Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Surgical prevention of posterior capsule opacification

Identifieur interne : 003489 ( Istex/Corpus ); précédent : 003488; suivant : 003490

Surgical prevention of posterior capsule opacification

Auteurs : Qun Peng ; David J. Apple ; Nithi Visessook ; Liliana Werner ; Suresh K. Pandey ; Marcela Escobar-Gomez ; Robert Schoderbek ; Alfred Guindi

Source :

RBID : ISTEX:91BCD4F7499EA0B17D3AB42080C6E81625AB2B1D

Abstract

Purpose To experimentally analyze the role and efficacy of hydrodissection in achieving maximal cortical cleanup.Setting Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA.Methods Phacoemulsification and irrigation/aspiration were performed in 10 pairs of human eyes (20 eyes) obtained postmortem. Ten eyes had previous hydrodissection and 10 eyes, no hydrodissection. The time (seconds) required for complete lens substance removal in each procedure was measured. In addition, a qualitative evaluation of difficulty of surgery was noted.Results Phacoemulsification required 28.6% less time in eyes with previous hydrodissection than in those without. Irrigation/aspiration time was reduced by 50.9% when hydrodissection was performed. The total time of each procedure required for complete evacuation of the capsular bag was reduced by an average of 37.7% in eyes with hydrodissection. Furthermore, qualitatively the procedure was far easier, less stressful, and caused less posterior capsule stress or rupture when copious hydrodissection was performed.Conclusions Hydrodissection enhances the general safety and efficiency of cortical cleanup, especially at 12 o’clock. Hydrodissection is the best available, practical, immediately implementable, and inexpensive means to help remove equatorial E-cells and thus alleviate the incidence of posterior capsule opacification.

Url:
DOI: 10.1016/S0886-3350(99)00354-5

Links to Exploration step

ISTEX:91BCD4F7499EA0B17D3AB42080C6E81625AB2B1D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Surgical prevention of posterior capsule opacification</title>
<author>
<name sortKey="Peng, Qun" sort="Peng, Qun" uniqKey="Peng Q" first="Qun" last="Peng">Qun Peng</name>
<affiliation>
<mods:affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Apple, David J" sort="Apple, David J" uniqKey="Apple D" first="David J" last="Apple">David J. Apple</name>
<affiliation>
<mods:affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Visessook, Nithi" sort="Visessook, Nithi" uniqKey="Visessook N" first="Nithi" last="Visessook">Nithi Visessook</name>
<affiliation>
<mods:affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Werner, Liliana" sort="Werner, Liliana" uniqKey="Werner L" first="Liliana" last="Werner">Liliana Werner</name>
<affiliation>
<mods:affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pandey, Suresh K" sort="Pandey, Suresh K" uniqKey="Pandey S" first="Suresh K" last="Pandey">Suresh K. Pandey</name>
<affiliation>
<mods:affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Escobar Gomez, Marcela" sort="Escobar Gomez, Marcela" uniqKey="Escobar Gomez M" first="Marcela" last="Escobar-Gomez">Marcela Escobar-Gomez</name>
<affiliation>
<mods:affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schoderbek, Robert" sort="Schoderbek, Robert" uniqKey="Schoderbek R" first="Robert" last="Schoderbek">Robert Schoderbek</name>
<affiliation>
<mods:affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guindi, Alfred" sort="Guindi, Alfred" uniqKey="Guindi A" first="Alfred" last="Guindi">Alfred Guindi</name>
<affiliation>
<mods:affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:91BCD4F7499EA0B17D3AB42080C6E81625AB2B1D</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1016/S0886-3350(99)00354-5</idno>
<idno type="url">https://api.istex.fr/document/91BCD4F7499EA0B17D3AB42080C6E81625AB2B1D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003489</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Surgical prevention of posterior capsule opacification</title>
<author>
<name sortKey="Peng, Qun" sort="Peng, Qun" uniqKey="Peng Q" first="Qun" last="Peng">Qun Peng</name>
<affiliation>
<mods:affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Apple, David J" sort="Apple, David J" uniqKey="Apple D" first="David J" last="Apple">David J. Apple</name>
<affiliation>
<mods:affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Visessook, Nithi" sort="Visessook, Nithi" uniqKey="Visessook N" first="Nithi" last="Visessook">Nithi Visessook</name>
<affiliation>
<mods:affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Werner, Liliana" sort="Werner, Liliana" uniqKey="Werner L" first="Liliana" last="Werner">Liliana Werner</name>
<affiliation>
<mods:affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pandey, Suresh K" sort="Pandey, Suresh K" uniqKey="Pandey S" first="Suresh K" last="Pandey">Suresh K. Pandey</name>
<affiliation>
<mods:affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Escobar Gomez, Marcela" sort="Escobar Gomez, Marcela" uniqKey="Escobar Gomez M" first="Marcela" last="Escobar-Gomez">Marcela Escobar-Gomez</name>
<affiliation>
<mods:affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schoderbek, Robert" sort="Schoderbek, Robert" uniqKey="Schoderbek R" first="Robert" last="Schoderbek">Robert Schoderbek</name>
<affiliation>
<mods:affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Guindi, Alfred" sort="Guindi, Alfred" uniqKey="Guindi A" first="Alfred" last="Guindi">Alfred Guindi</name>
<affiliation>
<mods:affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Cataract & Refractive Surgery</title>
<title level="j" type="abbrev">JCRS</title>
<idno type="ISSN">0886-3350</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">26</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="188">188</biblScope>
<biblScope unit="page" to="197">197</biblScope>
</imprint>
<idno type="ISSN">0886-3350</idno>
</series>
<idno type="istex">91BCD4F7499EA0B17D3AB42080C6E81625AB2B1D</idno>
<idno type="DOI">10.1016/S0886-3350(99)00354-5</idno>
<idno type="PII">S0886-3350(99)00354-5</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0886-3350</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Purpose To experimentally analyze the role and efficacy of hydrodissection in achieving maximal cortical cleanup.Setting Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA.Methods Phacoemulsification and irrigation/aspiration were performed in 10 pairs of human eyes (20 eyes) obtained postmortem. Ten eyes had previous hydrodissection and 10 eyes, no hydrodissection. The time (seconds) required for complete lens substance removal in each procedure was measured. In addition, a qualitative evaluation of difficulty of surgery was noted.Results Phacoemulsification required 28.6% less time in eyes with previous hydrodissection than in those without. Irrigation/aspiration time was reduced by 50.9% when hydrodissection was performed. The total time of each procedure required for complete evacuation of the capsular bag was reduced by an average of 37.7% in eyes with hydrodissection. Furthermore, qualitatively the procedure was far easier, less stressful, and caused less posterior capsule stress or rupture when copious hydrodissection was performed.Conclusions Hydrodissection enhances the general safety and efficiency of cortical cleanup, especially at 12 o’clock. Hydrodissection is the best available, practical, immediately implementable, and inexpensive means to help remove equatorial E-cells and thus alleviate the incidence of posterior capsule opacification.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Qun Peng MD</name>
<affiliations>
<json:string>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>David J Apple MD</name>
<affiliations>
<json:string>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Nithi Visessook MD</name>
<affiliations>
<json:string>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Liliana Werner MD, PhD</name>
<affiliations>
<json:string>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Suresh K Pandey MD</name>
<affiliations>
<json:string>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Marcela Escobar-Gomez MD</name>
<affiliations>
<json:string>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Robert Schoderbek BS</name>
<affiliations>
<json:string>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Alfred Guindi MD</name>
<affiliations>
<json:string>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<abstract>Purpose To experimentally analyze the role and efficacy of hydrodissection in achieving maximal cortical cleanup.Setting Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA.Methods Phacoemulsification and irrigation/aspiration were performed in 10 pairs of human eyes (20 eyes) obtained postmortem. Ten eyes had previous hydrodissection and 10 eyes, no hydrodissection. The time (seconds) required for complete lens substance removal in each procedure was measured. In addition, a qualitative evaluation of difficulty of surgery was noted.Results Phacoemulsification required 28.6% less time in eyes with previous hydrodissection than in those without. Irrigation/aspiration time was reduced by 50.9% when hydrodissection was performed. The total time of each procedure required for complete evacuation of the capsular bag was reduced by an average of 37.7% in eyes with hydrodissection. Furthermore, qualitatively the procedure was far easier, less stressful, and caused less posterior capsule stress or rupture when copious hydrodissection was performed.Conclusions Hydrodissection enhances the general safety and efficiency of cortical cleanup, especially at 12 o’clock. Hydrodissection is the best available, practical, immediately implementable, and inexpensive means to help remove equatorial E-cells and thus alleviate the incidence of posterior capsule opacification.</abstract>
<qualityIndicators>
<score>6.517</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>586 x 785 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1502</abstractCharCount>
<pdfWordCount>4141</pdfWordCount>
<pdfCharCount>26711</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>198</abstractWordCount>
</qualityIndicators>
<title>Surgical prevention of posterior capsule opacification</title>
<pii>
<json:string>S0886-3350(99)00354-5</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>26</volume>
<pii>
<json:string>S0886-3350(00)X0010-7</json:string>
</pii>
<pages>
<last>197</last>
<first>188</first>
</pages>
<issn>
<json:string>0886-3350</json:string>
</issn>
<issue>2</issue>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Journal of Cataract & Refractive Surgery</title>
<publicationDate>2000</publicationDate>
</host>
<categories>
<wos>
<json:string>OPHTHALMOLOGY</json:string>
<json:string>SURGERY</json:string>
</wos>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1016/S0886-3350(99)00354-5</json:string>
</doi>
<id>91BCD4F7499EA0B17D3AB42080C6E81625AB2B1D</id>
<score>1</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/91BCD4F7499EA0B17D3AB42080C6E81625AB2B1D/fulltext/pdf</uri>
</json:item>
<json:item>
<original>true</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/91BCD4F7499EA0B17D3AB42080C6E81625AB2B1D/fulltext/txt</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/91BCD4F7499EA0B17D3AB42080C6E81625AB2B1D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/91BCD4F7499EA0B17D3AB42080C6E81625AB2B1D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Surgical prevention of posterior capsule opacification</title>
<title level="a" type="sub" xml:lang="en">Part 2: enhancement of cortical cleanup by focusing on hydrodissection</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>2000</date>
</publicationStmt>
<notesStmt>
<note>Supported in part by an unrestricted grant from Research to Prevent Blindness Inc, New York, New York, USA.</note>
<note type="content">Section title: Articles</note>
<note type="content">Figure 1: (Peng) The experimental surgical technique used, showing the stages of subcapsular injection with a 27 gauge cannula in a human eye obtained postmortem. A: Anterior or surgeon’s view; note the subcapsular injection of BSS with a 27 gauge cannula. B: Same perspective as A, dark illumination. C: Miyake–Apple posterior view at the end of the procedure showing complete removal of lens substance. No attempt was made to remove anterior capsule cells (gray area) around capsulorhexis.</note>
<note type="content">Figure 2: (Peng) Photomicrographs of representative evacuated capsular bags from 2 of 20 eyes. All histological stains show total removal of lens substance. A: A specimen in which hydrodissection was performed before phacoemulsification and I/A. B: A specimen in which no hydrodissection was performed. Complete removal in each of these eyes took much longer (PAS stain, original magnification ×40).</note>
<note type="content">Figure 3: (Peng) A photomicrograph of the capsular bag from an eye without hydrodissection. Capsule rupture occurred, and the procedure had to be terminated before complete aspiration of cortex. Note the large mass of eosin-positive (pink) cortical material (arrow = site of posterior capsule rupture) (H&E stain, original magnification ×40).</note>
<note type="content">Figure 4: (Peng) The intralenticular cells, although belonging to 1 cell line, can be functionally divided into 2 categories. The A-cells, subtending the anterior capsule, are closely adherent to it. They are prone to pseudofibrous metaplasia and do not migrate extensively. The E-cells of the equatorial lens bow tend to migrate posteriorly and form bladder cells.</note>
<note type="content">Figure 5: (Peng) The morphologic differences between A-cells and E-cells shown histologically with staining. This photomicrograph shows the capsular bag of an eye with an in-the-bag PC IOL. The area of the lens optic (O) is a clear, empty space as the biomaterial dissolves during processing. With Masson’s trichrome stain, fibrous tissue stains blue and lens cortex and bladder cells stain red. Cortical material representing the Soemmering’s ring is on the right. Note the blue-stained anterior capsule flap (AC) over the lens optic (O). The posterior capsule (PC), extending behind the region of the optic, is artifactually distorted inferiorly in this section (Masson’s trichrome stain, original magnification ×100).</note>
<note type="content">Figure 6: (Peng) Gross photographs from behind (Miyake–Apple view) of 4 globes with foldable PC IOLs show a variance in Soemmering’s ring formation resulting from differences in surgical technique. A: A 3-piece silicone IOL in an eye in which surgical technique and cortical cleanup were excellent. Note the good centration and clear optical axis. B: Another eye with the same IOL type as in A but with poor cortical cleanup and a much less efficacious result. C: A plate silicone IOL is well centered in the capsular bag after meticulous surgery with good cortical cleanup. D: The same model of plate silicone IOL; in this case, cortical cleanup was less optimal and extensive Soemmering’s ring formation occurred.</note>
<note type="content">Figure 7: (Peng) A previously published illustration20 of hydrodissection. Note the subcapsular injection just under the anterior capsule. There was a long delay in the widespread clinical use of hydrodissection because the can-opener capsulotomy (shown here) done in the early years was prone to radial tears caused by the increased pressure of fluid injection.</note>
<note type="content">Figure 8: (Peng) A comparison of average times (seconds) of surgical procedures in this series, with and without hydrodissection.</note>
<note type="content">Figure 9: (Peng) A photomicrograph of the capsular bag of a human globe with incomplete cortical cleanup. Numerous cells are left within the cortical mass.</note>
<note type="content">Figure 10: (Peng) Photomicrographs of 2 crystalline lenses from human eyes obtained postmortem (view of the central posterior subcapsular region). A: Copious hydrodissection was done after CCC, and a distinct layer of fluid (pale stain) separates the posterior cortex (arrows) from the posterior central capsule, a major goal of complete hydrodissection. B: A control lens in the same region shows normal adherence of cortex and posterior capsule (arrows, no separation of posterior cortex from the posterior capsule) (H&E stain, original magnification ×100).</note>
<note type="content">Figure 11: (Peng) A comparison of procedure times in which minimal hydrodissection was done in an eye without producing a visible posterior fluid wave and without elevating the nucleus.</note>
<note type="content">Table 1: Percentage decrease in phacoemulsification time when hydrodissection was used.</note>
<note type="content">Table 2: Percentage decrease in I/A time when hydrodissection was used.</note>
<note type="content">Table 3: Percentage decrease in total time when hydrodissection was used.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Surgical prevention of posterior capsule opacification</title>
<title level="a" type="sub" xml:lang="en">Part 2: enhancement of cortical cleanup by focusing on hydrodissection</title>
<author>
<persName>
<forename type="first">Qun</forename>
<surname>Peng</surname>
</persName>
<roleName type="degree">MD</roleName>
<affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">David J</forename>
<surname>Apple</surname>
</persName>
<roleName type="degree">MD</roleName>
<note type="biography">Reprint requests to David J. Apple, MD, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, 167 Ashley Avenue, PO Box 250676, Charleston, South Carolina 29425–2236, USA</note>
<affiliation>Reprint requests to David J. Apple, MD, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, 167 Ashley Avenue, PO Box 250676, Charleston, South Carolina 29425–2236, USA</affiliation>
<affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Nithi</forename>
<surname>Visessook</surname>
</persName>
<roleName type="degree">MD</roleName>
<affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Liliana</forename>
<surname>Werner</surname>
</persName>
<roleName type="degree">MD, PhD</roleName>
<affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Suresh K</forename>
<surname>Pandey</surname>
</persName>
<roleName type="degree">MD</roleName>
<affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Marcela</forename>
<surname>Escobar-Gomez</surname>
</persName>
<roleName type="degree">MD</roleName>
<affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Robert</forename>
<surname>Schoderbek</surname>
</persName>
<roleName type="degree">BS</roleName>
<affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Alfred</forename>
<surname>Guindi</surname>
</persName>
<roleName type="degree">MD</roleName>
<affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Cataract & Refractive Surgery</title>
<title level="j" type="abbrev">JCRS</title>
<idno type="pISSN">0886-3350</idno>
<idno type="PII">S0886-3350(00)X0010-7</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999"></date>
<biblScope unit="volume">26</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="188">188</biblScope>
<biblScope unit="page" to="197">197</biblScope>
</imprint>
</monogr>
<idno type="istex">91BCD4F7499EA0B17D3AB42080C6E81625AB2B1D</idno>
<idno type="DOI">10.1016/S0886-3350(99)00354-5</idno>
<idno type="PII">S0886-3350(99)00354-5</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Purpose To experimentally analyze the role and efficacy of hydrodissection in achieving maximal cortical cleanup.Setting Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA.Methods Phacoemulsification and irrigation/aspiration were performed in 10 pairs of human eyes (20 eyes) obtained postmortem. Ten eyes had previous hydrodissection and 10 eyes, no hydrodissection. The time (seconds) required for complete lens substance removal in each procedure was measured. In addition, a qualitative evaluation of difficulty of surgery was noted.Results Phacoemulsification required 28.6% less time in eyes with previous hydrodissection than in those without. Irrigation/aspiration time was reduced by 50.9% when hydrodissection was performed. The total time of each procedure required for complete evacuation of the capsular bag was reduced by an average of 37.7% in eyes with hydrodissection. Furthermore, qualitatively the procedure was far easier, less stressful, and caused less posterior capsule stress or rupture when copious hydrodissection was performed.Conclusions Hydrodissection enhances the general safety and efficiency of cortical cleanup, especially at 12 o’clock. Hydrodissection is the best available, practical, immediately implementable, and inexpensive means to help remove equatorial E-cells and thus alleviate the incidence of posterior capsule opacification.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1999-11-05">Registration</change>
<change when="1999">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="GR1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="GR2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="GR3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="GR4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="GR5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="GR6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="GR7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="GR8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="GR9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="GR10"></istex:entity>
<istex:entity SYSTEM="gr11" NDATA="IMAGE" name="GR11"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>JCRS</jid>
<aid>353</aid>
<ce:pii>S0886-3350(99)00354-5</ce:pii>
<ce:doi>10.1016/S0886-3350(99)00354-5</ce:doi>
<ce:copyright type="society" year="2000">ASCRS and ESCRS</ce:copyright>
</item-info>
<head>
<ce:article-footnote>
<ce:label></ce:label>
<ce:note-para>Supported in part by an unrestricted grant from Research to Prevent Blindness Inc, New York, New York, USA.</ce:note-para>
</ce:article-footnote>
<ce:dochead>
<ce:textfn>Articles</ce:textfn>
</ce:dochead>
<ce:title>Surgical prevention of posterior capsule opacification</ce:title>
<ce:subtitle>Part 2: enhancement of cortical cleanup by focusing on hydrodissection
<ce:cross-ref refid="FN1">1</ce:cross-ref>
<ce:footnote id="FN1">
<ce:label>1</ce:label>
<ce:note-para>None of the authors has a financial or proprietary interest in any product mentioned.</ce:note-para>
</ce:footnote>
<ce:cross-ref refid="FN2">2</ce:cross-ref>
<ce:footnote id="FN2">
<ce:label>2</ce:label>
<ce:note-para>Teddy Redmon provided editorial assistance; Joyce Edmonds, HTL, provided technical assistance.</ce:note-para>
</ce:footnote>
</ce:subtitle>
<ce:presented>Presented in part at the XVth Congress of the European Society of Cataract & Refractive Surgeons, Prague, Czech Republic, September 1997.</ce:presented>
<ce:author-group>
<ce:author>
<ce:given-name>Qun</ce:given-name>
<ce:surname>Peng</ce:surname>
<ce:degrees>MD</ce:degrees>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>David J</ce:given-name>
<ce:surname>Apple</ce:surname>
<ce:degrees>MD</ce:degrees>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Nithi</ce:given-name>
<ce:surname>Visessook</ce:surname>
<ce:degrees>MD</ce:degrees>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Liliana</ce:given-name>
<ce:surname>Werner</ce:surname>
<ce:degrees>MD, PhD</ce:degrees>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Suresh K</ce:given-name>
<ce:surname>Pandey</ce:surname>
<ce:degrees>MD</ce:degrees>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Marcela</ce:given-name>
<ce:surname>Escobar-Gomez</ce:surname>
<ce:degrees>MD</ce:degrees>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Robert</ce:given-name>
<ce:surname>Schoderbek</ce:surname>
<ce:degrees>BS</ce:degrees>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Alfred</ce:given-name>
<ce:surname>Guindi</ce:surname>
<ce:degrees>MD</ce:degrees>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Reprint requests to David J. Apple, MD, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, 167 Ashley Avenue, PO Box 250676, Charleston, South Carolina 29425–2236, USA</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-accepted day="5" month="11" year="1999"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:section-title>Purpose</ce:section-title>
<ce:simple-para>To experimentally analyze the role and efficacy of hydrodissection in achieving maximal cortical cleanup.</ce:simple-para>
</ce:abstract-sec>
<ce:abstract-sec>
<ce:section-title>Setting</ce:section-title>
<ce:simple-para>Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA.</ce:simple-para>
</ce:abstract-sec>
<ce:abstract-sec>
<ce:section-title>Methods</ce:section-title>
<ce:simple-para>Phacoemulsification and irrigation/aspiration were performed in 10 pairs of human eyes (20 eyes) obtained postmortem. Ten eyes had previous hydrodissection and 10 eyes, no hydrodissection. The time (seconds) required for complete lens substance removal in each procedure was measured. In addition, a qualitative evaluation of difficulty of surgery was noted.</ce:simple-para>
</ce:abstract-sec>
<ce:abstract-sec>
<ce:section-title>Results</ce:section-title>
<ce:simple-para>Phacoemulsification required 28.6% less time in eyes with previous hydrodissection than in those without. Irrigation/aspiration time was reduced by 50.9% when hydrodissection was performed. The total time of each procedure required for complete evacuation of the capsular bag was reduced by an average of 37.7% in eyes with hydrodissection. Furthermore, qualitatively the procedure was far easier, less stressful, and caused less posterior capsule stress or rupture when copious hydrodissection was performed.</ce:simple-para>
</ce:abstract-sec>
<ce:abstract-sec>
<ce:section-title>Conclusions</ce:section-title>
<ce:simple-para>Hydrodissection enhances the general safety and efficiency of cortical cleanup, especially at 12 o’clock. Hydrodissection is the best available, practical, immediately implementable, and inexpensive means to help remove equatorial E-cells and thus alleviate the incidence of posterior capsule opacification.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Surgical prevention of posterior capsule opacification</title>
<subTitle>Part 2: enhancement of cortical cleanup by focusing on hydrodissection</subTitle>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Surgical prevention of posterior capsule opacification</title>
<subTitle>Part 2: enhancement of cortical cleanup by focusing on hydrodissection1 1 None of the authors has a financial or proprietary interest in any product mentioned.2 2 Teddy Redmon provided editorial assistance; Joyce Edmonds, HTL, provided technical assistance.</subTitle>
</titleInfo>
<name type="personal">
<namePart type="given">Qun</namePart>
<namePart type="family">Peng</namePart>
<namePart type="termsOfAddress">MD</namePart>
<affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David J</namePart>
<namePart type="family">Apple</namePart>
<namePart type="termsOfAddress">MD</namePart>
<affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</affiliation>
<description>Reprint requests to David J. Apple, MD, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, 167 Ashley Avenue, PO Box 250676, Charleston, South Carolina 29425–2236, USA</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nithi</namePart>
<namePart type="family">Visessook</namePart>
<namePart type="termsOfAddress">MD</namePart>
<affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liliana</namePart>
<namePart type="family">Werner</namePart>
<namePart type="termsOfAddress">MD, PhD</namePart>
<affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Suresh K</namePart>
<namePart type="family">Pandey</namePart>
<namePart type="termsOfAddress">MD</namePart>
<affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcela</namePart>
<namePart type="family">Escobar-Gomez</namePart>
<namePart type="termsOfAddress">MD</namePart>
<affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Schoderbek</namePart>
<namePart type="termsOfAddress">BS</namePart>
<affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alfred</namePart>
<namePart type="family">Guindi</namePart>
<namePart type="termsOfAddress">MD</namePart>
<affiliation>the Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
<dateValid encoding="w3cdtf">1999-11-05</dateValid>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Purpose To experimentally analyze the role and efficacy of hydrodissection in achieving maximal cortical cleanup.Setting Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA.Methods Phacoemulsification and irrigation/aspiration were performed in 10 pairs of human eyes (20 eyes) obtained postmortem. Ten eyes had previous hydrodissection and 10 eyes, no hydrodissection. The time (seconds) required for complete lens substance removal in each procedure was measured. In addition, a qualitative evaluation of difficulty of surgery was noted.Results Phacoemulsification required 28.6% less time in eyes with previous hydrodissection than in those without. Irrigation/aspiration time was reduced by 50.9% when hydrodissection was performed. The total time of each procedure required for complete evacuation of the capsular bag was reduced by an average of 37.7% in eyes with hydrodissection. Furthermore, qualitatively the procedure was far easier, less stressful, and caused less posterior capsule stress or rupture when copious hydrodissection was performed.Conclusions Hydrodissection enhances the general safety and efficiency of cortical cleanup, especially at 12 o’clock. Hydrodissection is the best available, practical, immediately implementable, and inexpensive means to help remove equatorial E-cells and thus alleviate the incidence of posterior capsule opacification.</abstract>
<note>Supported in part by an unrestricted grant from Research to Prevent Blindness Inc, New York, New York, USA.</note>
<note type="content">Section title: Articles</note>
<note type="content">Figure 1: (Peng) The experimental surgical technique used, showing the stages of subcapsular injection with a 27 gauge cannula in a human eye obtained postmortem. A: Anterior or surgeon’s view; note the subcapsular injection of BSS with a 27 gauge cannula. B: Same perspective as A, dark illumination. C: Miyake–Apple posterior view at the end of the procedure showing complete removal of lens substance. No attempt was made to remove anterior capsule cells (gray area) around capsulorhexis.</note>
<note type="content">Figure 2: (Peng) Photomicrographs of representative evacuated capsular bags from 2 of 20 eyes. All histological stains show total removal of lens substance. A: A specimen in which hydrodissection was performed before phacoemulsification and I/A. B: A specimen in which no hydrodissection was performed. Complete removal in each of these eyes took much longer (PAS stain, original magnification ×40).</note>
<note type="content">Figure 3: (Peng) A photomicrograph of the capsular bag from an eye without hydrodissection. Capsule rupture occurred, and the procedure had to be terminated before complete aspiration of cortex. Note the large mass of eosin-positive (pink) cortical material (arrow = site of posterior capsule rupture) (H&E stain, original magnification ×40).</note>
<note type="content">Figure 4: (Peng) The intralenticular cells, although belonging to 1 cell line, can be functionally divided into 2 categories. The A-cells, subtending the anterior capsule, are closely adherent to it. They are prone to pseudofibrous metaplasia and do not migrate extensively. The E-cells of the equatorial lens bow tend to migrate posteriorly and form bladder cells.</note>
<note type="content">Figure 5: (Peng) The morphologic differences between A-cells and E-cells shown histologically with staining. This photomicrograph shows the capsular bag of an eye with an in-the-bag PC IOL. The area of the lens optic (O) is a clear, empty space as the biomaterial dissolves during processing. With Masson’s trichrome stain, fibrous tissue stains blue and lens cortex and bladder cells stain red. Cortical material representing the Soemmering’s ring is on the right. Note the blue-stained anterior capsule flap (AC) over the lens optic (O). The posterior capsule (PC), extending behind the region of the optic, is artifactually distorted inferiorly in this section (Masson’s trichrome stain, original magnification ×100).</note>
<note type="content">Figure 6: (Peng) Gross photographs from behind (Miyake–Apple view) of 4 globes with foldable PC IOLs show a variance in Soemmering’s ring formation resulting from differences in surgical technique. A: A 3-piece silicone IOL in an eye in which surgical technique and cortical cleanup were excellent. Note the good centration and clear optical axis. B: Another eye with the same IOL type as in A but with poor cortical cleanup and a much less efficacious result. C: A plate silicone IOL is well centered in the capsular bag after meticulous surgery with good cortical cleanup. D: The same model of plate silicone IOL; in this case, cortical cleanup was less optimal and extensive Soemmering’s ring formation occurred.</note>
<note type="content">Figure 7: (Peng) A previously published illustration20 of hydrodissection. Note the subcapsular injection just under the anterior capsule. There was a long delay in the widespread clinical use of hydrodissection because the can-opener capsulotomy (shown here) done in the early years was prone to radial tears caused by the increased pressure of fluid injection.</note>
<note type="content">Figure 8: (Peng) A comparison of average times (seconds) of surgical procedures in this series, with and without hydrodissection.</note>
<note type="content">Figure 9: (Peng) A photomicrograph of the capsular bag of a human globe with incomplete cortical cleanup. Numerous cells are left within the cortical mass.</note>
<note type="content">Figure 10: (Peng) Photomicrographs of 2 crystalline lenses from human eyes obtained postmortem (view of the central posterior subcapsular region). A: Copious hydrodissection was done after CCC, and a distinct layer of fluid (pale stain) separates the posterior cortex (arrows) from the posterior central capsule, a major goal of complete hydrodissection. B: A control lens in the same region shows normal adherence of cortex and posterior capsule (arrows, no separation of posterior cortex from the posterior capsule) (H&E stain, original magnification ×100).</note>
<note type="content">Figure 11: (Peng) A comparison of procedure times in which minimal hydrodissection was done in an eye without producing a visible posterior fluid wave and without elevating the nucleus.</note>
<note type="content">Table 1: Percentage decrease in phacoemulsification time when hydrodissection was used.</note>
<note type="content">Table 2: Percentage decrease in I/A time when hydrodissection was used.</note>
<note type="content">Table 3: Percentage decrease in total time when hydrodissection was used.</note>
<relatedItem type="host">
<titleInfo>
<title>Journal of Cataract & Refractive Surgery</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>JCRS</title>
</titleInfo>
<genre type="Journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">200002</dateIssued>
</originInfo>
<identifier type="ISSN">0886-3350</identifier>
<identifier type="PII">S0886-3350(00)X0010-7</identifier>
<part>
<date>200002</date>
<detail type="volume">
<number>26</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>153</start>
<end>302</end>
</extent>
<extent unit="pages">
<start>188</start>
<end>197</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">91BCD4F7499EA0B17D3AB42080C6E81625AB2B1D</identifier>
<identifier type="DOI">10.1016/S0886-3350(99)00354-5</identifier>
<identifier type="PII">S0886-3350(99)00354-5</identifier>
<accessCondition type="use and reproduction" contentType="">© 2000ASCRS and ESCRS</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>ASCRS and ESCRS, ©2000</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<istex:catWosTEI uri="https://api.istex.fr/document/91BCD4F7499EA0B17D3AB42080C6E81625AB2B1D/enrichments/catWos">
<teiHeader>
<profileDesc>
<textClass>
<classCode scheme="WOS">OPHTHALMOLOGY</classCode>
<classCode scheme="WOS">SURGERY</classCode>
</textClass>
</profileDesc>
</teiHeader>
</istex:catWosTEI>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003489 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 003489 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:91BCD4F7499EA0B17D3AB42080C6E81625AB2B1D
   |texte=   Surgical prevention of posterior capsule opacification
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024