Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills

Identifieur interne : 007A67 ( Main/Exploration ); précédent : 007A66; suivant : 007A68

Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills

Auteurs : Jacob Rosen [États-Unis] ; Blake Hannaford [États-Unis] ; Christina G. Richards [États-Unis] ; Mika N. Sinanan [États-Unis]

Source :

RBID : Pascal:01-0299375

Descripteurs français

English descriptors

Abstract

The best method of training for laparoscopic surgical skills is controversial. Some advocate observation in the operating room, while others promote animal and simulated models or a combination of surgery-related tasks. A crucial process in surgical education is to evaluate the level of surgical skills. For laparoscopic surgery, skill evaluation is traditionally performed subjectively by experts grading a video of a procedure performed by a student. By its nature, this process uses fuzzy criteria. The objective of the current study was to develop and assess a skill scale using Markov models (MMs). Ten surgeons [five novice surgeons (NS); five expert surgeons (ES)] performed a cholecystectomy and Nissen fundopli-cation in a porcine model. An instrumented laparoscopic grasper equipped with a three-axis force/torque (F/T) sensor was used to measure the forces/torques at the hand/tool interface synchronized with a video of the tool operative maneuvers. A synthesis of frame-by-frame video analysis and a vector quantization algorithm, allowed to define F/T signatures associated with 14 different types of tool/tissue interactions. The magnitude of F/T applied by NS and ES were significantly different (p < 0.05) and varied based on the task being performed. High F/T magnitudes were applied by NS compared with ES while performing tissue manipulation and vise versa in tasks involved tissue dissection. From each step of the surgical procedures, two MMs were developed representing the performance of three surgeons out of the five in the ES and NS groups. The data obtained by the remaining two surgeons in each group were used for evaluating the performance scale. The final result was a surgical performance index which represented a ratio of statistical similarity between the examined surgeon's MM and the MM of NS and ES. The difference between the performance index value, for a surgeon under study, and the NS/ES boundary, indicated the level of expertise in the surgeon's own group. Using this index, 87.5% of the surgical procedures were correctly classified into the NS and ES groups. The 12.5% of the procedures that were misclassified were performed by the ES and classified as NS. However in these cases the performance index values were very dose to the NS/ES boundary. Preliminary data suggest that a performance index based on MM and F/T signatures provides an objective means of distinguishing NS from ES. In addition, this methodology can be further applied to evaluate haptic virtual reality surgical simulators for improving realism in surgical education.


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills</title>
<author>
<name sortKey="Rosen, Jacob" sort="Rosen, Jacob" uniqKey="Rosen J" first="Jacob" last="Rosen">Jacob Rosen</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, University of Washington</s1>
<s2>Seattle, WA 98195</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hannaford, Blake" sort="Hannaford, Blake" uniqKey="Hannaford B" first="Blake" last="Hannaford">Blake Hannaford</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering, Box 352500, University of Washington</s1>
<s2>Seattle, WA 98195</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Richards, Christina G" sort="Richards, Christina G" uniqKey="Richards C" first="Christina G." last="Richards">Christina G. Richards</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Department of Surgery, University of Washington</s1>
<s2>Seattle, WA 98195</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sinanan, Mika N" sort="Sinanan, Mika N" uniqKey="Sinanan M" first="Mika N." last="Sinanan">Mika N. Sinanan</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Department of Surgery, University of Washington</s1>
<s2>Seattle, WA 98195</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">01-0299375</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 01-0299375 INIST</idno>
<idno type="RBID">Pascal:01-0299375</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001400</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000112</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001111</idno>
<idno type="wicri:doubleKey">0018-9294:2001:Rosen J:markov:modeling:of</idno>
<idno type="wicri:Area/Main/Merge">008088</idno>
<idno type="wicri:source">PubMed</idno>
<idno type="RBID">pubmed:11341532</idno>
<idno type="wicri:Area/PubMed/Corpus">001D51</idno>
<idno type="wicri:Area/PubMed/Curation">001D51</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001A88</idno>
<idno type="wicri:Area/Ncbi/Merge">000210</idno>
<idno type="wicri:Area/Ncbi/Curation">000210</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000210</idno>
<idno type="wicri:doubleKey">0018-9294:2001:Rosen J:markov:modeling:of</idno>
<idno type="wicri:Area/Main/Merge">007A45</idno>
<idno type="wicri:Area/Main/Curation">007A67</idno>
<idno type="wicri:Area/Main/Exploration">007A67</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills</title>
<author>
<name sortKey="Rosen, Jacob" sort="Rosen, Jacob" uniqKey="Rosen J" first="Jacob" last="Rosen">Jacob Rosen</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, University of Washington</s1>
<s2>Seattle, WA 98195</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hannaford, Blake" sort="Hannaford, Blake" uniqKey="Hannaford B" first="Blake" last="Hannaford">Blake Hannaford</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Electrical Engineering, Box 352500, University of Washington</s1>
<s2>Seattle, WA 98195</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Richards, Christina G" sort="Richards, Christina G" uniqKey="Richards C" first="Christina G." last="Richards">Christina G. Richards</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Department of Surgery, University of Washington</s1>
<s2>Seattle, WA 98195</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sinanan, Mika N" sort="Sinanan, Mika N" uniqKey="Sinanan M" first="Mika N." last="Sinanan">Mika N. Sinanan</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>Department of Surgery, University of Washington</s1>
<s2>Seattle, WA 98195</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<orgName type="university">Université de Washington</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on biomedical engineering</title>
<title level="j" type="abbreviated">IEEE trans. biomed. eng.</title>
<idno type="ISSN">0018-9294</idno>
<imprint>
<date when="2001">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on biomedical engineering</title>
<title level="j" type="abbreviated">IEEE trans. biomed. eng.</title>
<idno type="ISSN">0018-9294</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Animal</term>
<term>Animal model</term>
<term>Animals</term>
<term>Cholecystectomy</term>
<term>Cholecystectomy, Laparoscopic (instrumentation)</term>
<term>Cholecystectomy, Laparoscopic (methods)</term>
<term>Computer Simulation</term>
<term>Computer-Assisted Instruction</term>
<term>Evaluation scale</term>
<term>Force measurement</term>
<term>Gallbladder</term>
<term>General Surgery (education)</term>
<term>Gripping</term>
<term>Instrumentation</term>
<term>Internship and Residency</term>
<term>Laparoscopy</term>
<term>Laparoscopy (methods)</term>
<term>Markov Chains</term>
<term>Markov model</term>
<term>Occupational training</term>
<term>Pig</term>
<term>Professional evaluation</term>
<term>Surgeon</term>
<term>Surgery</term>
<term>Swine</term>
<term>Torque measurement</term>
<term>User-Computer Interface</term>
<term>Video Recording</term>
</keywords>
<keywords scheme="MESH" qualifier="education" xml:lang="en">
<term>General Surgery</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Cholecystectomy, Laparoscopic</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Cholecystectomy, Laparoscopic</term>
<term>Laparoscopy</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Animals</term>
<term>Computer Simulation</term>
<term>Computer-Assisted Instruction</term>
<term>Internship and Residency</term>
<term>Markov Chains</term>
<term>Swine</term>
<term>User-Computer Interface</term>
<term>Video Recording</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Chirurgie</term>
<term>Chirurgien</term>
<term>Formation professionnelle</term>
<term>Laparoscopie</term>
<term>Evaluation professionnelle</term>
<term>Echelle évaluation</term>
<term>Modèle Markov</term>
<term>Modèle animal</term>
<term>Animal</term>
<term>Cholécystectomie</term>
<term>Porc</term>
<term>Mesure couple</term>
<term>Mesure force</term>
<term>Préhension</term>
<term>Appareillage</term>
<term>Vésicule biliaire</term>
<term>Fundoplicature</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Chirurgie</term>
<term>Chirurgien</term>
<term>Formation professionnelle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The best method of training for laparoscopic surgical skills is controversial. Some advocate observation in the operating room, while others promote animal and simulated models or a combination of surgery-related tasks. A crucial process in surgical education is to evaluate the level of surgical skills. For laparoscopic surgery, skill evaluation is traditionally performed subjectively by experts grading a video of a procedure performed by a student. By its nature, this process uses fuzzy criteria. The objective of the current study was to develop and assess a skill scale using Markov models (MMs). Ten surgeons [five novice surgeons (NS); five expert surgeons (ES)] performed a cholecystectomy and Nissen fundopli-cation in a porcine model. An instrumented laparoscopic grasper equipped with a three-axis force/torque (F/T) sensor was used to measure the forces/torques at the hand/tool interface synchronized with a video of the tool operative maneuvers. A synthesis of frame-by-frame video analysis and a vector quantization algorithm, allowed to define F/T signatures associated with 14 different types of tool/tissue interactions. The magnitude of F/T applied by NS and ES were significantly different (p < 0.05) and varied based on the task being performed. High F/T magnitudes were applied by NS compared with ES while performing tissue manipulation and vise versa in tasks involved tissue dissection. From each step of the surgical procedures, two MMs were developed representing the performance of three surgeons out of the five in the ES and NS groups. The data obtained by the remaining two surgeons in each group were used for evaluating the performance scale. The final result was a surgical performance index which represented a ratio of statistical similarity between the examined surgeon's MM and the MM of NS and ES. The difference between the performance index value, for a surgeon under study, and the NS/ES boundary, indicated the level of expertise in the surgeon's own group. Using this index, 87.5% of the surgical procedures were correctly classified into the NS and ES groups. The 12.5% of the procedures that were misclassified were performed by the ES and classified as NS. However in these cases the performance index values were very dose to the NS/ES boundary. Preliminary data suggest that a performance index based on MM and F/T signatures provides an objective means of distinguishing NS from ES. In addition, this methodology can be further applied to evaluate haptic virtual reality surgical simulators for improving realism in surgical education.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<orgName>
<li>Université de Washington</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Rosen, Jacob" sort="Rosen, Jacob" uniqKey="Rosen J" first="Jacob" last="Rosen">Jacob Rosen</name>
</region>
<name sortKey="Hannaford, Blake" sort="Hannaford, Blake" uniqKey="Hannaford B" first="Blake" last="Hannaford">Blake Hannaford</name>
<name sortKey="Richards, Christina G" sort="Richards, Christina G" uniqKey="Richards C" first="Christina G." last="Richards">Christina G. Richards</name>
<name sortKey="Sinanan, Mika N" sort="Sinanan, Mika N" uniqKey="Sinanan M" first="Mika N." last="Sinanan">Mika N. Sinanan</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 007A67 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 007A67 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Pascal:01-0299375
   |texte=   Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024