Dean J. Krusienski</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie</region>
</placeName>
<wicri:cityArea>Department of Electrical and Computer Engineering, Old Dominion University, Norfolk</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wolpaw, Jonathan R" sort="Wolpaw, Jonathan R" uniqKey="Wolpaw J" first="Jonathan R." last="Wolpaw">Jonathan R. Wolpaw</name>
<affiliation>
<nlm:aff id="aff3">Laboratory of Neural Injury and Repair, Wadsworth Center, New York State Department of Health and State University of New York, Albany</nlm:aff>
<wicri:noCountry code="subfield">Albany</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">22325364</idno>
<idno type="pmc">3497935</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497935</idno>
<idno type="RBID">PMC:3497935</idno>
<idno type="doi">10.1016/j.mayocp.2011.12.008</idno>
<date when="2012">2012</date>
<idno type="wicri:Area/Pmc/Corpus">002606</idno>
<idno type="wicri:Area/Pmc/Curation">002606</idno>
<idno type="wicri:Area/Pmc/Checkpoint">001829</idno>
<idno type="wicri:Area/Ncbi/Merge">001E59</idno>
<idno type="wicri:Area/Ncbi/Curation">001E59</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">001E59</idno>
<idno type="wicri:doubleKey">0025-6196:2012:Shih J:brain:computer:interfaces</idno>
<idno type="wicri:Area/Main/Merge">002562</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Brain-Computer Interfaces in Medicine</title>
<author>
<name sortKey="Shih, Jerry J" sort="Shih, Jerry J" uniqKey="Shih J" first="Jerry J." last="Shih">Jerry J. Shih</name>
<affiliation wicri:level="2">
<nlm:aff id="aff1">Department of Neurology, Mayo Clinic, Jacksonville, FL</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Floride</region>
</placeName>
<wicri:cityArea>Department of Neurology, Mayo Clinic, Jacksonville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Krusienski, Dean J" sort="Krusienski, Dean J" uniqKey="Krusienski D" first="Dean J." last="Krusienski">Dean J. Krusienski</name>
<affiliation wicri:level="2">
<nlm:aff id="aff2">Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie</region>
</placeName>
<wicri:cityArea>Department of Electrical and Computer Engineering, Old Dominion University, Norfolk</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wolpaw, Jonathan R" sort="Wolpaw, Jonathan R" uniqKey="Wolpaw J" first="Jonathan R." last="Wolpaw">Jonathan R. Wolpaw</name>
<affiliation>
<nlm:aff id="aff3">Laboratory of Neural Injury and Repair, Wadsworth Center, New York State Department of Health and State University of New York, Albany</nlm:aff>
<wicri:noCountry code="subfield">Albany</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Mayo Clinic Proceedings</title>
<idno type="ISSN">0025-6196</idno>
<idno type="eISSN">1942-5546</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroencephalography-based spelling and single-neuron-based device control, researchers have gone on to use electroencephalographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function.</p>
</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002562 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 002562 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:3497935
   |texte=   Brain-Computer Interfaces in Medicine
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Merge/RBID.i   -Sk "pubmed:22325364" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024