Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Contrasting Patterns in Mammal–Bacteria Coevolution: Bartonella and Leptospira in Bats and Rodents

Identifieur interne : 000598 ( Pmc/Corpus ); précédent : 000597; suivant : 000599

Contrasting Patterns in Mammal–Bacteria Coevolution: Bartonella and Leptospira in Bats and Rodents

Auteurs : Bonnie R. Lei ; Kevin J. Olival

Source :

RBID : PMC:3961187

Abstract

Background

Emerging bacterial zoonoses in bats and rodents remain relatively understudied. We conduct the first comparative host–pathogen coevolutionary analyses of bacterial pathogens in these hosts, using Bartonella spp. and Leptospira spp. as a model.

Methodology/Principal Findings

We used published genetic data for 51 Bartonella genotypes from 24 bat species, 129 Bartonella from 38 rodents, and 26 Leptospira from 20 bats. We generated maximum likelihood and Bayesian phylogenies for hosts and bacteria, and tested for coevoutionary congruence using programs ParaFit, PACO, and Jane. Bartonella spp. and their bat hosts had a significant coevolutionary fit (ParaFitGlobal = 1.9703, P≤0.001; m2 global value = 7.3320, P≤0.0001). Bartonella spp. and rodent hosts also indicated strong overall patterns of cospeciation (ParaFitGlobal = 102.4409, P≤0.001; m2 global value = 86.532, P≤0.0001). In contrast, we were unable to reject independence of speciation events in Leptospira and bats (ParaFitGlobal = 0.0042, P = 0.84; m2 global value = 4.6310, P = 0.5629). Separate analyses of New World and Old World data subsets yielded results congruent with analysis from entire datasets. We also conducted event-based cophylogeny analyses to reconstruct likely evolutionary histories for each group of pathogens and hosts. Leptospira and bats had the greatest number of host switches per parasite (0.731), while Bartonella and rodents had the fewest (0.264).

Conclusions/Significance

In both bat and rodent hosts, Bartonella exhibits significant coevolution with minimal host switching, while Leptospira in bats lacks evolutionary congruence with its host and has high number of host switches. Reasons underlying these variable coevolutionary patterns in host range are likely due to differences in disease-specific transmission and host ecology. Understanding the coevolutionary patterns and frequency of host-switching events between bacterial pathogens and their hosts will allow better prediction of spillover between mammal reservoirs, and ultimately to humans.


Url:
DOI: 10.1371/journal.pntd.0002738
PubMed: 24651646
PubMed Central: 3961187

Links to Exploration step

PMC:3961187

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Contrasting Patterns in Mammal–Bacteria Coevolution:
<italic>Bartonella</italic>
and
<italic>Leptospira</italic>
in Bats and Rodents</title>
<author>
<name sortKey="Lei, Bonnie R" sort="Lei, Bonnie R" uniqKey="Lei B" first="Bonnie R." last="Lei">Bonnie R. Lei</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>EcoHealth Alliance, New York, New York, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Olival, Kevin J" sort="Olival, Kevin J" uniqKey="Olival K" first="Kevin J." last="Olival">Kevin J. Olival</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>EcoHealth Alliance, New York, New York, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24651646</idno>
<idno type="pmc">3961187</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961187</idno>
<idno type="RBID">PMC:3961187</idno>
<idno type="doi">10.1371/journal.pntd.0002738</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000598</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Contrasting Patterns in Mammal–Bacteria Coevolution:
<italic>Bartonella</italic>
and
<italic>Leptospira</italic>
in Bats and Rodents</title>
<author>
<name sortKey="Lei, Bonnie R" sort="Lei, Bonnie R" uniqKey="Lei B" first="Bonnie R." last="Lei">Bonnie R. Lei</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>EcoHealth Alliance, New York, New York, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Olival, Kevin J" sort="Olival, Kevin J" uniqKey="Olival K" first="Kevin J." last="Olival">Kevin J. Olival</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>EcoHealth Alliance, New York, New York, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS Neglected Tropical Diseases</title>
<idno type="ISSN">1935-2727</idno>
<idno type="eISSN">1935-2735</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Emerging bacterial zoonoses in bats and rodents remain relatively understudied. We conduct the first comparative host–pathogen coevolutionary analyses of bacterial pathogens in these hosts, using
<italic>Bartonella</italic>
spp. and
<italic>Leptospira</italic>
spp. as a model.</p>
</sec>
<sec>
<title>Methodology/Principal Findings</title>
<p>We used published genetic data for 51
<italic>Bartonella</italic>
genotypes from 24 bat species, 129
<italic>Bartonella</italic>
from 38 rodents, and 26
<italic>Leptospira</italic>
from 20 bats. We generated maximum likelihood and Bayesian phylogenies for hosts and bacteria, and tested for coevoutionary congruence using programs ParaFit, PACO, and Jane.
<italic>Bartonella</italic>
spp. and their bat hosts had a significant coevolutionary fit (ParaFitGlobal = 1.9703, P≤0.001; m
<sup>2</sup>
global value = 7.3320, P≤0.0001).
<italic>Bartonella</italic>
spp. and rodent hosts also indicated strong overall patterns of cospeciation (ParaFitGlobal = 102.4409, P≤0.001; m
<sup>2</sup>
global value = 86.532, P≤0.0001). In contrast, we were unable to reject independence of speciation events in
<italic>Leptospira</italic>
and bats (ParaFitGlobal = 0.0042, P = 0.84; m
<sup>2</sup>
global value = 4.6310, P = 0.5629). Separate analyses of New World and Old World data subsets yielded results congruent with analysis from entire datasets. We also conducted event-based cophylogeny analyses to reconstruct likely evolutionary histories for each group of pathogens and hosts.
<italic>Leptospira</italic>
and bats had the greatest number of host switches per parasite (0.731), while
<italic>Bartonella</italic>
and rodents had the fewest (0.264).</p>
</sec>
<sec>
<title>Conclusions/Significance</title>
<p>In both bat and rodent hosts,
<italic>Bartonella</italic>
exhibits significant coevolution with minimal host switching, while
<italic>Leptospira</italic>
in bats lacks evolutionary congruence with its host and has high number of host switches. Reasons underlying these variable coevolutionary patterns in host range are likely due to differences in disease-specific transmission and host ecology. Understanding the coevolutionary patterns and frequency of host-switching events between bacterial pathogens and their hosts will allow better prediction of spillover between mammal reservoirs, and ultimately to humans.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Simmons, Nb" uniqKey="Simmons N">NB Simmons</name>
</author>
<author>
<name sortKey="Wilson, D" uniqKey="Wilson D">D Wilson</name>
</author>
<author>
<name sortKey="Reeder, D" uniqKey="Reeder D">D Reeder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pagel, Md" uniqKey="Pagel M">MD Pagel</name>
</author>
<author>
<name sortKey="May, Rm" uniqKey="May R">RM May</name>
</author>
<author>
<name sortKey="Collie, Ar" uniqKey="Collie A">AR Collie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, S" uniqKey="Wong S">S Wong</name>
</author>
<author>
<name sortKey="Lau, S" uniqKey="Lau S">S Lau</name>
</author>
<author>
<name sortKey="Woo, P" uniqKey="Woo P">P Woo</name>
</author>
<author>
<name sortKey="Yuen, Ky" uniqKey="Yuen K">KY Yuen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Memish, Za" uniqKey="Memish Z">ZA Memish</name>
</author>
<author>
<name sortKey="Mishra, N" uniqKey="Mishra N">N Mishra</name>
</author>
<author>
<name sortKey="Olival, Kj" uniqKey="Olival K">KJ Olival</name>
</author>
<author>
<name sortKey="Fagbo, Sf" uniqKey="Fagbo S">SF Fagbo</name>
</author>
<author>
<name sortKey="Kapoor, V" uniqKey="Kapoor V">V Kapoor</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meerburg, Bg" uniqKey="Meerburg B">BG Meerburg</name>
</author>
<author>
<name sortKey="Singleton, Gr" uniqKey="Singleton G">GR Singleton</name>
</author>
<author>
<name sortKey="Kijlstra, A" uniqKey="Kijlstra A">A Kijlstra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muhldorfer, K" uniqKey="Muhldorfer K">K Muhldorfer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turmelle, As" uniqKey="Turmelle A">AS Turmelle</name>
</author>
<author>
<name sortKey="Olival, Kj" uniqKey="Olival K">KJ Olival</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bininda Emonds, Or" uniqKey="Bininda Emonds O">OR Bininda-Emonds</name>
</author>
<author>
<name sortKey="Cardillo, M" uniqKey="Cardillo M">M Cardillo</name>
</author>
<author>
<name sortKey="Jones, Ke" uniqKey="Jones K">KE Jones</name>
</author>
<author>
<name sortKey="Macphee, Rd" uniqKey="Macphee R">RD MacPhee</name>
</author>
<author>
<name sortKey="Beck, Rm" uniqKey="Beck R">RM Beck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luis, Ad" uniqKey="Luis A">AD Luis</name>
</author>
<author>
<name sortKey="Hayman, Dt" uniqKey="Hayman D">DT Hayman</name>
</author>
<author>
<name sortKey="O Shea, Tj" uniqKey="O Shea T">TJ O'Shea</name>
</author>
<author>
<name sortKey="Cryan, Pm" uniqKey="Cryan P">PM Cryan</name>
</author>
<author>
<name sortKey="Gilbert, At" uniqKey="Gilbert A">AT Gilbert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Calisher, Ch" uniqKey="Calisher C">CH Calisher</name>
</author>
<author>
<name sortKey="Childs, Je" uniqKey="Childs J">JE Childs</name>
</author>
<author>
<name sortKey="Field, He" uniqKey="Field H">HE Field</name>
</author>
<author>
<name sortKey="Holmes, Kv" uniqKey="Holmes K">KV Holmes</name>
</author>
<author>
<name sortKey="Schountz, T" uniqKey="Schountz T">T Schountz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Plowright, Rk" uniqKey="Plowright R">RK Plowright</name>
</author>
<author>
<name sortKey="Foley, P" uniqKey="Foley P">P Foley</name>
</author>
<author>
<name sortKey="Field, He" uniqKey="Field H">HE Field</name>
</author>
<author>
<name sortKey="Dobson, Ap" uniqKey="Dobson A">AP Dobson</name>
</author>
<author>
<name sortKey="Foley, Je" uniqKey="Foley J">JE Foley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Shea, Tj" uniqKey="O Shea T">TJ O'Shea</name>
</author>
<author>
<name sortKey="Neubaum, Dj" uniqKey="Neubaum D">DJ Neubaum</name>
</author>
<author>
<name sortKey="Neubaum, Ma" uniqKey="Neubaum M">MA Neubaum</name>
</author>
<author>
<name sortKey="Cryan, Pm" uniqKey="Cryan P">PM Cryan</name>
</author>
<author>
<name sortKey="Ellison, Le" uniqKey="Ellison L">LE Ellison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murray, Ka" uniqKey="Murray K">KA Murray</name>
</author>
<author>
<name sortKey="Daszak, P" uniqKey="Daszak P">P Daszak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cui, J" uniqKey="Cui J">J Cui</name>
</author>
<author>
<name sortKey="Han, N" uniqKey="Han N">N Han</name>
</author>
<author>
<name sortKey="Streicker, D" uniqKey="Streicker D">D Streicker</name>
</author>
<author>
<name sortKey="Li, G" uniqKey="Li G">G Li</name>
</author>
<author>
<name sortKey="Tang, X" uniqKey="Tang X">X Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ricklefs, Re" uniqKey="Ricklefs R">RE Ricklefs</name>
</author>
<author>
<name sortKey="Fallon, Sm" uniqKey="Fallon S">SM Fallon</name>
</author>
<author>
<name sortKey="Bermingham, E" uniqKey="Bermingham E">E Bermingham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harms, A" uniqKey="Harms A">A Harms</name>
</author>
<author>
<name sortKey="Dehio, C" uniqKey="Dehio C">C Dehio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Billeter, Sa" uniqKey="Billeter S">SA Billeter</name>
</author>
<author>
<name sortKey="Levy, Mg" uniqKey="Levy M">MG Levy</name>
</author>
<author>
<name sortKey="Chomel, Bb" uniqKey="Chomel B">BB Chomel</name>
</author>
<author>
<name sortKey="Breitschwerdt, Eb" uniqKey="Breitschwerdt E">EB Breitschwerdt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, Kj" uniqKey="Brown K">KJ Brown</name>
</author>
<author>
<name sortKey="Bennett, M" uniqKey="Bennett M">M Bennett</name>
</author>
<author>
<name sortKey="Begon, M" uniqKey="Begon M">M Begon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kernif, T" uniqKey="Kernif T">T Kernif</name>
</author>
<author>
<name sortKey="Socolovschi, C" uniqKey="Socolovschi C">C Socolovschi</name>
</author>
<author>
<name sortKey="Wells, K" uniqKey="Wells K">K Wells</name>
</author>
<author>
<name sortKey="Lakim, Mb" uniqKey="Lakim M">MB Lakim</name>
</author>
<author>
<name sortKey="Inthalad, S" uniqKey="Inthalad S">S Inthalad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsai, Yl" uniqKey="Tsai Y">YL Tsai</name>
</author>
<author>
<name sortKey="Chang, Cc" uniqKey="Chang C">CC Chang</name>
</author>
<author>
<name sortKey="Chuang, St" uniqKey="Chuang S">ST Chuang</name>
</author>
<author>
<name sortKey="Chomel, Bb" uniqKey="Chomel B">BB Chomel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bai, Y" uniqKey="Bai Y">Y Bai</name>
</author>
<author>
<name sortKey="Recuenco, S" uniqKey="Recuenco S">S Recuenco</name>
</author>
<author>
<name sortKey="Gilbert, At" uniqKey="Gilbert A">AT Gilbert</name>
</author>
<author>
<name sortKey="Osikowicz, Lm" uniqKey="Osikowicz L">LM Osikowicz</name>
</author>
<author>
<name sortKey="Gomez, J" uniqKey="Gomez J">J Gomez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Concannon, R" uniqKey="Concannon R">R Concannon</name>
</author>
<author>
<name sortKey="Wynn Owen, K" uniqKey="Wynn Owen K">K Wynn-Owen</name>
</author>
<author>
<name sortKey="Simpson, V" uniqKey="Simpson V">V Simpson</name>
</author>
<author>
<name sortKey="Birtles, R" uniqKey="Birtles R">R Birtles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kosoy, M" uniqKey="Kosoy M">M Kosoy</name>
</author>
<author>
<name sortKey="Bai, Y" uniqKey="Bai Y">Y Bai</name>
</author>
<author>
<name sortKey="Lynch, T" uniqKey="Lynch T">T Lynch</name>
</author>
<author>
<name sortKey="Kuzmin, Iv" uniqKey="Kuzmin I">IV Kuzmin</name>
</author>
<author>
<name sortKey="Niezgoda, M" uniqKey="Niezgoda M">M Niezgoda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, Jw" uniqKey="Lin J">JW Lin</name>
</author>
<author>
<name sortKey="Hsu, Ym" uniqKey="Hsu Y">YM Hsu</name>
</author>
<author>
<name sortKey="Chomel, Bb" uniqKey="Chomel B">BB Chomel</name>
</author>
<author>
<name sortKey="Lin, Lk" uniqKey="Lin L">LK Lin</name>
</author>
<author>
<name sortKey="Pei, Jc" uniqKey="Pei J">JC Pei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Angelakis, E" uniqKey="Angelakis E">E Angelakis</name>
</author>
<author>
<name sortKey="Khamphoukeo, K" uniqKey="Khamphoukeo K">K Khamphoukeo</name>
</author>
<author>
<name sortKey="Grice, D" uniqKey="Grice D">D Grice</name>
</author>
<author>
<name sortKey="Newton, Pn" uniqKey="Newton P">PN Newton</name>
</author>
<author>
<name sortKey="Roux, V" uniqKey="Roux V">V Roux</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bai, Y" uniqKey="Bai Y">Y Bai</name>
</author>
<author>
<name sortKey="Kosoy, My" uniqKey="Kosoy M">MY Kosoy</name>
</author>
<author>
<name sortKey="Cully, Jf" uniqKey="Cully J">JF Cully</name>
</author>
<author>
<name sortKey="Bala, T" uniqKey="Bala T">T Bala</name>
</author>
<author>
<name sortKey="Ray, C" uniqKey="Ray C">C Ray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brettschneider, H" uniqKey="Brettschneider H">H Brettschneider</name>
</author>
<author>
<name sortKey="Bennett, Nc" uniqKey="Bennett N">NC Bennett</name>
</author>
<author>
<name sortKey="Chimimba, Ct" uniqKey="Chimimba C">CT Chimimba</name>
</author>
<author>
<name sortKey="Bastos, Ads" uniqKey="Bastos A">ADS Bastos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inoue, K" uniqKey="Inoue K">K Inoue</name>
</author>
<author>
<name sortKey="Kabeya, H" uniqKey="Kabeya H">H Kabeya</name>
</author>
<author>
<name sortKey="Kosoy, My" uniqKey="Kosoy M">MY Kosoy</name>
</author>
<author>
<name sortKey="Bai, Y" uniqKey="Bai Y">Y Bai</name>
</author>
<author>
<name sortKey="Smirnov, G" uniqKey="Smirnov G">G Smirnov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q Liu</name>
</author>
<author>
<name sortKey="Sun, J" uniqKey="Sun J">J Sun</name>
</author>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L Lu</name>
</author>
<author>
<name sortKey="Fu, G" uniqKey="Fu G">G Fu</name>
</author>
<author>
<name sortKey="Ding, G" uniqKey="Ding G">G Ding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kabeya, H" uniqKey="Kabeya H">H Kabeya</name>
</author>
<author>
<name sortKey="Colborn, Jm" uniqKey="Colborn J">JM Colborn</name>
</author>
<author>
<name sortKey="Bai, Y" uniqKey="Bai Y">Y Bai</name>
</author>
<author>
<name sortKey="Lerdthusnee, K" uniqKey="Lerdthusnee K">K Lerdthusnee</name>
</author>
<author>
<name sortKey="Richardson, Jh" uniqKey="Richardson J">JH Richardson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kosoy, M" uniqKey="Kosoy M">M Kosoy</name>
</author>
<author>
<name sortKey="Bai, Y" uniqKey="Bai Y">Y Bai</name>
</author>
<author>
<name sortKey="Morway, C" uniqKey="Morway C">C Morway</name>
</author>
<author>
<name sortKey="Sheff, K" uniqKey="Sheff K">K Sheff</name>
</author>
<author>
<name sortKey="Peruski, L" uniqKey="Peruski L">L Peruski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kosoy, M" uniqKey="Kosoy M">M Kosoy</name>
</author>
<author>
<name sortKey="Bai, Y" uniqKey="Bai Y">Y Bai</name>
</author>
<author>
<name sortKey="Sheff, K" uniqKey="Sheff K">K Sheff</name>
</author>
<author>
<name sortKey="Morway, C" uniqKey="Morway C">C Morway</name>
</author>
<author>
<name sortKey="Baggett, H" uniqKey="Baggett H">H Baggett</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamani, J" uniqKey="Kamani J">J Kamani</name>
</author>
<author>
<name sortKey="Morick, D" uniqKey="Morick D">D Morick</name>
</author>
<author>
<name sortKey="Mumcuoglu, Ky" uniqKey="Mumcuoglu K">KY Mumcuoglu</name>
</author>
<author>
<name sortKey="Harrus, S" uniqKey="Harrus S">S Harrus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kosoy, M" uniqKey="Kosoy M">M Kosoy</name>
</author>
<author>
<name sortKey="Murray, M" uniqKey="Murray M">M Murray</name>
</author>
<author>
<name sortKey="Gilmore, Rd" uniqKey="Gilmore R">RD Gilmore</name>
</author>
<author>
<name sortKey="Bai, Y" uniqKey="Bai Y">Y Bai</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Waitkins, S" uniqKey="Waitkins S">S Waitkins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meites, E" uniqKey="Meites E">E Meites</name>
</author>
<author>
<name sortKey="Jay, Mt" uniqKey="Jay M">MT Jay</name>
</author>
<author>
<name sortKey="Deresinski, S" uniqKey="Deresinski S">S Deresinski</name>
</author>
<author>
<name sortKey="Shieh, Wj" uniqKey="Shieh W">WJ Shieh</name>
</author>
<author>
<name sortKey="Zaki, Sr" uniqKey="Zaki S">SR Zaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turner, Lh" uniqKey="Turner L">LH Turner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bunnell, Je" uniqKey="Bunnell J">JE Bunnell</name>
</author>
<author>
<name sortKey="Hice, Cl" uniqKey="Hice C">CL Hice</name>
</author>
<author>
<name sortKey="Watts, Dm" uniqKey="Watts D">DM Watts</name>
</author>
<author>
<name sortKey="Montrueil, V" uniqKey="Montrueil V">V Montrueil</name>
</author>
<author>
<name sortKey="Tesh, Rb" uniqKey="Tesh R">RB Tesh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lagadec, E" uniqKey="Lagadec E">E Lagadec</name>
</author>
<author>
<name sortKey="Gomard, Y" uniqKey="Gomard Y">Y Gomard</name>
</author>
<author>
<name sortKey="Guernier, V" uniqKey="Guernier V">V Guernier</name>
</author>
<author>
<name sortKey="Pascalis, H" uniqKey="Pascalis H">H Pascalis</name>
</author>
<author>
<name sortKey="Temmam, S" uniqKey="Temmam S">S Temmam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tulsiani, Sm" uniqKey="Tulsiani S">SM Tulsiani</name>
</author>
<author>
<name sortKey="Cobbold, Rn" uniqKey="Cobbold R">RN Cobbold</name>
</author>
<author>
<name sortKey="Graham, Gc" uniqKey="Graham G">GC Graham</name>
</author>
<author>
<name sortKey="Dohnt, Mf" uniqKey="Dohnt M">MF Dohnt</name>
</author>
<author>
<name sortKey="Burns, Ma" uniqKey="Burns M">MA Burns</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bessa, Ta" uniqKey="Bessa T">TA Bessa</name>
</author>
<author>
<name sortKey="Spichler, A" uniqKey="Spichler A">A Spichler</name>
</author>
<author>
<name sortKey="Chapola, Eg" uniqKey="Chapola E">EG Chapola</name>
</author>
<author>
<name sortKey="Husch, Ac" uniqKey="Husch A">AC Husch</name>
</author>
<author>
<name sortKey="De Almeida, Mf" uniqKey="De Almeida M">MF de Almeida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matthias, Ma" uniqKey="Matthias M">MA Matthias</name>
</author>
<author>
<name sortKey="Diaz, Mm" uniqKey="Diaz M">MM Díaz</name>
</author>
<author>
<name sortKey="Campos, Kj" uniqKey="Campos K">KJ Campos</name>
</author>
<author>
<name sortKey="Calderon, M" uniqKey="Calderon M">M Calderon</name>
</author>
<author>
<name sortKey="Willig, Mr" uniqKey="Willig M">MR Willig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vijayachari, P" uniqKey="Vijayachari P">P Vijayachari</name>
</author>
<author>
<name sortKey="Sugunan, Ap" uniqKey="Sugunan A">AP Sugunan</name>
</author>
<author>
<name sortKey="Shriram, An" uniqKey="Shriram A">AN Shriram</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Page, Rd" uniqKey="Page R">RD Page</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bai, Y" uniqKey="Bai Y">Y Bai</name>
</author>
<author>
<name sortKey="Kosoy, M" uniqKey="Kosoy M">M Kosoy</name>
</author>
<author>
<name sortKey="Recuenco, S" uniqKey="Recuenco S">S Recuenco</name>
</author>
<author>
<name sortKey="Alvarez, D" uniqKey="Alvarez D">D Alvarez</name>
</author>
<author>
<name sortKey="Moran, D" uniqKey="Moran D">D Moran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kosoy, My" uniqKey="Kosoy M">MY Kosoy</name>
</author>
<author>
<name sortKey="Regnery, Rl" uniqKey="Regnery R">RL Regnery</name>
</author>
<author>
<name sortKey="Tzianabos, T" uniqKey="Tzianabos T">T Tzianabos</name>
</author>
<author>
<name sortKey="Marston, El" uniqKey="Marston E">EL Marston</name>
</author>
<author>
<name sortKey="Jones, Dc" uniqKey="Jones D">DC Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ying, B" uniqKey="Ying B">B Ying</name>
</author>
<author>
<name sortKey="Kosoy, My" uniqKey="Kosoy M">MY Kosoy</name>
</author>
<author>
<name sortKey="Maupin, Go" uniqKey="Maupin G">GO Maupin</name>
</author>
<author>
<name sortKey="Tsuchiya, Kr" uniqKey="Tsuchiya K">KR Tsuchiya</name>
</author>
<author>
<name sortKey="Gage, Kl" uniqKey="Gage K">KL Gage</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Castle, Kt" uniqKey="Castle K">KT Castle</name>
</author>
<author>
<name sortKey="Kosoy, M" uniqKey="Kosoy M">M Kosoy</name>
</author>
<author>
<name sortKey="Lerdthusnee, K" uniqKey="Lerdthusnee K">K Lerdthusnee</name>
</author>
<author>
<name sortKey="Phelan, L" uniqKey="Phelan L">L Phelan</name>
</author>
<author>
<name sortKey="Bai, Y" uniqKey="Bai Y">Y Bai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goncalves, At" uniqKey="Goncalves A">AT Gonçalves</name>
</author>
<author>
<name sortKey="Paiva, C" uniqKey="Paiva C">C Paiva</name>
</author>
<author>
<name sortKey="Melo Mota, F" uniqKey="Melo Mota F">F Melo-Mota</name>
</author>
<author>
<name sortKey="Vieira, Ml" uniqKey="Vieira M">ML Vieira</name>
</author>
<author>
<name sortKey="Carreira, T" uniqKey="Carreira T">T Carreira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Foronda, P" uniqKey="Foronda P">P Foronda</name>
</author>
<author>
<name sortKey="Martin Alonso, A" uniqKey="Martin Alonso A">A Martin-Alonso</name>
</author>
<author>
<name sortKey="Del Castillo Figueruelo, B" uniqKey="Del Castillo Figueruelo B">B del Castillo-Figueruelo</name>
</author>
<author>
<name sortKey="Feliu, C" uniqKey="Feliu C">C Feliu</name>
</author>
<author>
<name sortKey="Gil, H" uniqKey="Gil H">H Gil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koizumi, N" uniqKey="Koizumi N">N Koizumi</name>
</author>
<author>
<name sortKey="Muto, M" uniqKey="Muto M">M Muto</name>
</author>
<author>
<name sortKey="Tanikawa, T" uniqKey="Tanikawa T">T Tanikawa</name>
</author>
<author>
<name sortKey="Mizutani, H" uniqKey="Mizutani H">H Mizutani</name>
</author>
<author>
<name sortKey="Sohmura, Y" uniqKey="Sohmura Y">Y Sohmura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paiva Cardoso, Mdn" uniqKey="Paiva Cardoso M">MdN Paiva-Cardoso</name>
</author>
<author>
<name sortKey="Arent, Z" uniqKey="Arent Z">Z Arent</name>
</author>
<author>
<name sortKey="Gilmore, C" uniqKey="Gilmore C">C Gilmore</name>
</author>
<author>
<name sortKey="Hartskeerl, R" uniqKey="Hartskeerl R">R Hartskeerl</name>
</author>
<author>
<name sortKey="Ellis, Wa" uniqKey="Ellis W">WA Ellis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rahelinirina, S" uniqKey="Rahelinirina S">S Rahelinirina</name>
</author>
<author>
<name sortKey="Leon, A" uniqKey="Leon A">A Léon</name>
</author>
<author>
<name sortKey="Harstskeerl, Ra" uniqKey="Harstskeerl R">RA Harstskeerl</name>
</author>
<author>
<name sortKey="Sertour, N" uniqKey="Sertour N">N Sertour</name>
</author>
<author>
<name sortKey="Ahmed, A" uniqKey="Ahmed A">A Ahmed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kocher, Td" uniqKey="Kocher T">TD Kocher</name>
</author>
<author>
<name sortKey="Thomas, Wk" uniqKey="Thomas W">WK Thomas</name>
</author>
<author>
<name sortKey="Meyer, A" uniqKey="Meyer A">A Meyer</name>
</author>
<author>
<name sortKey="Edwards, Sv" uniqKey="Edwards S">SV Edwards</name>
</author>
<author>
<name sortKey="P Bo, S" uniqKey="P Bo S">S Pääbo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bradley, Rd" uniqKey="Bradley R">RD Bradley</name>
</author>
<author>
<name sortKey="Baker, Rj" uniqKey="Baker R">RJ Baker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agnarsson, I" uniqKey="Agnarsson I">I Agnarsson</name>
</author>
<author>
<name sortKey="Zambrana Torrelio, Cm" uniqKey="Zambrana Torrelio C">CM Zambrana-Torrelio</name>
</author>
<author>
<name sortKey="Flores Saldana, Np" uniqKey="Flores Saldana N">NP Flores-Saldana</name>
</author>
<author>
<name sortKey="May Collado, Lj" uniqKey="May Collado L">LJ May-Collado</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edgar, Rc" uniqKey="Edgar R">RC Edgar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kearse, M" uniqKey="Kearse M">M Kearse</name>
</author>
<author>
<name sortKey="Moir, R" uniqKey="Moir R">R Moir</name>
</author>
<author>
<name sortKey="Wilson, A" uniqKey="Wilson A">A Wilson</name>
</author>
<author>
<name sortKey="Stones Havas, S" uniqKey="Stones Havas S">S Stones-Havas</name>
</author>
<author>
<name sortKey="Cheung, M" uniqKey="Cheung M">M Cheung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pumo, De" uniqKey="Pumo D">DE Pumo</name>
</author>
<author>
<name sortKey="Finamore, Ps" uniqKey="Finamore P">PS Finamore</name>
</author>
<author>
<name sortKey="Franek, Wr" uniqKey="Franek W">WR Franek</name>
</author>
<author>
<name sortKey="Phillips, Cj" uniqKey="Phillips C">CJ Phillips</name>
</author>
<author>
<name sortKey="Tarzami, S" uniqKey="Tarzami S">S Tarzami</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stamatakis, A" uniqKey="Stamatakis A">A Stamatakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ronquist, F" uniqKey="Ronquist F">F Ronquist</name>
</author>
<author>
<name sortKey="Huelsenbeck, Jp" uniqKey="Huelsenbeck J">JP Huelsenbeck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Charleston, M" uniqKey="Charleston M">M Charleston</name>
</author>
<author>
<name sortKey="Robertson, D" uniqKey="Robertson D">D Robertson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Desdevises, Y" uniqKey="Desdevises Y">Y Desdevises</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Legendre, P" uniqKey="Legendre P">P Legendre</name>
</author>
<author>
<name sortKey="Desdevises, Y" uniqKey="Desdevises Y">Y Desdevises</name>
</author>
<author>
<name sortKey="Bazin, E" uniqKey="Bazin E">E Bazin</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paradis, E" uniqKey="Paradis E">E Paradis</name>
</author>
<author>
<name sortKey="Claude, J" uniqKey="Claude J">J Claude</name>
</author>
<author>
<name sortKey="Strimmer, K" uniqKey="Strimmer K">K Strimmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balbuena, Ja" uniqKey="Balbuena J">JA Balbuena</name>
</author>
<author>
<name sortKey="Miguez Lozano, R" uniqKey="Miguez Lozano R">R Míguez-Lozano</name>
</author>
<author>
<name sortKey="Blasco Costa, I" uniqKey="Blasco Costa I">I Blasco-Costa</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conow, C" uniqKey="Conow C">C Conow</name>
</author>
<author>
<name sortKey="Fielder, D" uniqKey="Fielder D">D Fielder</name>
</author>
<author>
<name sortKey="Ovadia, Y" uniqKey="Ovadia Y">Y Ovadia</name>
</author>
<author>
<name sortKey="Libeskind Hadas, R" uniqKey="Libeskind Hadas R">R Libeskind-Hadas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Althoff, Dm" uniqKey="Althoff D">DM Althoff</name>
</author>
<author>
<name sortKey="Segraves, Ka" uniqKey="Segraves K">KA Segraves</name>
</author>
<author>
<name sortKey="Smith, Ci" uniqKey="Smith C">CI Smith</name>
</author>
<author>
<name sortKey="Leebens Mack, J" uniqKey="Leebens Mack J">J Leebens-Mack</name>
</author>
<author>
<name sortKey="Pellmyr, O" uniqKey="Pellmyr O">O Pellmyr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Paziewska, A" uniqKey="Paziewska A">A Paziewska</name>
</author>
<author>
<name sortKey="Harris, P" uniqKey="Harris P">P Harris</name>
</author>
<author>
<name sortKey="Zwoli Ska, L" uniqKey="Zwoli Ska L">L Zwolińska</name>
</author>
<author>
<name sortKey="Bajer, A" uniqKey="Bajer A">A Bajer</name>
</author>
<author>
<name sortKey="Si Ski, E" uniqKey="Si Ski E">E Siński</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halos, L" uniqKey="Halos L">L Halos</name>
</author>
<author>
<name sortKey="Jamal, T" uniqKey="Jamal T">T Jamal</name>
</author>
<author>
<name sortKey="Maillard, R" uniqKey="Maillard R">R Maillard</name>
</author>
<author>
<name sortKey="Girard, B" uniqKey="Girard B">B Girard</name>
</author>
<author>
<name sortKey="Guillot, J" uniqKey="Guillot J">J Guillot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morse, Sf" uniqKey="Morse S">SF Morse</name>
</author>
<author>
<name sortKey="Olival, Kj" uniqKey="Olival K">KJ Olival</name>
</author>
<author>
<name sortKey="Kosoy, M" uniqKey="Kosoy M">M Kosoy</name>
</author>
<author>
<name sortKey="Billeter, Sa" uniqKey="Billeter S">SA Billeter</name>
</author>
<author>
<name sortKey="Patterson, Bd" uniqKey="Patterson B">BD Patterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Billeter, Sa" uniqKey="Billeter S">SA Billeter</name>
</author>
<author>
<name sortKey="Hayman, Dt" uniqKey="Hayman D">DT Hayman</name>
</author>
<author>
<name sortKey="Peel, A" uniqKey="Peel A">A Peel</name>
</author>
<author>
<name sortKey="Baker, K" uniqKey="Baker K">K Baker</name>
</author>
<author>
<name sortKey="Wood, Jl" uniqKey="Wood J">JL Wood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olival, Kj" uniqKey="Olival K">KJ Olival</name>
</author>
<author>
<name sortKey="Dick, Cw" uniqKey="Dick C">CW Dick</name>
</author>
<author>
<name sortKey="Simmons, Nb" uniqKey="Simmons N">NB Simmons</name>
</author>
<author>
<name sortKey="Morales, Jc" uniqKey="Morales J">JC Morales</name>
</author>
<author>
<name sortKey="Melnick, Dj" uniqKey="Melnick D">DJ Melnick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adler, B" uniqKey="Adler B">B Adler</name>
</author>
<author>
<name sortKey="De La Pena Moctezuma, A" uniqKey="De La Pena Moctezuma A">A de la Pena Moctezuma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woolhouse, Me" uniqKey="Woolhouse M">ME Woolhouse</name>
</author>
<author>
<name sortKey="Webster, Jp" uniqKey="Webster J">JP Webster</name>
</author>
<author>
<name sortKey="Domingo, E" uniqKey="Domingo E">E Domingo</name>
</author>
<author>
<name sortKey="Charlesworth, B" uniqKey="Charlesworth B">B Charlesworth</name>
</author>
<author>
<name sortKey="Levin, Br" uniqKey="Levin B">BR Levin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davies, Tj" uniqKey="Davies T">TJ Davies</name>
</author>
<author>
<name sortKey="Pedersen, Ab" uniqKey="Pedersen A">AB Pedersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vargas Contreras, J" uniqKey="Vargas Contreras J">J Vargas-Contreras</name>
</author>
<author>
<name sortKey="Escalona Segura, G" uniqKey="Escalona Segura G">G Escalona-Segura</name>
</author>
<author>
<name sortKey="Arroyo Cabrales, J" uniqKey="Arroyo Cabrales J">J Arroyo-Cabrales</name>
</author>
<author>
<name sortKey="Rend N, J" uniqKey="Rend N J">J Rendón</name>
</author>
<author>
<name sortKey="Navarro, L" uniqKey="Navarro L">L Navarro</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Breitschwerdt, Eb" uniqKey="Breitschwerdt E">EB Breitschwerdt</name>
</author>
<author>
<name sortKey="Maggi, Rg" uniqKey="Maggi R">RG Maggi</name>
</author>
<author>
<name sortKey="Chomel, Bb" uniqKey="Chomel B">BB Chomel</name>
</author>
<author>
<name sortKey="Lappin, Mr" uniqKey="Lappin M">MR Lappin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hartskeerl, Ra" uniqKey="Hartskeerl R">RA Hartskeerl</name>
</author>
<author>
<name sortKey="Collares Pereira, M" uniqKey="Collares Pereira M">M Collares-Pereira</name>
</author>
<author>
<name sortKey="Ellis, Wa" uniqKey="Ellis W">WA Ellis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woolhouse, Me" uniqKey="Woolhouse M">ME Woolhouse</name>
</author>
<author>
<name sortKey="Haydon, Dt" uniqKey="Haydon D">DT Haydon</name>
</author>
<author>
<name sortKey="Antia, R" uniqKey="Antia R">R Antia</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS Negl Trop Dis</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS Negl Trop Dis</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosntds</journal-id>
<journal-title-group>
<journal-title>PLoS Neglected Tropical Diseases</journal-title>
</journal-title-group>
<issn pub-type="ppub">1935-2727</issn>
<issn pub-type="epub">1935-2735</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24651646</article-id>
<article-id pub-id-type="pmc">3961187</article-id>
<article-id pub-id-type="publisher-id">PNTD-D-13-01874</article-id>
<article-id pub-id-type="doi">10.1371/journal.pntd.0002738</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Biology</subject>
<subj-group>
<subject>Evolutionary Biology</subject>
<subj-group>
<subject>Evolutionary Genetics</subject>
<subject>Organismal Evolution</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Zoology</subject>
<subj-group>
<subject>Mammalogy</subject>
<subject>Parasitology</subject>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Contrasting Patterns in Mammal–Bacteria Coevolution:
<italic>Bartonella</italic>
and
<italic>Leptospira</italic>
in Bats and Rodents</article-title>
<alt-title alt-title-type="running-head">Bacterial Coevolution in Bats and Rodents</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Lei</surname>
<given-names>Bonnie R.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Olival</surname>
<given-names>Kevin J.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>EcoHealth Alliance, New York, New York, United States of America</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Small</surname>
<given-names>Pamela L. C.</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>University of Tennessee, United States of America</addr-line>
</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>olival@ecohealthalliance.org</email>
</corresp>
<fn fn-type="conflict">
<p>The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con">
<p>Conceived and designed the experiments: BRL KJO. Performed the experiments: BRL. Analyzed the data: BRL KJO. Contributed reagents/materials/analysis tools: BRL KJO. Wrote the paper: BRL KJO.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<month>3</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>20</day>
<month>3</month>
<year>2014</year>
</pub-date>
<volume>8</volume>
<issue>3</issue>
<elocation-id>e2738</elocation-id>
<history>
<date date-type="received">
<day>24</day>
<month>11</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>27</day>
<month>1</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-year>2014</copyright-year>
<copyright-holder>Lei, Olival</copyright-holder>
<license>
<license-p>This is an open-access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<abstract>
<sec>
<title>Background</title>
<p>Emerging bacterial zoonoses in bats and rodents remain relatively understudied. We conduct the first comparative host–pathogen coevolutionary analyses of bacterial pathogens in these hosts, using
<italic>Bartonella</italic>
spp. and
<italic>Leptospira</italic>
spp. as a model.</p>
</sec>
<sec>
<title>Methodology/Principal Findings</title>
<p>We used published genetic data for 51
<italic>Bartonella</italic>
genotypes from 24 bat species, 129
<italic>Bartonella</italic>
from 38 rodents, and 26
<italic>Leptospira</italic>
from 20 bats. We generated maximum likelihood and Bayesian phylogenies for hosts and bacteria, and tested for coevoutionary congruence using programs ParaFit, PACO, and Jane.
<italic>Bartonella</italic>
spp. and their bat hosts had a significant coevolutionary fit (ParaFitGlobal = 1.9703, P≤0.001; m
<sup>2</sup>
global value = 7.3320, P≤0.0001).
<italic>Bartonella</italic>
spp. and rodent hosts also indicated strong overall patterns of cospeciation (ParaFitGlobal = 102.4409, P≤0.001; m
<sup>2</sup>
global value = 86.532, P≤0.0001). In contrast, we were unable to reject independence of speciation events in
<italic>Leptospira</italic>
and bats (ParaFitGlobal = 0.0042, P = 0.84; m
<sup>2</sup>
global value = 4.6310, P = 0.5629). Separate analyses of New World and Old World data subsets yielded results congruent with analysis from entire datasets. We also conducted event-based cophylogeny analyses to reconstruct likely evolutionary histories for each group of pathogens and hosts.
<italic>Leptospira</italic>
and bats had the greatest number of host switches per parasite (0.731), while
<italic>Bartonella</italic>
and rodents had the fewest (0.264).</p>
</sec>
<sec>
<title>Conclusions/Significance</title>
<p>In both bat and rodent hosts,
<italic>Bartonella</italic>
exhibits significant coevolution with minimal host switching, while
<italic>Leptospira</italic>
in bats lacks evolutionary congruence with its host and has high number of host switches. Reasons underlying these variable coevolutionary patterns in host range are likely due to differences in disease-specific transmission and host ecology. Understanding the coevolutionary patterns and frequency of host-switching events between bacterial pathogens and their hosts will allow better prediction of spillover between mammal reservoirs, and ultimately to humans.</p>
</sec>
</abstract>
<abstract abstract-type="summary">
<title>Author Summary</title>
<p>Bats and rodents are important hosts for emerging human diseases. While a large body of research has focused on viral pathogens in these hosts, the diversity, evolution, and transmission of their bacterial pathogens remains relatively unstudied. We conducted co-evolutionary analyses of two bacterial genera know to be pathogenic in humans,
<italic>Bartonella</italic>
and
<italic>Leptospira</italic>
, along with their bat and rodent hosts. We found that
<italic>Bartonella</italic>
had a significant pattern of coevolution with both bat and rodent hosts, while
<italic>Leptospira</italic>
in bats showed a lack of congruence with its bat hosts and a high number of host switching events. Our statistically driven approach to understand the frequency of host switching events in these mammal–bacterial systems can be easily applied to other host–pathogen systems, including viruses, to assess the likelihood of zoonotic spillover.</p>
</abstract>
<funding-group>
<funding-statement>This study benefitted from intellectual developments from the PREDICT project of the United States Agency for International Development (USAID) Emerging Pandemic Threats Program, and was supported in part by a NIAID Non-Biodefense Emerging Infectious Disease Research Opportunities award R01 AI079231 (KJO). Partial funding also provided by a Herchel Smith Harvard Research Fellowship to BRL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<page-count count="11"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>Bats and rodents are the two most diverse and geographically widespread orders of mammals
<xref rid="pntd.0002738-Simmons1" ref-type="bibr">[1]</xref>
,
<xref rid="pntd.0002738-Pagel1" ref-type="bibr">[2]</xref>
, and are important reservoirs for a growing number of emerging infectious diseases (EIDs) with significant impacts on public health. Bats are reservoir hosts of several viral pathogens of high consequence, including Henipaviruses, Ebola and Marburg viruses, lyssaviruses, Severe Acute Respiratory Syndrome coronavirus, and likely Middle Eastern Respiratory Syndrome coronavirus
<xref rid="pntd.0002738-Wong1" ref-type="bibr">[3]</xref>
<xref rid="pntd.0002738-Olival1" ref-type="bibr">[5]</xref>
. Rodents are known reservoirs of hantaviruses, arenaviruses, Lassa fever virus, plague and other bacterial zoonoses
<xref rid="pntd.0002738-Meerburg1" ref-type="bibr">[6]</xref>
. Over the last two decades, the majority of research on bat and rodent zoonotic diseases has focused on viral infections (
<xref ref-type="supplementary-material" rid="pntd.0002738.s001">Figure S1</xref>
). While the number of virus-related publications for bats has had a marked rise over the past decade, research on bacteria in bats has remained consistently low (
<xref ref-type="supplementary-material" rid="pntd.0002738.s001">Figure S1</xref>
). The evolutionary relationships between these important mammalian hosts and their known bacterial pathogens has been little studied to date
<xref rid="pntd.0002738-Muhldorfer1" ref-type="bibr">[7]</xref>
,
<xref rid="pntd.0002738-Turmelle1" ref-type="bibr">[8]</xref>
.</p>
<p>Bats and rodents are evolutionarily ancient orders of mammals, with periods of diversification dating back 75 and 85 million years ago, respectively, thus allowing ample time for pathogens and hosts to coevolve
<xref rid="pntd.0002738-BinindaEmonds1" ref-type="bibr">[9]</xref>
. Bats and rodents make up 60% of all extant mammal species while exhibiting a wide-range of life-history and ecological traits. Ecological, evolutionary, and life-history traits can influence pathogen richness and cross species transmission, or spillover, in these bat and rodent hosts
<xref rid="pntd.0002738-Olival1" ref-type="bibr">[5]</xref>
,
<xref rid="pntd.0002738-Turmelle1" ref-type="bibr">[8]</xref>
<xref rid="pntd.0002738-Calisher1" ref-type="bibr">[11]</xref>
. The peridomestic habits of these mammals also likely increase the frequency of human contact and facilitate disease spillover
<xref rid="pntd.0002738-Plowright1" ref-type="bibr">[12]</xref>
,
<xref rid="pntd.0002738-OShea1" ref-type="bibr">[13]</xref>
. Anthropogenic alterations that increase exposure to bats and rodents, including expanding agricultural operations, bushmeat hunting, and climate change, may increase the opportunity for diseases to emerge in human populations in the future
<xref rid="pntd.0002738-Murray1" ref-type="bibr">[14]</xref>
. How these ecological and life history factors may affect the coevolutionary patterns between reservoir host species and their associated pathogens is an open question, but will depend on characteristics related to pathogen transmission and host ecology.</p>
<p>The evolutionary patterns of hosts and their known pathogens can be used to quantify the frequency of spillover events within and between reservoir hosts, and is a crucial first step for developing predictive models for zoonotic disease emergence. Previous research has demonstrated how these coevolutionary studies can shed light on specific instances of host switching, cospeciation, and other events in coronaviruses and their bat hosts
<xref rid="pntd.0002738-Cui1" ref-type="bibr">[15]</xref>
, as well as malaria parasites and their avian hosts
<xref rid="pntd.0002738-Ricklefs1" ref-type="bibr">[16]</xref>
. However, to our knowledge, no comparative cophylogenetic analysis of bacterial pathogens has been applied yet to bat and rodent hosts. Here we examine host-pathogen evolution in bats and rodents using two bacterial genera,
<italic>Bartonella spp.</italic>
and
<italic>Leptospira spp.</italic>
, known to cause neglected tropical diseases in humans.</p>
<p>The genus
<italic>Bartonella</italic>
consists of globally distributed and highly diverse alpha-proteobacteria that infects a wide-range of mammals. After infection, the bacteria eventually enters erythrocytes and endothelial cells and can persist asymptomatically in a wide range of mammalian reservoir hosts
<xref rid="pntd.0002738-Harms1" ref-type="bibr">[17]</xref>
. The disease is mainly transmitted through arthropod vectors including fleas, flies, lice, mites, and ticks
<xref rid="pntd.0002738-Billeter1" ref-type="bibr">[18]</xref>
<xref rid="pntd.0002738-Tsai1" ref-type="bibr">[21]</xref>
. Thus, the transmission and evolution of
<italic>Bartonella</italic>
species in mammals is the result of a complex relationship between multiple hosts, vectors, and pathogens.
<italic>Bartonella</italic>
has been reported with high prevalence and genetic diversity from numerous recent studies in bats
<xref rid="pntd.0002738-Bai1" ref-type="bibr">[22]</xref>
<xref rid="pntd.0002738-Lin1" ref-type="bibr">[25]</xref>
and rodents
<xref rid="pntd.0002738-Angelakis1" ref-type="bibr">[26]</xref>
<xref rid="pntd.0002738-Liu1" ref-type="bibr">[30]</xref>
.
<italic>Bartonella</italic>
is recognized as a neglected tropical disease, and there are indications of human infections derived from neighboring wildlife populations. In Thailand, genetic studies have indicated highly similar
<italic>Bartonella</italic>
strains between infected humans and nearby rodent populations
<xref rid="pntd.0002738-Kabeya1" ref-type="bibr">[31]</xref>
<xref rid="pntd.0002738-Kosoy4" ref-type="bibr">[34]</xref>
. Neighboring rodents have also been implicated as a possible source for bartonellosis in the United States and Nigeria
<xref rid="pntd.0002738-Kamani1" ref-type="bibr">[35]</xref>
,
<xref rid="pntd.0002738-Kosoy5" ref-type="bibr">[36]</xref>
.</p>
<p>
<italic>Leptospira</italic>
is a genus of spirochete bacteria which also has a wide geographical distribution
<xref rid="pntd.0002738-Waitkins1" ref-type="bibr">[37]</xref>
, and has been recognized as an important emerging pathogen due to its increasing incidence in both developing and developed countries
<xref rid="pntd.0002738-Meites1" ref-type="bibr">[38]</xref>
. Leptospires are maintained in nature by a large variety of wild and domestic animal hosts, and the bacteria colonize their kidneys and are excreted in their urine
<xref rid="pntd.0002738-Turner1" ref-type="bibr">[39]</xref>
. Rodents were the first recognized carriers, though the bacteria has been isolated from almost all screened mammals. Recently, bats have been found to carry
<italic>Leptospira</italic>
in Madagascar, Australia, Peru, and Brazil, and seroprevalence has been recorded to be as high as 35%
<xref rid="pntd.0002738-Bunnell1" ref-type="bibr">[40]</xref>
<xref rid="pntd.0002738-Matthias1" ref-type="bibr">[44]</xref>
. Unlike
<italic>Bartonella</italic>
spp.,
<italic>Leptospira</italic>
spp. are not vector-borne, and transmission to humans and other hosts is primarily through contact with water and environments contaminated with infected animal urine
<xref rid="pntd.0002738-Vijayachari1" ref-type="bibr">[45]</xref>
. While most research has focused on rodents reservoirs of leptospirosis, recent genetic studies have also indicated bats as carriers of the bacteria
<xref rid="pntd.0002738-Lagadec1" ref-type="bibr">[41]</xref>
,
<xref rid="pntd.0002738-Matthias1" ref-type="bibr">[44]</xref>
.</p>
<p>In order to better understand the evolutionary dynamics of
<italic>Bartonella</italic>
and
<italic>Leptospira</italic>
in bat and rodent hosts, we compiled available genetic information from hosts and bacterial pathogens to determine cophylogenetic patterns on a global scale. Evidence of cophylogeny can be used to test hypotheses of coevolution, and a lack of congruence between host and pathogen phylogenies can identify pathogen spillover, or interspecific transmission, events
<xref rid="pntd.0002738-Hafner1" ref-type="bibr">[46]</xref>
. Long associations through evolutionary time can lead to reciprocal adaptations in both the hosts and their parasites, as well as concurrent divergence events in the two lineages. Evolutionary events including strict codivergence, parasite duplication, parasite extinction, and parasite host switching, will either strengthen or diminish the congruence between host and parasite
<xref rid="pntd.0002738-Page1" ref-type="bibr">[47]</xref>
. Patterns of host-parasite or host-pathogen congruence may also vary geographically. For example, host specificity of
<italic>Bartonella</italic>
was observed in Old World bats in Kenya
<xref rid="pntd.0002738-Kosoy1" ref-type="bibr">[24]</xref>
, while bats in Peru and Guatemala in the New World appeared to have no specific
<italic>Bartonella</italic>
-bat relationships
<xref rid="pntd.0002738-Bai1" ref-type="bibr">[22]</xref>
,
<xref rid="pntd.0002738-Bai3" ref-type="bibr">[48]</xref>
. In contrast, consistency is observed for
<italic>Bartonella</italic>
in rodents, with host-specificity apparent in both Old and New World
<xref rid="pntd.0002738-Kosoy6" ref-type="bibr">[49]</xref>
<xref rid="pntd.0002738-Castle1" ref-type="bibr">[51]</xref>
.</p>
<p>The primary goal of this paper is to examine the global co-evolutionary patterns of bats, rodents and their associated bacterial pathogens – using
<italic>Bartonella</italic>
and
<italic>Leptospira</italic>
as case studies. We specifically test for evolutionary congruence between bat host species and
<italic>Bartonella</italic>
and
<italic>Leptospira</italic>
, as well as rodent host species and
<italic>Bartonella</italic>
. Analysis of rodent
<italic>Leptospira</italic>
was unfortunately excluded due to a lack of comparable sequence datasets and host taxonomic diversity. Although there is a long history of research on leptospirosis in rodents, the publicly available sequence data that has been obtained thus far covers only a handful of rodent host species distributed across 3 genes: secY, flab,and lipL3
<xref rid="pntd.0002738-Gonalves1" ref-type="bibr">[52]</xref>
<xref rid="pntd.0002738-Rahelinirina1" ref-type="bibr">[56]</xref>
. We also test whether evolutionary patterns and bacterial host specificity differ between the New World and Old World bat and rodent hosts, as was previously observed for
<italic>Bartonella</italic>
<xref rid="pntd.0002738-Bai1" ref-type="bibr">[22]</xref>
,
<xref rid="pntd.0002738-Kosoy1" ref-type="bibr">[24]</xref>
,
<xref rid="pntd.0002738-Bai3" ref-type="bibr">[48]</xref>
. Finally, we conduct event-based cophylogeny analyses to reconstruct likely evolutionary histories for each group of pathogens and hosts.</p>
</sec>
<sec sec-type="materials|methods" id="s2">
<title>Materials and Methods</title>
<sec id="s2a">
<title>Compiled sequence data</title>
<p>Sequence data used for analyses were obtained by searching for relevant papers from 1900–2013 through online sources PubMed, Web of Science, and Google Scholar using keywords “
<italic>Bartonella</italic>
*” and “Leptospir*” combined with “bat OR Chiroptera*” or “rodent*”. All
<italic>Bartonella</italic>
and
<italic>Leptospira</italic>
sequences from bat or rodent hosts identified to the species level were compiled into our datasets (
<xref ref-type="supplementary-material" rid="pntd.0002738.s002">Tables S1</xref>
,
<xref ref-type="supplementary-material" rid="pntd.0002738.s003">S2</xref>
,
<xref ref-type="supplementary-material" rid="pntd.0002738.s004">S3</xref>
). Bat hosts include individuals in the
<italic>Artibeus</italic>
,
<italic>Brachyphylla</italic>
,
<italic>Carollia</italic>
,
<italic>Coleura</italic>
,
<italic>Desmodus</italic>
,
<italic>Eidolon</italic>
,
<italic>Glossophaga</italic>
.
<italic>Hipposideros</italic>
,
<italic>Lonchophylla</italic>
,
<italic>Micronycteris</italic>
,
<italic>Mimon</italic>
,
<italic>Miniopterus</italic>
,
<italic>Monophyllus</italic>
,
<italic>Myotis</italic>
,
<italic>Nyctalus</italic>
,
<italic>Otomops</italic>
,
<italic>Phyllostomus</italic>
,
<italic>Promops</italic>
,
<italic>Pteronotus</italic>
,
<italic>Rousettus</italic>
,
<italic>Rhinophylla</italic>
,
<italic>Sturnira</italic>
,
<italic>Triaenops</italic>
,
<italic>Uroderma</italic>
, and
<italic>Vampyressa</italic>
genera (
<xref ref-type="supplementary-material" rid="pntd.0002738.s002">Table S1</xref>
,
<xref ref-type="supplementary-material" rid="pntd.0002738.s004">S3</xref>
). Rodent hosts include individuals in the
<italic>Acomys</italic>
,
<italic>Aethomys</italic>
,
<italic>Apodemus</italic>
,
<italic>Callosciurus</italic>
,
<italic>Clethrionomys</italic>
,
<italic>Dryomys</italic>
,
<italic>Gerbillus</italic>
,
<italic>Glaucomys</italic>
,
<italic>Jaculus</italic>
,
<italic>Mastomys</italic>
,
<italic>Microtus</italic>
,
<italic>Mus</italic>
,
<italic>Myodes</italic>
,
<italic>Niviventer</italic>
,
<italic>Pachyuromys</italic>
,
<italic>Peromyscus</italic>
,
<italic>Psammomys</italic>
,
<italic>Rattus</italic>
,
<italic>Rhabdomys</italic>
,
<italic>Sekeetamys</italic>
,
<italic>Spermophilus</italic>
,
<italic>Tamias</italic>
,
<italic>Tamiasciurus</italic>
,
<italic>Tatera</italic>
, and
<italic>Urocitellus</italic>
genera (
<xref ref-type="supplementary-material" rid="pntd.0002738.s003">Table S2</xref>
). Only unique genotypes were included in the dataset. The largest comparable genetic datasets consisted of the partial citrate synthase gene (gltA) for
<italic>Bartonella</italic>
and 16S rRNA gene for
<italic>Leptospira</italic>
, and these were selected for analysis. Cytochrome b gene sequences from all bat and rodent host species were obtained from GenBank (
<xref ref-type="supplementary-material" rid="pntd.0002738.s005">Tables S4</xref>
,
<xref ref-type="supplementary-material" rid="pntd.0002738.s006">S5</xref>
), as this mitochondrial gene has proven to be useful for within Order, species-level resolution of mammalian phylogenies
<xref rid="pntd.0002738-Kocher1" ref-type="bibr">[57]</xref>
<xref rid="pntd.0002738-Agnarsson1" ref-type="bibr">[59]</xref>
. For host species that did not have an available cytochrome b sequence, the most closely related species with available sequence was used as a substitute for host-parasite associations. For bats, we made four substitutions:
<italic>Hipposideros armiger</italic>
for
<italic>Hipposideros commersoni</italic>
,
<italic>Phyllostomus hastatus</italic>
for
<italic>Phyllostomus discolor</italic>
,
<italic>Promops centralis</italic>
for
<italic>Promops nasutus</italic>
, and
<italic>Triaenops persicus</italic>
for
<italic>Triaenops menamena</italic>
. Our results suggest that these genus-level host substitutions do not disrupt overall co-phylogenetic patterns. For all species, host taxonomy was synonymized according to Mammal Species of the World 3
<sup>rd</sup>
Edition
<xref rid="pntd.0002738-Wilson1" ref-type="bibr">[60]</xref>
.</p>
<p>In total, we compiled sequences from 51
<italic>Bartonella</italic>
genotypes (38 New World, 13 Old World) from 24 bat species (15 New World, 9 Old World), and 129 (20 New World, 109 Old World)
<italic>Bartonella</italic>
genotypes from 38 rodent species (4 New World, 35 Old World). We also compiled sequences from 26
<italic>Leptospira</italic>
genotypes (19 New World, 7 Old World) from 20 bat species (14 New World, 6 Old World). Insufficient genetic data of one gene for
<italic>Leptospira</italic>
in rodents precluded their use in the analysis; therefore only
<italic>Leptospira</italic>
in bat hosts was examined.</p>
</sec>
<sec id="s2b">
<title>Phylogenetic analysis of sequence data</title>
<p>Bacterial and host species sequences were imported from GenBank into Geneious Pro 5.0.4. Sequences for each bacterial genus and their corresponding bat and rodent hosts were each aligned using default parameters in MUSCLE
<xref rid="pntd.0002738-Edgar1" ref-type="bibr">[61]</xref>
as implemented in Geneious
<xref rid="pntd.0002738-Kearse1" ref-type="bibr">[62]</xref>
. Outgroup taxa, obtained from GenBank, were included in each alignment, and were chosen based on previous species-level phylogenies. The outgroup for
<italic>Bartonella</italic>
was
<italic>Brucella melitensis</italic>
<xref rid="pntd.0002738-Lin1" ref-type="bibr">[25]</xref>
, for
<italic>Leptospira</italic>
was
<italic>Leptonema illini</italic>
<xref rid="pntd.0002738-Matthias1" ref-type="bibr">[44]</xref>
, and for the bat and rodent hosts was the duck-billed platypus,
<italic>Ornithorhynchus anatinus</italic>
HQ379861
<xref rid="pntd.0002738-Pumo1" ref-type="bibr">[63]</xref>
. In order analyze the difference in host-specificity between Old and New World geographic regions, each alignment was further divided into Old and New World. Alignments were inspected visually and ends were trimmed and gaps found in only one non-outgroup sequence were deleted due to high likelihood of sequencing error. After these edits, this resulted in 1,133 base pairs (bp) for cytb bat sequences, 338 bp for gltA
<italic>Bartonella</italic>
sequences, and 1,246 bp for 16S
<italic>Leptospira</italic>
sequences.</p>
<p>Maximum likelihood (ML) phylogenetic trees were generated using RAxML 7.0.4
<xref rid="pntd.0002738-Stamatakis1" ref-type="bibr">[64]</xref>
implemented with the Cyberinfrastructure for Phylogenetic Research (CIPRES) Portal (
<ext-link ext-link-type="uri" xlink:href="http://www.phylo.org">www.phylo.org</ext-link>
) using the substitution model GTRMIX, which determines an optimal tree by comparing likelihood scores under a GTR+G model. The number of bootstrap replicates were determined using the previously described stopping criteria. In order to corroborate the phylogenies as determined through ML, Bayesian inference (BI) host phylogenies were also generated using MrBayes 3.1.2
<xref rid="pntd.0002738-Ronquist1" ref-type="bibr">[65]</xref>
. We utilized a GTR+I+G substitution model, with 10,000,000 generations, sampling every 5000
<sup>th</sup>
generation with 4 heated chains and a burn in length of 1,000,000.</p>
</sec>
<sec id="s2c">
<title>Comparison of host and bacterial phylogenies</title>
<p>To visualize host-bacteria associations, tanglegrams were generated from the best ML trees in TreeMap 3.0
<xref rid="pntd.0002738-Charleston1" ref-type="bibr">[66]</xref>
. For cophylogenetic analyses, we utilized both global fit as well as event-based methods. We selected programs that are capable of accounting for evolutionary patterns given association of parasite species to multiple hosts, as well as the presence of multiple parasites in a single host.</p>
<p>Global-fit methods were used to quantify the degree of congruence between two given host and parasite topologies, and identify the individual associations contributing to the cophylogenetic structure
<xref rid="pntd.0002738-Desdevises1" ref-type="bibr">[67]</xref>
. First, global-fit analysis was tested using distance-based ParaFit
<xref rid="pntd.0002738-Legendre1" ref-type="bibr">[68]</xref>
, using matrices of patristic distances calculated from maximum likelihood host and parasite phylogenies in R 3.0.1
<xref rid="pntd.0002738-R1" ref-type="bibr">[69]</xref>
. With an additional matrix of host-parasite links, ParaFit analyses
<xref rid="pntd.0002738-Legendre1" ref-type="bibr">[68]</xref>
were also performed in R using package ape
<xref rid="pntd.0002738-Paradis1" ref-type="bibr">[70]</xref>
with 999 permutations to implement a global test as well as individual links. Each individual host-bacteria interaction is determined to be significant if either its ParaFit 1 or Parafit 2 p-value≤0.05, and these significant interactions are shown in solid lines in the tanglegrams.</p>
<p>As ParaFit tends to be liberal with its values, we also implemented newly developed program Procrustean Approach to Cophylogeny (PACo)
<xref rid="pntd.0002738-Balbuena1" ref-type="bibr">[71]</xref>
in R using packages ape and vegan
<xref rid="pntd.0002738-Oksanen1" ref-type="bibr">[72]</xref>
in order to obtain, and potentially corroborate, comparable global goodness-of-fit statistics with Parafit global values. PACo differs from ParaFit by utilizing Procrustean superimposition, in which the parasite matrix is rotated and scaled to fit the host matrix. Thus, PACo explicitly tests the dependence of the parasite phylogeny upon the host phylogeny.</p>
<p>We then used event-based program Jane 4
<xref rid="pntd.0002738-Conow1" ref-type="bibr">[73]</xref>
to determine the most probable coevolutionary history of the associated host and parasites, again using the ML host and bacteria trees as input. We assigned different relative costs to 5 possible evolutionary events, in a method similar to previous research efforts
<xref rid="pntd.0002738-Althoff1" ref-type="bibr">[74]</xref>
. We performed analyses with 100 generations, population sizes of 100, and a default cost setting matrix of 0 for cospeciation, 1 for duplication of parasites, 2 for duplication and host switch, 1 for loss of parasite, and 1 for failure to diverge. In further runs, we changed one of the possible events to a cost of 10 each time, rendering that event prohibitively expensive. By further exploring the parameter space this way, we determined how these changes affected the overall costs of the optimal evolutionary history.</p>
</sec>
</sec>
<sec id="s3">
<title>Results</title>
<sec id="s3a">
<title>Phylogenetic analysis</title>
<p>The topology of the BI tree was identical to that of the ML tree, except for a few branches with low support values. Thus, only the ML trees are presented here and used for further cophylogenetic analyses. Phylogenies tend to be well supported for more recent divergence events, but not deeper nodes. Nodes with bootstrap values ≥50 are labeled on all tanglegrams (
<xref ref-type="fig" rid="pntd-0002738-g001">Figures 1</xref>
<xref ref-type="fig" rid="pntd-0002738-g006">6</xref>
).</p>
<fig id="pntd-0002738-g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pntd.0002738.g001</object-id>
<label>Figure 1</label>
<caption>
<title>Tanglegram of cophylogenetic relationships between New World bat hosts and
<italic>Bartonella</italic>
.</title>
<p>Maximum likelihood phylogenies for
<italic>Bartonella</italic>
bacteria (yellow) and their New World bat hosts (blue), with bootstrap support values ≥50 labeled, rooted with outgroups. All host-pathogen associations are shown in the tanglegram as gray and black connecting lines. Black lines indicate significant individual cospeciation links between
<italic>Bartonella</italic>
and their hosts as indicated by ParaFit (P≤0.05), while gray lines represent non-significant links. Bat species that did not have an available cytochrome b sequence on GenBank, is substituted with a closely related species.
<italic>Phyllostomus hastatus</italic>
substituted for
<italic>Phyllostomus discolor</italic>
.</p>
</caption>
<graphic xlink:href="pntd.0002738.g001"></graphic>
</fig>
<fig id="pntd-0002738-g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pntd.0002738.g002</object-id>
<label>Figure 2</label>
<caption>
<title>Tanglegram of cophylogenetic relationships between Old World bat hosts and
<italic>Bartonella</italic>
.</title>
<p>Maximum likelihood phylogenies for
<italic>Bartonella</italic>
bacteria (yellow) and their Old World bat hosts (blue), with bootstrap support values ≥50 labeled, rooted with outgroups. All host-pathogen associations are shown in the tanglegram as gray and black connecting lines. Black lines indicate significant individual cospeciation links between
<italic>Bartonella</italic>
and their hosts as indicated by ParaFit (P≤0.05), while gray lines are non-significant links. Bat species that did not have an available cytochrome b sequence on GenBank, is substituted with a closely related species.
<italic>Triaenops persicus</italic>
substituted for
<italic>Triaenops menamena</italic>
, and
<italic>Hipposideros armiger</italic>
for
<italic>Hipposideros commersoni</italic>
.</p>
</caption>
<graphic xlink:href="pntd.0002738.g002"></graphic>
</fig>
<fig id="pntd-0002738-g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pntd.0002738.g003</object-id>
<label>Figure 3</label>
<caption>
<title>Tanglegram of cophylogenetic relationships between New World rodent hosts and
<italic>Bartonella</italic>
.</title>
<p>Maximum likelihood phylogenies for
<italic>Bartonella</italic>
bacteria (yellow) and their New World rodent hosts (green), with bootstrap support values ≥50 labeled, rooted with outgroups. All host-pathogen associations are shown in the tanglegram as black connecting lines and are significant as indicated by ParaFit (P≤0.05).</p>
</caption>
<graphic xlink:href="pntd.0002738.g003"></graphic>
</fig>
<fig id="pntd-0002738-g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pntd.0002738.g004</object-id>
<label>Figure 4</label>
<caption>
<title>Tanglegram of cophylogenetic relationships between Old World rodent hosts and
<italic>Bartonella</italic>
.</title>
<p>Maximum likelihood phylogenies for
<italic>Bartonella</italic>
bacteria (yellow) and their Old World rodent hosts (green), with bootstrap support values ≥50 labeled, rooted with outgroups. All host-pathogen associations are shown in the tanglegram as gray and black connecting lines. Black lines indicate significant individual cospeciation links between
<italic>Bartonella</italic>
and their hosts as indicated by ParaFit (P≤0.05), while gray lines are non-significant links.</p>
</caption>
<graphic xlink:href="pntd.0002738.g004"></graphic>
</fig>
<fig id="pntd-0002738-g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pntd.0002738.g005</object-id>
<label>Figure 5</label>
<caption>
<title>Tanglegram of cophylogenetic relationships between New World bat hosts and
<italic>Leptospira</italic>
.</title>
<p>Maximum likelihood phylogenies for
<italic>Leptospira</italic>
bacteria (pink) and their New World bat hosts (blue), with bootstrap support values ≥50 labeled, rooted with outgroups. All host-pathogen associations are shown in the tanglegram as gray connecting lines, and are insignificant as indicated by ParaFit (P≤0.05). Bat species that did not have an available cytochrome b sequence on GenBank, is substituted with a closely related species.
<italic>Phyllostomus hastatus</italic>
substituted for
<italic>Phyllostomus discolor</italic>
,
<italic>Promops centralis</italic>
for
<italic>Promops nasutus</italic>
.</p>
</caption>
<graphic xlink:href="pntd.0002738.g005"></graphic>
</fig>
<fig id="pntd-0002738-g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pntd.0002738.g006</object-id>
<label>Figure 6</label>
<caption>
<title>Tanglegram of cophylogenetic relationships between Old World bat hosts and
<italic>Leptospira</italic>
.</title>
<p>Maximum likelihood phylogenies for
<italic>Leptospira</italic>
bacteria (pink) and their Old World bat hosts (blue), with bootstrap support values ≥50 labeled, rooted with outgroups. All host-pathogen associations are shown in the tanglegram as gray connecting lines, and are significant as indicated by ParaFit (P≤0.05). Bat species that did not have an available cytochrome b sequence on GenBank, is substituted with a closely related species.
<italic>Triaenops persicus</italic>
substituted for
<italic>Triaenops menamena</italic>
.</p>
</caption>
<graphic xlink:href="pntd.0002738.g006"></graphic>
</fig>
</sec>
<sec id="s3b">
<title>Global-fit cophylogeny</title>
<sec id="s3b1">
<title>Bats–
<italic>Bartonella</italic>
</title>
<p>Overall, both ParaFit and PACo analyses of
<italic>Bartonella</italic>
and bats provided evidence for significant co-evolution between
<italic>Bartonella</italic>
and bat hosts (ParaFitGlobal = 1.9703, P≤0.001; m
<sup>2</sup>
global value = 7.3320, P≤0.0001). Twenty-six of the 51 individual host-parasite links are significant based on either a ParaFit1 or Parafit2 value of P≤0.05. While there was evidence of overall cospeciation, a substantial proportion of specific host-parasite links were non-significant.</p>
<p>The separate analyses of New World and Old World bat associated
<italic>Bartonella</italic>
both indicated evidence for overall coevolution with host species. In the New World dataset, global values from both ParaFit and PACo were significant (ParaFitGlobal = 0.4762, P≤0.001; m
<sup>2</sup>
global value = 2.3313, P≤0.0001) and 29/38 individual were significant (
<xref ref-type="fig" rid="pntd-0002738-g001">Figure 1</xref>
). For the Old World dataset, (ParaFitGlobal = 0.0871, P = 0.029; m
<sup>2</sup>
global value = 0.7385, P = 0.0004) and 4/13 individual links were significant (
<xref ref-type="fig" rid="pntd-0002738-g002">Figure 2</xref>
).</p>
</sec>
<sec id="s3b2">
<title>Rodents–
<italic>Bartonella</italic>
</title>
<p>Both ParaFit and PACo analyses of
<italic>Bartonella</italic>
and rodent phylogenies also indicated strong overall patterns of cospeciation (ParaFitGlobal = 102.4409, P≤0.001; m
<sup>2</sup>
global value = 86.532, P≤0.0001). For the entire rodent-
<italic>Bartonella</italic>
dataset, 94/140 individual host-parasite links were significant based on ParaFit1 values and P≤0.05.</p>
<p>The separate analyses for the New World and Old World rodent hosts with associated
<italic>Bartonella</italic>
both also indicated evidence for significant overall coevolution. In the New World dataset, global values from both ParaFit and PACo were significant (ParaFitGlobal = 0.156, P≤0.001; m
<sup>2</sup>
global value = 0.3548, P≤0.0001) and all 20 individual links were significant (
<xref ref-type="fig" rid="pntd-0002738-g003">Figure 3</xref>
). For the Old World dataset, (ParaFitGlobal = 42.8037, P≤0.001; m
<sup>2</sup>
global value = 72.31235, P≤0.0001) and 79/120 individual links were significant (
<xref ref-type="fig" rid="pntd-0002738-g004">Figure 4</xref>
).</p>
</sec>
<sec id="s3b3">
<title>Bats–
<italic>Leptospira</italic>
</title>
<p>In contrast to
<italic>Bartonella</italic>
in mammalian hosts, ParaFit and PACo analyses of
<italic>Leptospira</italic>
and bats were unable to reject the hypothesis of independence of speciation events (ParaFitGlobal = 0.0042, P = 0.84; m
<sup>2</sup>
global value = 4.6310, P = 0.5629). Based on ParaFit1 values, only 1 of 26 individual host-parasite links is significant based on P≤0.05. The separate analyses for the New World and Old World bat hosts with associated
<italic>Bartonella</italic>
both also indicated no evidence for overall coevolution. In the New World dataset, global values from both ParaFit and PACo were non-significant (ParaFitGlobal = 0.0012, P = 0.858; m
<sup>2</sup>
global value = 4.631, P = 0.563) and none of the 19 individual links were significant (
<xref ref-type="fig" rid="pntd-0002738-g005">Figure 5</xref>
). For the Old World dataset, (ParaFitGlobal = 0.0002, P = 0.269; m
<sup>2</sup>
global value = 2.0802, P = 0.7587) and none of the 7 individual links were significant (
<xref ref-type="fig" rid="pntd-0002738-g006">Figure 6</xref>
).</p>
</sec>
</sec>
<sec id="s3c">
<title>Event-based cophylogeny</title>
<p>Based on a default cost setting, we calculated the optimal number of each type of coevolutionary event, to minimize total cost, for each host-pathogen association (
<xref ref-type="table" rid="pntd-0002738-t001">Table 1</xref>
). In order to account for the different sample sizes of each of the phylogenies, we divided the number of cospeciation and host switch events by the number of parasites in each association (
<xref ref-type="table" rid="pntd-0002738-t001">Table 1</xref>
). The resulting ratios can then be compared across the different associations in order to see the overall impact of each event given the number of parasites. Based on these calculations,
<italic>Leptospira</italic>
and bat host associations have the greatest number of host switches per parasite (0.731), while
<italic>Bartonella</italic>
and rodent host associations have the fewest (0.264).
<italic>Leptospira</italic>
and bat host associations also have the greatest number of cospeciations per parasite (0.231), while
<italic>Bartonella</italic>
and rodent host associations have the fewest (0.132).</p>
<table-wrap id="pntd-0002738-t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pntd.0002738.t001</object-id>
<label>Table 1</label>
<caption>
<title>Results from event-based cophylogeny, using default cost settings of 0, 1, 2, 1, 1 in Jane.</title>
</caption>
<alternatives>
<graphic id="pntd-0002738-t001-1" xlink:href="pntd.0002738.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">Cospeciations</td>
<td align="left" rowspan="1" colspan="1">Duplications</td>
<td align="left" rowspan="1" colspan="1">Duplications and host switches</td>
<td align="left" rowspan="1" colspan="1">Losses</td>
<td align="left" rowspan="1" colspan="1">Failures to diverge</td>
<td align="left" rowspan="1" colspan="1">Total Cost</td>
<td align="left" rowspan="1" colspan="1"># of hosts</td>
<td align="left" rowspan="1" colspan="1"># of parasites</td>
<td align="left" rowspan="1" colspan="1">Host switches/parasites</td>
<td align="left" rowspan="1" colspan="1">Cospeciations/parasites</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>
<italic>Bats-Bartonella</italic>
</bold>
</td>
<td align="left" rowspan="1" colspan="1">10</td>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">24</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">73</td>
<td align="left" rowspan="1" colspan="1">23</td>
<td align="left" rowspan="1" colspan="1">56</td>
<td align="left" rowspan="1" colspan="1">0.429</td>
<td align="left" rowspan="1" colspan="1">0.179</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>New World</italic>
</td>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">53</td>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="left" rowspan="1" colspan="1">38</td>
<td align="left" rowspan="1" colspan="1">0.474</td>
<td align="left" rowspan="1" colspan="1">0.132</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Old World</italic>
</td>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">17</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">18</td>
<td align="left" rowspan="1" colspan="1">0.278</td>
<td align="left" rowspan="1" colspan="1">0.333</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>
<italic>Bats-Leptospira</italic>
</bold>
</td>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">19</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">41</td>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1">26</td>
<td align="left" rowspan="1" colspan="1">0.731</td>
<td align="left" rowspan="1" colspan="1">0.231</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>New World</italic>
</td>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">27</td>
<td align="left" rowspan="1" colspan="1">14</td>
<td align="left" rowspan="1" colspan="1">19</td>
<td align="left" rowspan="1" colspan="1">0.632</td>
<td align="left" rowspan="1" colspan="1">0.263</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Old World</italic>
</td>
<td align="left" rowspan="1" colspan="1">2</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">9</td>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1">7</td>
<td align="left" rowspan="1" colspan="1">0.571</td>
<td align="left" rowspan="1" colspan="1">0.286</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<bold>
<italic>Rodents-Bartonella</italic>
</bold>
</td>
<td align="left" rowspan="1" colspan="1">16</td>
<td align="left" rowspan="1" colspan="1">77</td>
<td align="left" rowspan="1" colspan="1">35</td>
<td align="left" rowspan="1" colspan="1">127</td>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="left" rowspan="1" colspan="1">285</td>
<td align="left" rowspan="1" colspan="1">39</td>
<td align="left" rowspan="1" colspan="1">129</td>
<td align="left" rowspan="1" colspan="1">0.264</td>
<td align="left" rowspan="1" colspan="1">0.132</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>New World</italic>
</td>
<td align="left" rowspan="1" colspan="1">1</td>
<td align="left" rowspan="1" colspan="1">15</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1">0.150</td>
<td align="left" rowspan="1" colspan="1">0.050</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>Old World</italic>
</td>
<td align="left" rowspan="1" colspan="1">17</td>
<td align="left" rowspan="1" colspan="1">54</td>
<td align="left" rowspan="1" colspan="1">37</td>
<td align="left" rowspan="1" colspan="1">75</td>
<td align="left" rowspan="1" colspan="1">11</td>
<td align="left" rowspan="1" colspan="1">214</td>
<td align="left" rowspan="1" colspan="1">35</td>
<td align="left" rowspan="1" colspan="1">109</td>
<td align="left" rowspan="1" colspan="1">0.339</td>
<td align="left" rowspan="1" colspan="1">0.156</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<p>We also compared cophylogenetic fit between bacteria and Old World vs. New World host species.
<italic>Bartonella</italic>
had nearly twice as many host switches per parasite in New World (0.474) as compared to Old World bats (0.278).
<italic>Bartonella</italic>
in rodents had the opposite trend, with more than twice as many host switches per parasite in Old World (0.339) as compared to New World rodents (0.150). There were also approximately three times as many cospeciation events per parasite for
<italic>Bartonella</italic>
in the Old World for both groups of hosts (bats: 0.333, rodents: 0.156) compared to the New World (bats: 0.132, rodents: 0.050). For
<italic>Leptospira</italic>
, the differences between Old and New World cophylogenetic patterns for both host switches and cospeciations were minimal.</p>
<p>We explored a wide-range of cost parameters in order to determine the effect of removing different evolutionary event options from each analysis (
<xref ref-type="supplementary-material" rid="pntd.0002738.s007">Table S6</xref>
). Increasing the cost of host switching events had the greatest overall impact on total cost. In fact, the role of the host switching events in the overall coevolutionary pattern was so strong that even with a potentially prohibitive cost of 10, the solution still proposed between 2–4 host switch events for
<italic>Bartonella</italic>
in New World bats and Old World rodents.</p>
</sec>
</sec>
<sec id="s4">
<title>Discussion</title>
<p>We found significant coevolutionary congruence between
<italic>Bartonella</italic>
and both their rodent and bat hosts at a global level, while the relationship between
<italic>Leptospira</italic>
and their bat hosts was non-significant. Event-cost results support the global-fit findings, with the rodent-
<italic>Bartonella</italic>
and bat-
<italic>Bartonella</italic>
associations having the least number of host switches per parasite, which indicates greater evolutionary congruence over time. Co-evolution of bartonellae and their mammalian hosts also remains significant when New and Old World datasets are analyzed separately. The evolutionary pattern in bat hosts is driven mostly by a few strong host-parasite interactions, with 51% of individual associations significant. In comparison, a greater proportion, 67%, of the individual rodent-bacteria associations are significant, indicating stronger coevolutionary interactions throughout these lineages. In fact, in the New World association of rodents and
<italic>Bartonella</italic>
, a full 100% of the host-parasite links were significant. In contrast, for
<italic>Leptospira</italic>
and their bat hosts, there is only 1 significant individual in analysis of the entire data set, and no significant host-parasite links when the data are analyzed separately as Old vs. New World. We note that the sample sizes for
<italic>Bartonella</italic>
in New World rodents and
<italic>Leptospira</italic>
in Old World bats are both small, and that the observed patterns could change with the addition of more data. Similarly, the relatively short sequence available of only one gene for both
<italic>Bartonella</italic>
and
<italic>Leptospira</italic>
may limit the resolution and nodal support for the pathogen phylogenies we obtained. These issues can only be addressed with additional sampling and genetic sequencing to complement these sparse datasets. For example, while our analysis of
<italic>Bartonella</italic>
-host relationships was limited by the availability of glt
<italic>A</italic>
fragments, the use of multi-gene phylogenies would be a more robust approach given the confounding effect of recombination
<xref rid="pntd.0002738-Paziewska1" ref-type="bibr">[75]</xref>
. Despite these potentially confounding factors, our preliminary analysis suggests a strong signal was present for some host-pathogen relationships and at a host order and pathogen genus level these trends were generalizable.</p>
<p>Event-cost methods corroborate the non-significant coevolutionary history of
<italic>Leptospira</italic>
and bats. Interestingly, the number of cospeciations per parasite is also the highest for
<italic>Leptospira</italic>
and bats, although they also have the highest number of host switches per parasite. Since their overall coevolutionary relationship is nonsignificant, this suggests that for the bat-
<italic>Leptospira</italic>
system, coevolutionary relationships are driven mostly strongly by the host switching events rather than cospeciation. Exploring the parameter space of cost structures further supports our findings. For all associations, maximizing the cost of host switching results in the largest overall change in the total cost (
<xref ref-type="supplementary-material" rid="pntd.0002738.s007">Table S6</xref>
). This indicates that host switching is an “expensive” evolutionary event, and our finding of frequent and well-supported host switching in the bat-
<italic>Leptospira</italic>
system suggest that there are intrinsic ecological and transmission factors driving this.</p>
<p>One explanation for the different coevolutionary patterns between
<italic>Bartonella</italic>
and
<italic>Leptopira</italic>
may be differences in the modes of transmission and infection dynamics for each pathogen. As a vector transmitted parasite,
<italic>Bartonella</italic>
has an additional evolutionary step in adapting to an arthropod organism as well as a mammalian host. Combined, this can exert greater evolutionary selection and act as a selective force driving speciation. Further,
<italic>Bartonella</italic>
forms persistent, often asymptomatic, infections in its hosts
<xref rid="pntd.0002738-Harms1" ref-type="bibr">[17]</xref>
, and some evidence even suggests that
<italic>Bartonella</italic>
may be acting as a symbiont more than a pathogen
<xref rid="pntd.0002738-Billeter1" ref-type="bibr">[18]</xref>
,
<xref rid="pntd.0002738-Halos1" ref-type="bibr">[76]</xref>
,
<xref rid="pntd.0002738-Morse1" ref-type="bibr">[77]</xref>
. Many
<italic>Bartonella</italic>
species are also likely transmitted by only one arthropod species
<xref rid="pntd.0002738-VayssierTaussat1" ref-type="bibr">[78]</xref>
, and this specificity can then be translated to a greater coevolutionary pattern between the disease and eventual mammalian host. In bats, the arthropod vectors include blood-feeding bat flies, from which
<italic>Bartonella</italic>
has been sequenced and cultured
<xref rid="pntd.0002738-Morse1" ref-type="bibr">[77]</xref>
,
<xref rid="pntd.0002738-Billeter2" ref-type="bibr">[79]</xref>
. Host specificity of these arthropods may help to maintain the high diversity of
<italic>Bartonella</italic>
and long-term coevolutionary patterns between bat flies and their
<italic>Bartonella</italic>
parasites
<xref rid="pntd.0002738-Morse1" ref-type="bibr">[77]</xref>
. However no in-depth cophylogenetic analyses have been conducted for these bacteria and their known arthropod vectors, and this is an area for future exploration. Additional studies on arthropod ecology, e.g. bat fly, population structure, dispersal, ecology, and host specificity will also help to clarify the role of bat hosts vs. arthropod vectors in the evolution of
<italic>Bartonella</italic>
<xref rid="pntd.0002738-Morse1" ref-type="bibr">[77]</xref>
,
<xref rid="pntd.0002738-Olival2" ref-type="bibr">[80]</xref>
. Additionally, Bartonella is an intracellular bacteria which can survive only within erythrocytes and endothelial cells
<xref rid="pntd.0002738-Harms1" ref-type="bibr">[17]</xref>
. This requires a finer adaptation to the host's cells in order for bacterial penetration. In summary,
<italic>Bartonella</italic>
infection dynamics favor vector transmission, and the specific host-vector relationships, potential vertical transmission in vectors, and intracellular nature of the bacteria allow for co-evolutionary relationships to develop over time.</p>
<p>In contrast,
<italic>Leptospira</italic>
spp. are not vector-transmitted and instead are transmitted via environmental contamination. Leptospires are able to survive outside of their hosts, and can persist in water bodies when shed in animal urine
<xref rid="pntd.0002738-Adler1" ref-type="bibr">[81]</xref>
. Although the vast majority of
<italic>Leptospira</italic>
infections are mild, a small proportion involve multiple organ systems and develop various complications resulting in a case fatality in human patients of about 40%
<xref rid="pntd.0002738-Vijayachari1" ref-type="bibr">[45]</xref>
. As contact with urine and contaminated water is the main form of disease transmission, physical proximity to environmental sources can play a large role in influencing host-pathogen interactions
<xref rid="pntd.0002738-Woolhouse1" ref-type="bibr">[82]</xref>
. Thus it is possible that geographic overlap of the host species will better predict similarity in the bacteria they carry rather than the phylogenetic relatedness of the hosts. Overlapping geographic distribution of host species has been found to be an important determinant of pathogen sharing in primates
<xref rid="pntd.0002738-Davies1" ref-type="bibr">[83]</xref>
. The role of environmental transmission is most likely why we observed frequent host switching events and a lack of coevolutionary patterns in the
<italic>Leptospira</italic>
lineages we studied. Further investigations of Leptospirosis disease dynamics, including shedding, transmission, and immunity, in bat populations is warranted, as well as their zoonotic potential given the propensity towards cross-species transmission.</p>
<p>We originally hypothesized a difference in the strength of coevolutionary relationships between Old and New World host species, since previous research in bats had indicated host specificity in the Old World but not New World for
<italic>Bartonella</italic>
<xref rid="pntd.0002738-Kosoy1" ref-type="bibr">[24]</xref>
. While the mechanism for this observation was not clear, it may be hypothesized that a greater degree of congruence between host-bacteria phylogenies in the Old World may be due to longer evolutionary time for the establishment of mutualistic relationships with mammalian hosts
<xref rid="pntd.0002738-Kosoy1" ref-type="bibr">[24]</xref>
. Yet, in our larger datasets, we did not see this pattern emerge, and our results indicated that coevolutionary patterns are generalizable globally. For
<italic>Bartonella</italic>
, significant coevolutionary congruence with hosts was evident globally and across host ranges, while for
<italic>Leptospira</italic>
, the lack of a coevolutionary relationship in bat hosts was evident in both the Old and New World. However, it is interesting that we observed a stronger relationship between rodents and
<italic>Bartonella</italic>
than between bats and
<italic>Bartonella</italic>
. There are two possible explanations for this. First, in mammalian evolutionary history, rodents existed for a longer period with 4.1 million years earlier time of origin and a 10 million year difference in time of basal diversification between the two
<xref rid="pntd.0002738-BinindaEmonds1" ref-type="bibr">[9]</xref>
. Thus it is possible that there has been a longer time for parasite-host relations to coevolve in rodents and create stronger patterns. However it is not clear that these hosts have been infected with the two pathogens in question over their entire evolutionary history, and further detecting such deep evolutionary divergences is confounded by genetic saturation and nucleotide homoplasy. A second explanation is that the ecological differences between bats and rodents may explain the observed differences in host-specificity. Unlike rodents, a number of bat species form large multi-species gatherings and are more likely to have direct ecological overlap between host species (e.g. many thousands of individuals from >8 bat species roosting together in a single cave site in Mexico
<xref rid="pntd.0002738-VargasContreras1" ref-type="bibr">[84]</xref>
). Similarly, at sites across the tropics, an extraordinary numbers of bat species can exist in sympatry, e.g. >70 species sharing tropical forest habitat in Krau Wildlife Reserve, Malaysia
<xref rid="pntd.0002738-Kingston1" ref-type="bibr">[85]</xref>
. The gregarious aggregations of highly mobile individuals, often between multiple species, may help to explain differences in the global coevolutionary patterns observed between bats and rodents. While there has been growing scientific interest in these ecological and life-history host traits to explain viral sharing in bats and rodents
<xref rid="pntd.0002738-Olival1" ref-type="bibr">[5]</xref>
,
<xref rid="pntd.0002738-Turmelle1" ref-type="bibr">[8]</xref>
,
<xref rid="pntd.0002738-Luis1" ref-type="bibr">[10]</xref>
, the role that these traits may play in bacterial pathogen diversification and spillover has been little investigated to date.</p>
<p>Overall, it is likely that the interplay of multiple factors, including geographic overlap, pathogen transmission pathways, infection dynamics, and host ecological and evolutionary history, that contribute to the contrasting coevolutionary patterns evident in mammal-bacteria interactions we observed. Further research is warranted to better understand and tease apart these contributing factors, and we recognize some of the limitations of this preliminary study. First, our analysis was limited by the availability of comparable data sets for a given gene and host taxonomic group. This precluded us from examining
<italic>Leptospira</italic>
in rodents; and resulted in low support values from some nodes in our phylogenies. In the future, using multiple genes or full genome data, for a greater number of bat and rodent taxonomic groups and bacterial microbes once they are available, will allow for more robust taxonomic analyses. Also, in addition to host phylogeny that we examine here, future data collection and analyses should focus on arthropod vector host specificity and phylogenetic relationships to better predict specificity within
<italic>Bartonella</italic>
. Future investigations should also consider the role of host geographic range and niche overlap to explain pathogen sharing between hosts. The application of spatial analyses of wildlife hosts for both
<italic>Bartonella</italic>
and
<italic>Leptospira</italic>
will provide valuable information on transmission potential based on the role of contact vs. cophylogeny. We predict that species with overlapping ranges will share more similar communities of
<italic>Leptospira</italic>
than non-overlapping bat species, regardless of their phylogenetic relatedness. For
<italic>Bartonella</italic>
there is also likely to be a geographic effect, as interaction among bats of different species within multi-species roosts, or shared habitats, could be an important factor for bacterial pathogen sharing.</p>
<p>Lastly, this work is particularly important because it involves two emerging, neglected tropical diseases with known, sylvatic wildlife reservoirs.
<italic>Bartonella</italic>
has been of concern as an emerging zoonoses due to its ability to induce life-threatening illnesses such as endocarditis, myocarditis, meningoencephalitis, and contributing to chronic debilitating disease, all while being difficult to diagnose in humans as well as animals
<xref rid="pntd.0002738-Breitschwerdt1" ref-type="bibr">[86]</xref>
. Leptospirosis is a constant concern to public health authorities, and annual global incidence of severe leptospirosis has been estimated as 500,000
<xref rid="pntd.0002738-Hartskeerl1" ref-type="bibr">[87]</xref>
. Elucidating the diversity and coevolutionary patterns of these bacteria in their natural hosts and understanding the frequency and causes of host-switching events, will help us better predict spillover from the mammal reservoirs into humans. Disruption of strict coevolutionary patterns, as we observed for both bacterial genera, to varying degrees, provides a framework to forecast pathogen spillover potential to any mammalian host, including humans
<xref rid="pntd.0002738-Woolhouse2" ref-type="bibr">[88]</xref>
. The methods that we employed here to study bacterial disease in bats and rodent hosts are broadly applicable to a wide range of other disease types, including viruses in their mammalian hosts. By expanding these tools to better understand the evolutionary past of pathogens within and among wildlife hosts, we gain information to better predict the outbreaks of the future.</p>
</sec>
<sec sec-type="supplementary-material" id="s5">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pntd.0002738.s001">
<label>Figure S1</label>
<caption>
<p>
<bold>Disease-related publications for bats and rodents over the past 20 years.</bold>
The number of publications pertaining to viral (red) and bacterial (blue) disease research in bats (dotted) and rodents (solid) in each year from 1993 to 2012. Data from Web of Science keyword search for all publications from 1993 onwards using combinations of keywords bat OR Chiroptera*, rodent*, bacteria*, virus* OR vira*. Bacterial studies in bats are the most understudied category to date.</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pntd.0002738.s001.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0002738.s002">
<label>Table S1</label>
<caption>
<p>
<bold>gltA GenBank accession numbers for studied </bold>
<bold>
<italic>Bartonella</italic>
</bold>
<bold> sequences in bat hosts.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pntd.0002738.s002.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0002738.s003">
<label>Table S2</label>
<caption>
<p>
<bold>gltA GenBank accession numbers for studied </bold>
<bold>
<italic>Bartonella</italic>
</bold>
<bold> sequences in rodent hosts.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pntd.0002738.s003.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0002738.s004">
<label>Table S3</label>
<caption>
<p>
<bold>16S GenBank accession numbers for studied </bold>
<bold>
<italic>Leptospira</italic>
</bold>
<bold> sequences in bat hosts.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pntd.0002738.s004.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0002738.s005">
<label>Table S4</label>
<caption>
<p>
<bold>Cytochrome b GenBank accession numbers of bat species host to studied bacteria.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pntd.0002738.s005.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0002738.s006">
<label>Table S5</label>
<caption>
<p>
<bold>Cytochrome b GenBank accession numbers of rodent species host to studied </bold>
<bold>
<italic>Bartonella.</italic>
</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pntd.0002738.s006.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="pntd.0002738.s007">
<label>Table S6</label>
<caption>
<p>
<bold>Results from event-based cophylogeny Jane, using different cost-settings.</bold>
</p>
<p>(DOCX)</p>
</caption>
<media xlink:href="pntd.0002738.s007.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>BL thanks the scientists and staff at EcoHealth Alliance, including Peter Daszak and Jonathan Epstein, for invaluable discussions and support in developing this manuscript. We thank Katharina Dittmar for critical input on the role of bat flies and other potential vectors in bats.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pntd.0002738-Simmons1">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Simmons</surname>
<given-names>NB</given-names>
</name>
,
<name>
<surname>Wilson</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Reeder</surname>
<given-names>D</given-names>
</name>
(
<year>2005</year>
)
<article-title>Order chiroptera</article-title>
.
<source>Mammal species of the world: a taxonomic and geographic reference</source>
<volume>1</volume>
:
<fpage>312</fpage>
<lpage>529</lpage>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Pagel1">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pagel</surname>
<given-names>MD</given-names>
</name>
,
<name>
<surname>May</surname>
<given-names>RM</given-names>
</name>
,
<name>
<surname>Collie</surname>
<given-names>AR</given-names>
</name>
(
<year>1991</year>
)
<article-title>Ecological aspects of the geographical distribution and diversity of mammalian species</article-title>
.
<source>American Naturalist</source>
<volume>137</volume>
:
<fpage>791</fpage>
<lpage>815</lpage>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Wong1">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wong</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Lau</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Woo</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Yuen</surname>
<given-names>KY</given-names>
</name>
(
<year>2007</year>
)
<article-title>Bats as a continuing source of emerging infections in humans</article-title>
.
<source>Rev Med Virol</source>
<volume>17</volume>
:
<fpage>67</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="pmid">17042030</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Memish1">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Memish</surname>
<given-names>ZA</given-names>
</name>
,
<name>
<surname>Mishra</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Olival</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Fagbo</surname>
<given-names>SF</given-names>
</name>
,
<name>
<surname>Kapoor</surname>
<given-names>V</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Middle East Respiratory Syndrome Coronavirus in Bats, Saudi Arabia</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>19</volume>
:
<fpage>1819</fpage>
<lpage>1823</lpage>
<pub-id pub-id-type="pmid">24206838</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Olival1">
<label>5</label>
<mixed-citation publication-type="book">Olival KJ, Epstein JH, Wang LF, Field HE, Daszak P (2012) Are bats unique viral reservoirs? In: Aguirre AA, Ostfeld RS, Daszak P, editors. New Directions in Conservation Medicine: Applied Cases of Ecological Health. 2nd ed. Oxford: Oxford University Press. pp. 195–212.</mixed-citation>
</ref>
<ref id="pntd.0002738-Meerburg1">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Meerburg</surname>
<given-names>BG</given-names>
</name>
,
<name>
<surname>Singleton</surname>
<given-names>GR</given-names>
</name>
,
<name>
<surname>Kijlstra</surname>
<given-names>A</given-names>
</name>
(
<year>2009</year>
)
<article-title>Rodent-borne diseases and their risks for public health</article-title>
.
<source>Crit Rev Microbiol</source>
<volume>35</volume>
:
<fpage>221</fpage>
<lpage>270</lpage>
<pub-id pub-id-type="pmid">19548807</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Muhldorfer1">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Muhldorfer</surname>
<given-names>K</given-names>
</name>
(
<year>2013</year>
)
<article-title>Bats and bacterial pathogens: a review</article-title>
.
<source>Zoonoses Public Health</source>
<volume>60</volume>
:
<fpage>93</fpage>
<lpage>103</lpage>
<pub-id pub-id-type="pmid">22862791</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Turmelle1">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Turmelle</surname>
<given-names>AS</given-names>
</name>
,
<name>
<surname>Olival</surname>
<given-names>KJ</given-names>
</name>
(
<year>2009</year>
)
<article-title>Correlates of viral richness in bats (Order Chiroptera)</article-title>
.
<source>EcoHealth</source>
<volume>6</volume>
:
<fpage>522</fpage>
<lpage>539</lpage>
<pub-id pub-id-type="pmid">20049506</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-BinindaEmonds1">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bininda-Emonds</surname>
<given-names>OR</given-names>
</name>
,
<name>
<surname>Cardillo</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Jones</surname>
<given-names>KE</given-names>
</name>
,
<name>
<surname>MacPhee</surname>
<given-names>RD</given-names>
</name>
,
<name>
<surname>Beck</surname>
<given-names>RM</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>The delayed rise of present-day mammals</article-title>
.
<source>Nature</source>
<volume>446</volume>
:
<fpage>507</fpage>
<lpage>512</lpage>
<pub-id pub-id-type="pmid">17392779</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Luis1">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Luis</surname>
<given-names>AD</given-names>
</name>
,
<name>
<surname>Hayman</surname>
<given-names>DT</given-names>
</name>
,
<name>
<surname>O'Shea</surname>
<given-names>TJ</given-names>
</name>
,
<name>
<surname>Cryan</surname>
<given-names>PM</given-names>
</name>
,
<name>
<surname>Gilbert</surname>
<given-names>AT</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special</article-title>
?
<source>Proceedings of the Royal Society B: Biological Sciences</source>
<volume>280</volume>
:
<fpage>20122753</fpage>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Calisher1">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Calisher</surname>
<given-names>CH</given-names>
</name>
,
<name>
<surname>Childs</surname>
<given-names>JE</given-names>
</name>
,
<name>
<surname>Field</surname>
<given-names>HE</given-names>
</name>
,
<name>
<surname>Holmes</surname>
<given-names>KV</given-names>
</name>
,
<name>
<surname>Schountz</surname>
<given-names>T</given-names>
</name>
(
<year>2006</year>
)
<article-title>Bats: important reservoir hosts of emerging viruses</article-title>
.
<source>Clin Microbiol Rev</source>
<volume>19</volume>
:
<fpage>531</fpage>
<lpage>545</lpage>
<pub-id pub-id-type="pmid">16847084</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Plowright1">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Plowright</surname>
<given-names>RK</given-names>
</name>
,
<name>
<surname>Foley</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Field</surname>
<given-names>HE</given-names>
</name>
,
<name>
<surname>Dobson</surname>
<given-names>AP</given-names>
</name>
,
<name>
<surname>Foley</surname>
<given-names>JE</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Urban habituation, ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying foxes (Pteropus spp.)</article-title>
.
<source>Proceedings of the Royal Society B: Biological Sciences</source>
<volume>278</volume>
:
<fpage>3703</fpage>
<lpage>3712</lpage>
</mixed-citation>
</ref>
<ref id="pntd.0002738-OShea1">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>O'Shea</surname>
<given-names>TJ</given-names>
</name>
,
<name>
<surname>Neubaum</surname>
<given-names>DJ</given-names>
</name>
,
<name>
<surname>Neubaum</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Cryan</surname>
<given-names>PM</given-names>
</name>
,
<name>
<surname>Ellison</surname>
<given-names>LE</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Bat ecology and public health surveillance for rabies in an urbanizing region of Colorado</article-title>
.
<source>Urban Ecosystems</source>
<volume>14</volume>
:
<fpage>665</fpage>
<lpage>697</lpage>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Murray1">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Murray</surname>
<given-names>KA</given-names>
</name>
,
<name>
<surname>Daszak</surname>
<given-names>P</given-names>
</name>
(
<year>2013</year>
)
<article-title>Human ecology in pathogenic landscapes: two hypotheses on how land use change drives viral emergence</article-title>
.
<source>Current Opinion in Virology</source>
<volume>3</volume>
:
<fpage>79</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="pmid">23415415</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Cui1">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cui</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Han</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Streicker</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Tang</surname>
<given-names>X</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Evolutionary relationships between bat coronaviruses and their hosts</article-title>
.
<source>Emerging infectious diseases</source>
<volume>13</volume>
:
<fpage>1526</fpage>
<pub-id pub-id-type="pmid">18258002</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Ricklefs1">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ricklefs</surname>
<given-names>RE</given-names>
</name>
,
<name>
<surname>Fallon</surname>
<given-names>SM</given-names>
</name>
,
<name>
<surname>Bermingham</surname>
<given-names>E</given-names>
</name>
(
<year>2004</year>
)
<article-title>Evolutionary relationships, cospeciation, and host switching in avian malaria parasites</article-title>
.
<source>Systematic Biology</source>
<volume>53</volume>
:
<fpage>111</fpage>
<lpage>119</lpage>
<pub-id pub-id-type="pmid">14965906</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Harms1">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Harms</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Dehio</surname>
<given-names>C</given-names>
</name>
(
<year>2012</year>
)
<article-title>Intruders below the Radar: Molecular Pathogenesis of Bartonella spp</article-title>
.
<source>Clinical Microbiology Reviews</source>
<volume>25</volume>
:
<fpage>42</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="pmid">22232371</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Billeter1">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Billeter</surname>
<given-names>SA</given-names>
</name>
,
<name>
<surname>Levy</surname>
<given-names>MG</given-names>
</name>
,
<name>
<surname>Chomel</surname>
<given-names>BB</given-names>
</name>
,
<name>
<surname>Breitschwerdt</surname>
<given-names>EB</given-names>
</name>
(
<year>2008</year>
)
<article-title>Vector transmission of Bartonella species with emphasis on the potential for tick transmission</article-title>
.
<source>Medical and Veterinary Entomology</source>
<volume>22</volume>
:
<fpage>1</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="pmid">18380649</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Brown1">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Brown</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Bennett</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Begon</surname>
<given-names>M</given-names>
</name>
(
<year>2004</year>
)
<article-title>Flea-borne Bartonella grahamii and Bartonella taylorii in bank voles</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>10</volume>
:
<fpage>684</fpage>
<lpage>687</lpage>
<pub-id pub-id-type="pmid">15200860</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Kernif1">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kernif</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Socolovschi</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Wells</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Lakim</surname>
<given-names>MB</given-names>
</name>
,
<name>
<surname>Inthalad</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Bartonella and Rickettsia in arthropods from the Lao PDR and from Borneo, Malaysia</article-title>
.
<source>Comparative Immunology Microbiology and Infectious Diseases</source>
<volume>35</volume>
:
<fpage>51</fpage>
<lpage>57</lpage>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Tsai1">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tsai</surname>
<given-names>YL</given-names>
</name>
,
<name>
<surname>Chang</surname>
<given-names>CC</given-names>
</name>
,
<name>
<surname>Chuang</surname>
<given-names>ST</given-names>
</name>
,
<name>
<surname>Chomel</surname>
<given-names>BB</given-names>
</name>
(
<year>2011</year>
)
<article-title>Bartonella species and their ectoparasites: Selective host adaptation or strain selection between the vector and the mammalian host</article-title>
?
<source>Comparative Immunology Microbiology and Infectious Diseases</source>
<volume>34</volume>
:
<fpage>299</fpage>
<lpage>314</lpage>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Bai1">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bai</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Recuenco</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Gilbert</surname>
<given-names>AT</given-names>
</name>
,
<name>
<surname>Osikowicz</surname>
<given-names>LM</given-names>
</name>
,
<name>
<surname>Gomez</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Prevalence and Diversity of
<italic>Bartonella</italic>
spp. in Bats in Peru</article-title>
.
<source>American Journal of Tropical Medicine and Hygiene</source>
<volume>87</volume>
:
<fpage>518</fpage>
<lpage>523</lpage>
<pub-id pub-id-type="pmid">22826480</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Concannon1">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Concannon</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Wynn-Owen</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Simpson</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Birtles</surname>
<given-names>R</given-names>
</name>
(
<year>2005</year>
)
<article-title>Molecular characterization of haemoparasites infecting bats (Microchiroptera) in Cornwall, UK</article-title>
.
<source>PARASITOLOGY-CAMBRIDGE-</source>
<volume>131</volume>
:
<fpage>489</fpage>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Kosoy1">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kosoy</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Bai</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Lynch</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Kuzmin</surname>
<given-names>IV</given-names>
</name>
,
<name>
<surname>Niezgoda</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Bartonella spp. in Bats, Kenya</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>16</volume>
:
<fpage>1875</fpage>
<lpage>1881</lpage>
<pub-id pub-id-type="pmid">21122216</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Lin1">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lin</surname>
<given-names>JW</given-names>
</name>
,
<name>
<surname>Hsu</surname>
<given-names>YM</given-names>
</name>
,
<name>
<surname>Chomel</surname>
<given-names>BB</given-names>
</name>
,
<name>
<surname>Lin</surname>
<given-names>LK</given-names>
</name>
,
<name>
<surname>Pei</surname>
<given-names>JC</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Identification of novel Bartonella spp. in bats and evidence of Asian gray shrew as a new potential reservoir of Bartonella</article-title>
.
<source>Veterinary Microbiology</source>
<volume>156</volume>
:
<fpage>119</fpage>
<lpage>126</lpage>
<pub-id pub-id-type="pmid">22005177</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Angelakis1">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Angelakis</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Khamphoukeo</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Grice</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Newton</surname>
<given-names>PN</given-names>
</name>
,
<name>
<surname>Roux</surname>
<given-names>V</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Molecular detection of Bartonella species in rodents from the Lao PDR</article-title>
.
<source>Clin Microbiol Infect</source>
<volume>15 Suppl 2</volume>
:
<fpage>95</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="pmid">19374642</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Bai2">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bai</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Kosoy</surname>
<given-names>MY</given-names>
</name>
,
<name>
<surname>Cully</surname>
<given-names>JF</given-names>
</name>
,
<name>
<surname>Bala</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Ray</surname>
<given-names>C</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Acquisition of nonspecific Bartonella strains by the northern grasshopper mouse (Onychomys leucogaster)</article-title>
.
<source>Fems Microbiology Ecology</source>
<volume>61</volume>
:
<fpage>438</fpage>
<lpage>448</lpage>
<pub-id pub-id-type="pmid">17672850</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Brettschneider1">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Brettschneider</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Bennett</surname>
<given-names>NC</given-names>
</name>
,
<name>
<surname>Chimimba</surname>
<given-names>CT</given-names>
</name>
,
<name>
<surname>Bastos</surname>
<given-names>ADS</given-names>
</name>
(
<year>2012</year>
)
<article-title>Bartonellae of the Namaqua rock mouse, Micaelamys namaquensis (Rodentia: Muridae) from South Africa</article-title>
.
<source>Veterinary Microbiology</source>
<volume>157</volume>
:
<fpage>132</fpage>
<lpage>136</lpage>
<pub-id pub-id-type="pmid">22204791</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Inoue1">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Inoue</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Kabeya</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Kosoy</surname>
<given-names>MY</given-names>
</name>
,
<name>
<surname>Bai</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Smirnov</surname>
<given-names>G</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Evolutional and Geographical Relationships of Bartonella grahamii Isolates from Wild Rodents by Multi-locus Sequencing Analysis (vol 57, pg 534, 2009). Erratum</article-title>
.
<source>Microbial Ecology</source>
<volume>57</volume>
:
<fpage>534</fpage>
<lpage>541</lpage>
<pub-id pub-id-type="pmid">19219487</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Liu1">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Liu</surname>
<given-names>Q</given-names>
</name>
,
<name>
<surname>Sun</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Lu</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Fu</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Ding</surname>
<given-names>G</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Detection of bartonella species in small mammals from Zhejiang Province, China</article-title>
.
<source>J Wildl Dis</source>
<volume>46</volume>
:
<fpage>179</fpage>
<lpage>185</lpage>
<pub-id pub-id-type="pmid">20090031</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Kabeya1">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kabeya</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Colborn</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Bai</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Lerdthusnee</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Richardson</surname>
<given-names>JH</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Detection of Bartonella tamiae DNA in Ectoparasites from Rodents in Thailand and Their Sequence Similarity with Bacterial Cultures from Thai Patients</article-title>
.
<source>Vector-Borne and Zoonotic Diseases</source>
<volume>10</volume>
:
<fpage>429</fpage>
<lpage>434</lpage>
<pub-id pub-id-type="pmid">20017718</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Kosoy2">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kosoy</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Bai</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Morway</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Sheff</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Peruski</surname>
<given-names>L</given-names>
</name>
,
<etal>et al</etal>
(
<year>2007</year>
)
<article-title>Identification of animal sources of human bartonellosis in Thailand: Comparison of Bartonella sequences from human patients and rodent hosts</article-title>
.
<source>American Journal of Tropical Medicine and Hygiene</source>
<volume>77</volume>
:
<fpage>330</fpage>
<pub-id pub-id-type="pmid">17690407</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Kosoy3">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kosoy</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Bai</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Sheff</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Morway</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Baggett</surname>
<given-names>H</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>Identification of Bartonella Infections in Febrile Human Patients from Thailand and Their Potential Animal Reservoirs</article-title>
.
<source>American Journal of Tropical Medicine and Hygiene</source>
<volume>82</volume>
:
<fpage>1140</fpage>
<lpage>1145</lpage>
<pub-id pub-id-type="pmid">20519614</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Kosoy4">
<label>34</label>
<mixed-citation publication-type="other">Kosoy MY, Bai Y, Boonmar S, Sawatwong P, Jorakate P, et al. Bartonella Species in Bats from Thailand; 2012 March 11–14, 2012 Atlanta, GA.</mixed-citation>
</ref>
<ref id="pntd.0002738-Kamani1">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kamani</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Morick</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Mumcuoglu</surname>
<given-names>KY</given-names>
</name>
,
<name>
<surname>Harrus</surname>
<given-names>S</given-names>
</name>
(
<year>2013</year>
)
<article-title>Prevalence and diversity of bartonella species in commensal rodents and ectoparasites from Nigeria, west Africa</article-title>
.
<source>PLoS Negl Trop Dis</source>
<volume>7</volume>
:
<fpage>e2246</fpage>
<pub-id pub-id-type="pmid">23738028</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Kosoy5">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kosoy</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Murray</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Gilmore</surname>
<given-names>RD</given-names>
</name>
,
<name>
<surname>Bai</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
(
<year>2003</year>
)
<article-title>Bartonella strains from ground squirrels are identical to Bartonella washoensis isolated from a human patient</article-title>
.
<source>Journal of Clinical Microbiology</source>
<volume>41</volume>
:
<fpage>645</fpage>
<lpage>650</lpage>
<pub-id pub-id-type="pmid">12574261</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Waitkins1">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Waitkins</surname>
<given-names>S</given-names>
</name>
(
<year>1986</year>
)
<article-title>Leptospirosis as an occupational disease</article-title>
.
<source>British Journal of Industrial Medicine</source>
<volume>43</volume>
:
<fpage>721</fpage>
<pub-id pub-id-type="pmid">3790454</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Meites1">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Meites</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Jay</surname>
<given-names>MT</given-names>
</name>
,
<name>
<surname>Deresinski</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Shieh</surname>
<given-names>WJ</given-names>
</name>
,
<name>
<surname>Zaki</surname>
<given-names>SR</given-names>
</name>
,
<etal>et al</etal>
(
<year>2004</year>
)
<article-title>Reemerging leptospirosis, California</article-title>
.
<source>Emerg Infect Dis</source>
<volume>10</volume>
:
<fpage>406</fpage>
<lpage>412</lpage>
<pub-id pub-id-type="pmid">15109405</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Turner1">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Turner</surname>
<given-names>LH</given-names>
</name>
(
<year>1967</year>
)
<article-title>Leptospirosis</article-title>
.
<source>I. Trans R Soc Trop Med Hyg</source>
<volume>61</volume>
:
<fpage>842</fpage>
<lpage>855</lpage>
<pub-id pub-id-type="pmid">5625167</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Bunnell1">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bunnell</surname>
<given-names>JE</given-names>
</name>
,
<name>
<surname>Hice</surname>
<given-names>CL</given-names>
</name>
,
<name>
<surname>Watts</surname>
<given-names>DM</given-names>
</name>
,
<name>
<surname>Montrueil</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Tesh</surname>
<given-names>RB</given-names>
</name>
,
<etal>et al</etal>
(
<year>2000</year>
)
<article-title>Detection of pathogenic Leptospira spp. infections among mammals captured in the Peruvian Amazon basin region</article-title>
.
<source>Am J Trop Med Hyg</source>
<volume>63</volume>
:
<fpage>255</fpage>
<lpage>258</lpage>
<pub-id pub-id-type="pmid">11421373</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Lagadec1">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lagadec</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Gomard</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Guernier</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Pascalis</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Temmam</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
<article-title>High infection prevalence and diversity of pathogenic Leptospira in bats from the Comoros and Madagascar. Soumis à</article-title>
.
<source>Emerg Infect Dis</source>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Tulsiani1">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tulsiani</surname>
<given-names>SM</given-names>
</name>
,
<name>
<surname>Cobbold</surname>
<given-names>RN</given-names>
</name>
,
<name>
<surname>Graham</surname>
<given-names>GC</given-names>
</name>
,
<name>
<surname>Dohnt</surname>
<given-names>MF</given-names>
</name>
,
<name>
<surname>Burns</surname>
<given-names>MA</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>The role of fruit bats in the transmission of pathogenic leptospires in Australia</article-title>
.
<source>Ann Trop Med Parasitol</source>
<volume>105</volume>
:
<fpage>71</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="pmid">21294951</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Bessa1">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bessa</surname>
<given-names>TA</given-names>
</name>
,
<name>
<surname>Spichler</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Chapola</surname>
<given-names>EG</given-names>
</name>
,
<name>
<surname>Husch</surname>
<given-names>AC</given-names>
</name>
,
<name>
<surname>de Almeida</surname>
<given-names>MF</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>The contribution of bats to leptospirosis transmission in Sao Paulo City, Brazil</article-title>
.
<source>Am J Trop Med Hyg</source>
<volume>82</volume>
:
<fpage>315</fpage>
<lpage>317</lpage>
<pub-id pub-id-type="pmid">20134010</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Matthias1">
<label>44</label>
<mixed-citation publication-type="journal">
<name>
<surname>Matthias</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Díaz</surname>
<given-names>MM</given-names>
</name>
,
<name>
<surname>Campos</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Calderon</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Willig</surname>
<given-names>MR</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>Diversity of bat-associated Leptospira in the Peruvian Amazon inferred by Bayesian phylogenetic analysis of 16S ribosomal DNA sequences</article-title>
.
<source>The American journal of tropical medicine and hygiene</source>
<volume>73</volume>
:
<fpage>964</fpage>
<pub-id pub-id-type="pmid">16282313</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Vijayachari1">
<label>45</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vijayachari</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Sugunan</surname>
<given-names>AP</given-names>
</name>
,
<name>
<surname>Shriram</surname>
<given-names>AN</given-names>
</name>
(
<year>2008</year>
)
<article-title>Leptospirosis: an emerging global public health problem</article-title>
.
<source>J Biosci</source>
<volume>33</volume>
:
<fpage>557</fpage>
<lpage>569</lpage>
<pub-id pub-id-type="pmid">19208981</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Hafner1">
<label>46</label>
<mixed-citation publication-type="book">Hafner MS, Demastes JW, Spradling TA, Reed DL (2003) Cophylogeny between pocket gophers and chewing lice. Tangled trees: phylogeny, cospeciation, and coevolution University of Chicago Press, Chicago: 195–220.</mixed-citation>
</ref>
<ref id="pntd.0002738-Page1">
<label>47</label>
<mixed-citation publication-type="journal">
<name>
<surname>Page</surname>
<given-names>RD</given-names>
</name>
(
<year>1994</year>
)
<article-title>Parallel phylogenies: reconstructing the history of host-parasite assemblages</article-title>
.
<source>Cladistics</source>
<volume>10</volume>
:
<fpage>155</fpage>
<lpage>173</lpage>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Bai3">
<label>48</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bai</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Kosoy</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Recuenco</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Alvarez</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Moran</surname>
<given-names>D</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Bartonella spp. in bats, Guatemala</article-title>
.
<source>Emerging infectious diseases</source>
<volume>17</volume>
:
<fpage>1269</fpage>
<pub-id pub-id-type="pmid">21762584</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Kosoy6">
<label>49</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kosoy</surname>
<given-names>MY</given-names>
</name>
,
<name>
<surname>Regnery</surname>
<given-names>RL</given-names>
</name>
,
<name>
<surname>Tzianabos</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Marston</surname>
<given-names>EL</given-names>
</name>
,
<name>
<surname>Jones</surname>
<given-names>DC</given-names>
</name>
,
<etal>et al</etal>
(
<year>1997</year>
)
<article-title>Distribution, diversity, and host specificity of Bartonella in rodents from the southeastern United States</article-title>
.
<source>American Journal of Tropical Medicine and Hygiene</source>
<volume>57</volume>
:
<fpage>578</fpage>
<lpage>588</lpage>
<pub-id pub-id-type="pmid">9392599</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Ying1">
<label>50</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ying</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Kosoy</surname>
<given-names>MY</given-names>
</name>
,
<name>
<surname>Maupin</surname>
<given-names>GO</given-names>
</name>
,
<name>
<surname>Tsuchiya</surname>
<given-names>KR</given-names>
</name>
,
<name>
<surname>Gage</surname>
<given-names>KL</given-names>
</name>
(
<year>2002</year>
)
<article-title>Genetic and ecologic characteristics of Bartonella communities in rodents in southern China</article-title>
.
<source>American Journal of Tropical Medicine and Hygiene</source>
<volume>66</volume>
:
<fpage>622</fpage>
<lpage>627</lpage>
<pub-id pub-id-type="pmid">12201602</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Castle1">
<label>51</label>
<mixed-citation publication-type="journal">
<name>
<surname>Castle</surname>
<given-names>KT</given-names>
</name>
,
<name>
<surname>Kosoy</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Lerdthusnee</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Phelan</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Bai</surname>
<given-names>Y</given-names>
</name>
,
<etal>et al</etal>
(
<year>2004</year>
)
<article-title>Prevalence and diversity of Bartonella in rodents of northern Thailand: A comparison with Bartonella in rodents from southern China</article-title>
.
<source>American Journal of Tropical Medicine and Hygiene</source>
<volume>70</volume>
:
<fpage>429</fpage>
<lpage>433</lpage>
<pub-id pub-id-type="pmid">15100459</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Gonalves1">
<label>52</label>
<mixed-citation publication-type="journal">
<name>
<surname>Gonçalves</surname>
<given-names>AT</given-names>
</name>
,
<name>
<surname>Paiva</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Melo-Mota</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Vieira</surname>
<given-names>ML</given-names>
</name>
,
<name>
<surname>Carreira</surname>
<given-names>T</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>First isolation of human
<italic>Leptospira</italic>
strains, Azores, Portugal</article-title>
.
<source>International Journal of Infectious Diseases</source>
<volume>14</volume>
:
<fpage>e148</fpage>
<lpage>e153</lpage>
<pub-id pub-id-type="pmid">20413339</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Foronda1">
<label>53</label>
<mixed-citation publication-type="journal">
<name>
<surname>Foronda</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Martin-Alonso</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>del Castillo-Figueruelo</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Feliu</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Gil</surname>
<given-names>H</given-names>
</name>
,
<etal>et al</etal>
(
<year>2011</year>
)
<article-title>Pathogenic Leptospira spp. in Wild Rodents, Canary Islands, Spain</article-title>
.
<source>Emerging Infectious Diseases</source>
<volume>17</volume>
:
<fpage>1781</fpage>
<pub-id pub-id-type="pmid">21888829</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Koizumi1">
<label>54</label>
<mixed-citation publication-type="journal">
<name>
<surname>Koizumi</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Muto</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Tanikawa</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Mizutani</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Sohmura</surname>
<given-names>Y</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Human leptospirosis cases and the prevalence of rats harbouring Leptospira interrogans in urban areas of Tokyo, Japan</article-title>
.
<source>Journal of medical microbiology</source>
<volume>58</volume>
:
<fpage>1227</fpage>
<lpage>1230</lpage>
<pub-id pub-id-type="pmid">19528143</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-PaivaCardoso1">
<label>55</label>
<mixed-citation publication-type="journal">
<name>
<surname>Paiva-Cardoso</surname>
<given-names>MdN</given-names>
</name>
,
<name>
<surname>Arent</surname>
<given-names>Z</given-names>
</name>
,
<name>
<surname>Gilmore</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Hartskeerl</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Ellis</surname>
<given-names>WA</given-names>
</name>
(
<year>2012</year>
)
<article-title>Altodouro, a new Leptospira serovar of the Pomona serogroup isolated from rodents in northern Portugal</article-title>
.
<source>Infection, Genetics and Evolution</source>
<volume>13</volume>
:
<fpage>211</fpage>
<lpage>217</lpage>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Rahelinirina1">
<label>56</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rahelinirina</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Léon</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Harstskeerl</surname>
<given-names>RA</given-names>
</name>
,
<name>
<surname>Sertour</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Ahmed</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>First isolation and direct evidence for the existence of large small-mammal reservoirs of Leptospira sp. in Madagascar</article-title>
.
<source>PloS one</source>
<volume>5</volume>
:
<fpage>e14111</fpage>
<pub-id pub-id-type="pmid">21124843</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Kocher1">
<label>57</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kocher</surname>
<given-names>TD</given-names>
</name>
,
<name>
<surname>Thomas</surname>
<given-names>WK</given-names>
</name>
,
<name>
<surname>Meyer</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Edwards</surname>
<given-names>SV</given-names>
</name>
,
<name>
<surname>Pääbo</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>1989</year>
)
<article-title>Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers</article-title>
.
<source>Proceedings of the National Academy of Sciences</source>
<volume>86</volume>
:
<fpage>6196</fpage>
<lpage>6200</lpage>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Bradley1">
<label>58</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bradley</surname>
<given-names>RD</given-names>
</name>
,
<name>
<surname>Baker</surname>
<given-names>RJ</given-names>
</name>
(
<year>2001</year>
)
<article-title>A test of the genetic species concept: cytochrome-b sequences and mammals</article-title>
.
<source>Journal of Mammalogy</source>
<volume>82</volume>
:
<fpage>960</fpage>
<lpage>973</lpage>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Agnarsson1">
<label>59</label>
<mixed-citation publication-type="journal">
<name>
<surname>Agnarsson</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Zambrana-Torrelio</surname>
<given-names>CM</given-names>
</name>
,
<name>
<surname>Flores-Saldana</surname>
<given-names>NP</given-names>
</name>
,
<name>
<surname>May-Collado</surname>
<given-names>LJ</given-names>
</name>
(
<year>2011</year>
)
<article-title>A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia)</article-title>
.
<source>PLoS Curr</source>
<volume>3</volume>
:
<fpage>RRN1212</fpage>
<pub-id pub-id-type="pmid">21327164</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Wilson1">
<label>60</label>
<mixed-citation publication-type="book">Wilson D, Reeder D (2005) Mammal species of the world: a taxonomic and geographic reference. Washington D.C.: Smithsonian Institution Press.</mixed-citation>
</ref>
<ref id="pntd.0002738-Edgar1">
<label>61</label>
<mixed-citation publication-type="journal">
<name>
<surname>Edgar</surname>
<given-names>RC</given-names>
</name>
(
<year>2004</year>
)
<article-title>MUSCLE: multiple sequence alignment with high accuracy and high throughput</article-title>
.
<source>Nucleic Acids Res</source>
<volume>32</volume>
:
<fpage>1792</fpage>
<lpage>1797</lpage>
<pub-id pub-id-type="pmid">15034147</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Kearse1">
<label>62</label>
<mixed-citation publication-type="journal">
<name>
<surname>Kearse</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Moir</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Wilson</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Stones-Havas</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Cheung</surname>
<given-names>M</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data</article-title>
.
<source>Bioinformatics</source>
<volume>28</volume>
:
<fpage>1647</fpage>
<lpage>1649</lpage>
<pub-id pub-id-type="pmid">22543367</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Pumo1">
<label>63</label>
<mixed-citation publication-type="journal">
<name>
<surname>Pumo</surname>
<given-names>DE</given-names>
</name>
,
<name>
<surname>Finamore</surname>
<given-names>PS</given-names>
</name>
,
<name>
<surname>Franek</surname>
<given-names>WR</given-names>
</name>
,
<name>
<surname>Phillips</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>Tarzami</surname>
<given-names>S</given-names>
</name>
,
<etal>et al</etal>
(
<year>1998</year>
)
<article-title>Complete mitochondrial genome of a neotropical fruit bat, Artibeus jamaicensis, and a new hypothesis of the relationships of bats to other eutherian mammals</article-title>
.
<source>Journal of Molecular Evolution</source>
<volume>47</volume>
:
<fpage>709</fpage>
<lpage>717</lpage>
<pub-id pub-id-type="pmid">9847413</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Stamatakis1">
<label>64</label>
<mixed-citation publication-type="journal">
<name>
<surname>Stamatakis</surname>
<given-names>A</given-names>
</name>
(
<year>2006</year>
)
<article-title>RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models</article-title>
.
<source>Bioinformatics</source>
<volume>22</volume>
:
<fpage>2688</fpage>
<lpage>2690</lpage>
<pub-id pub-id-type="pmid">16928733</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Ronquist1">
<label>65</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ronquist</surname>
<given-names>F</given-names>
</name>
,
<name>
<surname>Huelsenbeck</surname>
<given-names>JP</given-names>
</name>
(
<year>2003</year>
)
<article-title>MrBayes 3: Bayesian phylogenetic inference under mixed models</article-title>
.
<source>Bioinformatics</source>
<volume>19</volume>
:
<fpage>1572</fpage>
<lpage>1574</lpage>
<pub-id pub-id-type="pmid">12912839</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Charleston1">
<label>66</label>
<mixed-citation publication-type="journal">
<name>
<surname>Charleston</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Robertson</surname>
<given-names>D</given-names>
</name>
(
<year>2002</year>
)
<article-title>Preferential host switching by primate lentiviruses can account for phylogenetic similarity with the primate phylogeny</article-title>
.
<source>Systematic biology</source>
<volume>51</volume>
:
<fpage>528</fpage>
<lpage>535</lpage>
<pub-id pub-id-type="pmid">12079649</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Desdevises1">
<label>67</label>
<mixed-citation publication-type="journal">
<name>
<surname>Desdevises</surname>
<given-names>Y</given-names>
</name>
(
<year>2007</year>
)
<article-title>Cophylogeny: insights from fish-parasite systems</article-title>
.
<source>Parassitologia</source>
<volume>49</volume>
:
<fpage>125</fpage>
<pub-id pub-id-type="pmid">18410070</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Legendre1">
<label>68</label>
<mixed-citation publication-type="journal">
<name>
<surname>Legendre</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Desdevises</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Bazin</surname>
<given-names>E</given-names>
</name>
(
<year>2002</year>
)
<article-title>A statistical test for host-parasite coevolution</article-title>
.
<source>Syst Biol</source>
<volume>51</volume>
:
<fpage>217</fpage>
<lpage>234</lpage>
<pub-id pub-id-type="pmid">12028729</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-R1">
<label>69</label>
<mixed-citation publication-type="book">R Core Team (2013) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.</mixed-citation>
</ref>
<ref id="pntd.0002738-Paradis1">
<label>70</label>
<mixed-citation publication-type="journal">
<name>
<surname>Paradis</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Claude</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Strimmer</surname>
<given-names>K</given-names>
</name>
(
<year>2004</year>
)
<article-title>APE: Analyses of Phylogenetics and Evolution in R language</article-title>
.
<source>Bioinformatics</source>
<volume>20</volume>
:
<fpage>289</fpage>
<lpage>290</lpage>
<pub-id pub-id-type="pmid">14734327</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Balbuena1">
<label>71</label>
<mixed-citation publication-type="journal">
<name>
<surname>Balbuena</surname>
<given-names>JA</given-names>
</name>
,
<name>
<surname>Míguez-Lozano</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Blasco-Costa</surname>
<given-names>I</given-names>
</name>
(
<year>2013</year>
)
<article-title>PACo: a Novel procrustes application to cophylogenetic analysis</article-title>
.
<source>PloS one</source>
<volume>8</volume>
:
<fpage>e61048</fpage>
<pub-id pub-id-type="pmid">23580325</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Oksanen1">
<label>72</label>
<mixed-citation publication-type="other">Oksanen J, Kindt R, Legendre P, O'Hara B, Stevens MHH, et al. (2007) vegan: Comunity Ecology Package. R package. 1.15-4 ed.</mixed-citation>
</ref>
<ref id="pntd.0002738-Conow1">
<label>73</label>
<mixed-citation publication-type="journal">
<name>
<surname>Conow</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Fielder</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Ovadia</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Libeskind-Hadas</surname>
<given-names>R</given-names>
</name>
(
<year>2010</year>
)
<article-title>Jane: a new tool for the cophylogeny reconstruction problem</article-title>
.
<source>Algorithms for Molecular Biology</source>
<volume>5</volume>
:
<fpage>16</fpage>
<pub-id pub-id-type="pmid">20181081</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Althoff1">
<label>74</label>
<mixed-citation publication-type="journal">
<name>
<surname>Althoff</surname>
<given-names>DM</given-names>
</name>
,
<name>
<surname>Segraves</surname>
<given-names>KA</given-names>
</name>
,
<name>
<surname>Smith</surname>
<given-names>CI</given-names>
</name>
,
<name>
<surname>Leebens-Mack</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Pellmyr</surname>
<given-names>O</given-names>
</name>
(
<year>2012</year>
)
<article-title>Geographic isolation trumps coevolution as a driver of yucca and yucca moth diversification</article-title>
.
<source>Molecular Phylogenetics and Evolution</source>
<volume>62</volume>
:
<fpage>898</fpage>
<lpage>906</lpage>
<pub-id pub-id-type="pmid">22178365</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Paziewska1">
<label>75</label>
<mixed-citation publication-type="journal">
<name>
<surname>Paziewska</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Harris</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Zwolińska</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Bajer</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Siński</surname>
<given-names>E</given-names>
</name>
(
<year>2011</year>
)
<article-title>Recombination Within and Between Species of the Alpha Proteobacterium Bartonella Infecting Rodents</article-title>
.
<source>Microbial Ecology</source>
<volume>61</volume>
:
<fpage>134</fpage>
<lpage>145</lpage>
<pub-id pub-id-type="pmid">20740281</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Halos1">
<label>76</label>
<mixed-citation publication-type="journal">
<name>
<surname>Halos</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Jamal</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Maillard</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Girard</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Guillot</surname>
<given-names>J</given-names>
</name>
,
<etal>et al</etal>
(
<year>2004</year>
)
<article-title>Role of Hippoboscidae flies as potential vectors of Bartonella spp. infecting wild and domestic ruminants</article-title>
.
<source>Applied and Environmental Microbiology</source>
<volume>70</volume>
:
<fpage>6302</fpage>
<lpage>6305</lpage>
<pub-id pub-id-type="pmid">15466580</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Morse1">
<label>77</label>
<mixed-citation publication-type="journal">
<name>
<surname>Morse</surname>
<given-names>SF</given-names>
</name>
,
<name>
<surname>Olival</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Kosoy</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Billeter</surname>
<given-names>SA</given-names>
</name>
,
<name>
<surname>Patterson</surname>
<given-names>BD</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae)</article-title>
.
<source>Infection, Genetics and Evolution</source>
<volume>12</volume>
:
<fpage>1717</fpage>
<lpage>1723</lpage>
</mixed-citation>
</ref>
<ref id="pntd.0002738-VayssierTaussat1">
<label>78</label>
<mixed-citation publication-type="book">Vayssier-Taussat M, Le Rhun D, Bonnet S, Cotte V (2009) Insights in Bartonella Host Specificity. In: Hechemy KE, Brouqui P, Samuel JE, Raoult DA, editors. Rickettsiology and Rickettsial Diseases. pp. 127–132.</mixed-citation>
</ref>
<ref id="pntd.0002738-Billeter2">
<label>79</label>
<mixed-citation publication-type="journal">
<name>
<surname>Billeter</surname>
<given-names>SA</given-names>
</name>
,
<name>
<surname>Hayman</surname>
<given-names>DT</given-names>
</name>
,
<name>
<surname>Peel</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Baker</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Wood</surname>
<given-names>JL</given-names>
</name>
,
<etal>et al</etal>
(
<year>2012</year>
)
<article-title>Detection and/or isolation of Bartonella species from African bat flies
<italic>Cyclopodia greefi</italic>
(Diptera: Nycteribiidae) including description of Candidatus
<italic>Bartonella breitschwerdtii</italic>
</article-title>
.
<source>Parasitology</source>
<volume>139</volume>
:
<fpage>324</fpage>
<lpage>329</lpage>
<pub-id pub-id-type="pmid">22309510</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Olival2">
<label>80</label>
<mixed-citation publication-type="journal">
<name>
<surname>Olival</surname>
<given-names>KJ</given-names>
</name>
,
<name>
<surname>Dick</surname>
<given-names>CW</given-names>
</name>
,
<name>
<surname>Simmons</surname>
<given-names>NB</given-names>
</name>
,
<name>
<surname>Morales</surname>
<given-names>JC</given-names>
</name>
,
<name>
<surname>Melnick</surname>
<given-names>DJ</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Lack of population genetic structure and host specificity in the bat fly, Cyclopodia horsfieldi, across species of Pteropus bats in Souteast Asia</article-title>
.
<source>Parasites & Vectors</source>
<volume>6</volume>
:
<fpage>231</fpage>
<pub-id pub-id-type="pmid">23924629</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Adler1">
<label>81</label>
<mixed-citation publication-type="journal">
<name>
<surname>Adler</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>de la Pena Moctezuma</surname>
<given-names>A</given-names>
</name>
(
<year>2010</year>
)
<article-title>Leptospira and leptospirosis</article-title>
.
<source>Vet Microbiol</source>
<volume>140</volume>
:
<fpage>287</fpage>
<lpage>296</lpage>
<pub-id pub-id-type="pmid">19345023</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Woolhouse1">
<label>82</label>
<mixed-citation publication-type="journal">
<name>
<surname>Woolhouse</surname>
<given-names>ME</given-names>
</name>
,
<name>
<surname>Webster</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Domingo</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Charlesworth</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Levin</surname>
<given-names>BR</given-names>
</name>
(
<year>2002</year>
)
<article-title>Biological and biomedical implications of the co-evolution of pathogens and their hosts</article-title>
.
<source>Nature genetics</source>
<volume>32</volume>
:
<fpage>569</fpage>
<lpage>577</lpage>
<pub-id pub-id-type="pmid">12457190</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Davies1">
<label>83</label>
<mixed-citation publication-type="journal">
<name>
<surname>Davies</surname>
<given-names>TJ</given-names>
</name>
,
<name>
<surname>Pedersen</surname>
<given-names>AB</given-names>
</name>
(
<year>2008</year>
)
<article-title>Phylogeny and geography predict pathogen community similarity in wild primates and humans</article-title>
.
<source>Proceedings of the Royal Society B: Biological Sciences</source>
<volume>275</volume>
:
<fpage>1695</fpage>
<lpage>1701</lpage>
</mixed-citation>
</ref>
<ref id="pntd.0002738-VargasContreras1">
<label>84</label>
<mixed-citation publication-type="journal">
<name>
<surname>Vargas-Contreras</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Escalona-Segura</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Arroyo-Cabrales</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Rendón</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Navarro</surname>
<given-names>L</given-names>
</name>
(
<year>2012</year>
)
<article-title>Conservación de Murciélagos en Campeche</article-title>
.
<source>THERYA</source>
<volume>3</volume>
:
<fpage>53</fpage>
<lpage>66</lpage>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Kingston1">
<label>85</label>
<mixed-citation publication-type="book">Kingston T, Liat LB, Zubaid A (2006) Bats of Krau Wildlife Reserve. Bangi, Malaysia: Kuala Lumpur Penerbit Universiti Kebangsaan Malaysia.</mixed-citation>
</ref>
<ref id="pntd.0002738-Breitschwerdt1">
<label>86</label>
<mixed-citation publication-type="journal">
<name>
<surname>Breitschwerdt</surname>
<given-names>EB</given-names>
</name>
,
<name>
<surname>Maggi</surname>
<given-names>RG</given-names>
</name>
,
<name>
<surname>Chomel</surname>
<given-names>BB</given-names>
</name>
,
<name>
<surname>Lappin</surname>
<given-names>MR</given-names>
</name>
(
<year>2010</year>
)
<article-title>Bartonellosis: an emerging infectious disease of zoonotic importance to animals and human beings</article-title>
.
<source>Journal of Veterinary Emergency and Critical Care</source>
<volume>20</volume>
:
<fpage>8</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="pmid">20230432</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Hartskeerl1">
<label>87</label>
<mixed-citation publication-type="journal">
<name>
<surname>Hartskeerl</surname>
<given-names>RA</given-names>
</name>
,
<name>
<surname>Collares-Pereira</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Ellis</surname>
<given-names>WA</given-names>
</name>
(
<year>2011</year>
)
<article-title>Emergence, control and re-emerging leptospirosis: dynamics of infection in the changing world</article-title>
.
<source>Clin Microbiol Infect</source>
<volume>17</volume>
:
<fpage>494</fpage>
<lpage>501</lpage>
<pub-id pub-id-type="pmid">21414083</pub-id>
</mixed-citation>
</ref>
<ref id="pntd.0002738-Woolhouse2">
<label>88</label>
<mixed-citation publication-type="journal">
<name>
<surname>Woolhouse</surname>
<given-names>ME</given-names>
</name>
,
<name>
<surname>Haydon</surname>
<given-names>DT</given-names>
</name>
,
<name>
<surname>Antia</surname>
<given-names>R</given-names>
</name>
(
<year>2005</year>
)
<article-title>Emerging pathogens: the epidemiology and evolution of species jumps</article-title>
.
<source>Trends in ecology & evolution</source>
<volume>20</volume>
:
<fpage>238</fpage>
<lpage>244</lpage>
<pub-id pub-id-type="pmid">16701375</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000598 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000598 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3961187
   |texte=   Contrasting Patterns in Mammal–Bacteria Coevolution: Bartonella and Leptospira in Bats and Rodents
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:24651646" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CyberinfraV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024