Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

How common is ecological speciation in plant-feeding insects? A 'Higher' Nematinae perspective

Identifieur interne : 000489 ( Pmc/Corpus ); précédent : 000488; suivant : 000490

How common is ecological speciation in plant-feeding insects? A 'Higher' Nematinae perspective

Auteurs : Tommi Nyman ; Veli Vikberg ; David R. Smith ; Jean-Luc Boevé

Source :

RBID : PMC:2936908

Abstract

Background

Ecological speciation is a process in which a transiently resource-polymorphic species divides into two specialized sister lineages as a result of divergent selection pressures caused by the use of multiple niches or environments. Ecology-based speciation has been studied intensively in plant-feeding insects, in which both sympatric and allopatric shifts onto novel host plants could speed up diversification. However, while numerous examples of species pairs likely to have originated by resource shifts have been found, the overall importance of ecological speciation in relation to other, non-ecological speciation modes remains unknown. Here, we apply phylogenetic information on sawflies belonging to the 'Higher' Nematinae (Hymenoptera: Tenthredinidae) to infer the frequency of niche shifts in relation to speciation events.

Results

Phylogenetic trees reconstructed on the basis of DNA sequence data show that the diversification of higher nematines has involved frequent shifts in larval feeding habits and in the use of plant taxa. However, the inferred number of resource shifts is considerably lower than the number of past speciation events, indicating that the majority of divergences have occurred by non-ecological allopatric speciation; based on a time-corrected analysis of sister species, we estimate that a maximum of c. 20% of lineage splits have been triggered by a change in resource use. In addition, we find that postspeciational changes in geographic distributions have led to broad sympatry in many species having identical host-plant ranges.

Conclusion

Our analysis indicates that the importance of niche shifts for the diversification of herbivorous insects is at present implicitly and explicitly overestimated. In the case of the Higher Nematinae, employing a time correction for sister-species comparisons lowered the proportion of apparent ecology-based speciation events from c. 50-60% to around 20%, but such corrections are still lacking in other herbivore groups. The observed convergent but asynchronous shifting among dominant northern plant taxa in many higher-nematine clades, in combination with the broad overlaps in the geographic distributions of numerous nematine species occupying near-identical niches, indicates that host-plant shifts and herbivore community assembly are largely unconstrained by direct or indirect competition among species. More phylogeny-based studies on connections between niche diversification and speciation are needed across many insect taxa, especially in groups that exhibit few host shifts in relation to speciation.


Url:
DOI: 10.1186/1471-2148-10-266
PubMed: 20807452
PubMed Central: 2936908

Links to Exploration step

PMC:2936908

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">How common is ecological speciation in plant-feeding insects? A 'Higher' Nematinae perspective</title>
<author>
<name sortKey="Nyman, Tommi" sort="Nyman, Tommi" uniqKey="Nyman T" first="Tommi" last="Nyman">Tommi Nyman</name>
<affiliation>
<nlm:aff id="I1">Department of Biology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vikberg, Veli" sort="Vikberg, Veli" uniqKey="Vikberg V" first="Veli" last="Vikberg">Veli Vikberg</name>
<affiliation>
<nlm:aff id="I2">Liinalammintie 11 as. 6, FI-14200 Turenki, Finland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Smith, David R" sort="Smith, David R" uniqKey="Smith D" first="David R" last="Smith">David R. Smith</name>
<affiliation>
<nlm:aff id="I3">Systematic Entomology Laboratory, PSI, Agricultural Research Service, US Department of Agriculture, c/o National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 168, Washington, DC 20013-7012, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Boeve, Jean Luc" sort="Boeve, Jean Luc" uniqKey="Boeve J" first="Jean-Luc" last="Boevé">Jean-Luc Boevé</name>
<affiliation>
<nlm:aff id="I4">Department of Entomology, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">20807452</idno>
<idno type="pmc">2936908</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936908</idno>
<idno type="RBID">PMC:2936908</idno>
<idno type="doi">10.1186/1471-2148-10-266</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">000489</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">How common is ecological speciation in plant-feeding insects? A 'Higher' Nematinae perspective</title>
<author>
<name sortKey="Nyman, Tommi" sort="Nyman, Tommi" uniqKey="Nyman T" first="Tommi" last="Nyman">Tommi Nyman</name>
<affiliation>
<nlm:aff id="I1">Department of Biology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vikberg, Veli" sort="Vikberg, Veli" uniqKey="Vikberg V" first="Veli" last="Vikberg">Veli Vikberg</name>
<affiliation>
<nlm:aff id="I2">Liinalammintie 11 as. 6, FI-14200 Turenki, Finland</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Smith, David R" sort="Smith, David R" uniqKey="Smith D" first="David R" last="Smith">David R. Smith</name>
<affiliation>
<nlm:aff id="I3">Systematic Entomology Laboratory, PSI, Agricultural Research Service, US Department of Agriculture, c/o National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 168, Washington, DC 20013-7012, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Boeve, Jean Luc" sort="Boeve, Jean Luc" uniqKey="Boeve J" first="Jean-Luc" last="Boevé">Jean-Luc Boevé</name>
<affiliation>
<nlm:aff id="I4">Department of Entomology, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Evolutionary Biology</title>
<idno type="eISSN">1471-2148</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>Ecological speciation is a process in which a transiently resource-polymorphic species divides into two specialized sister lineages as a result of divergent selection pressures caused by the use of multiple niches or environments. Ecology-based speciation has been studied intensively in plant-feeding insects, in which both sympatric and allopatric shifts onto novel host plants could speed up diversification. However, while numerous examples of species pairs likely to have originated by resource shifts have been found, the overall importance of ecological speciation in relation to other, non-ecological speciation modes remains unknown. Here, we apply phylogenetic information on sawflies belonging to the 'Higher' Nematinae (Hymenoptera: Tenthredinidae) to infer the frequency of niche shifts in relation to speciation events.</p>
</sec>
<sec>
<title>Results</title>
<p>Phylogenetic trees reconstructed on the basis of DNA sequence data show that the diversification of higher nematines has involved frequent shifts in larval feeding habits and in the use of plant taxa. However, the inferred number of resource shifts is considerably lower than the number of past speciation events, indicating that the majority of divergences have occurred by non-ecological allopatric speciation; based on a time-corrected analysis of sister species, we estimate that a maximum of
<italic>c</italic>
. 20% of lineage splits have been triggered by a change in resource use. In addition, we find that postspeciational changes in geographic distributions have led to broad sympatry in many species having identical host-plant ranges.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>Our analysis indicates that the importance of niche shifts for the diversification of herbivorous insects is at present implicitly and explicitly overestimated. In the case of the Higher Nematinae, employing a time correction for sister-species comparisons lowered the proportion of apparent ecology-based speciation events from
<italic>c</italic>
. 50-60% to around 20%, but such corrections are still lacking in other herbivore groups. The observed convergent but asynchronous shifting among dominant northern plant taxa in many higher-nematine clades, in combination with the broad overlaps in the geographic distributions of numerous nematine species occupying near-identical niches, indicates that host-plant shifts and herbivore community assembly are largely unconstrained by direct or indirect competition among species. More phylogeny-based studies on connections between niche diversification and speciation are needed across many insect taxa, especially in groups that exhibit few host shifts in relation to speciation.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Schluter, D" uniqKey="Schluter D">D Schluter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rundle, Hd" uniqKey="Rundle H">HD Rundle</name>
</author>
<author>
<name sortKey="Nosil, P" uniqKey="Nosil P">P Nosil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Tb" uniqKey="Smith T">TB Smith</name>
</author>
<author>
<name sortKey="Skulason, S" uniqKey="Skulason S">S Skúlason</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dres, M" uniqKey="Dres M">M Drès</name>
</author>
<author>
<name sortKey="Mallet, J" uniqKey="Mallet J">J Mallet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="R S Nen, K" uniqKey="R S Nen K">K Räsänen</name>
</author>
<author>
<name sortKey="Hendry, Ap" uniqKey="Hendry A">AP Hendry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nosil, P" uniqKey="Nosil P">P Nosil</name>
</author>
<author>
<name sortKey="Harmon, Lj" uniqKey="Harmon L">LJ Harmon</name>
</author>
<author>
<name sortKey="Seehausen, O" uniqKey="Seehausen O">O Seehausen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ryan, Pg" uniqKey="Ryan P">PG Ryan</name>
</author>
<author>
<name sortKey="Bloomer, P" uniqKey="Bloomer P">P Bloomer</name>
</author>
<author>
<name sortKey="Moloney, Cl" uniqKey="Moloney C">CL Moloney</name>
</author>
<author>
<name sortKey="Grant, Tj" uniqKey="Grant T">TJ Grant</name>
</author>
<author>
<name sortKey="Delport, W" uniqKey="Delport W">W Delport</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Irestedt, M" uniqKey="Irestedt M">M Irestedt</name>
</author>
<author>
<name sortKey="Fjelds, J" uniqKey="Fjelds J">J Fjeldså</name>
</author>
<author>
<name sortKey="Dalen, L" uniqKey="Dalen L">L Dalén</name>
</author>
<author>
<name sortKey="Ericson, Pgp" uniqKey="Ericson P">PGP Ericson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thorpe, Rs" uniqKey="Thorpe R">RS Thorpe</name>
</author>
<author>
<name sortKey="Surget Groba, Y" uniqKey="Surget Groba Y">Y Surget-Groba</name>
</author>
<author>
<name sortKey="Johansson, H" uniqKey="Johansson H">H Johansson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schluter, D" uniqKey="Schluter D">D Schluter</name>
</author>
<author>
<name sortKey="Conte, Gl" uniqKey="Conte G">GL Conte</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parent, Ce" uniqKey="Parent C">CE Parent</name>
</author>
<author>
<name sortKey="Crespi, Bj" uniqKey="Crespi B">BJ Crespi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nyman, T" uniqKey="Nyman T">T Nyman</name>
</author>
<author>
<name sortKey="Bokma, F" uniqKey="Bokma F">F Bokma</name>
</author>
<author>
<name sortKey="Kopelke, J P" uniqKey="Kopelke J">J-P Kopelke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Via, S" uniqKey="Via S">S Via</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peccoud, J" uniqKey="Peccoud J">J Peccoud</name>
</author>
<author>
<name sortKey="Ollivier, A" uniqKey="Ollivier A">A Ollivier</name>
</author>
<author>
<name sortKey="Plantegenest, M" uniqKey="Plantegenest M">M Plantegenest</name>
</author>
<author>
<name sortKey="Simon, J C" uniqKey="Simon J">J-C Simon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Despres, L" uniqKey="Despres L">L Després</name>
</author>
<author>
<name sortKey="David, J P" uniqKey="David J">J-P David</name>
</author>
<author>
<name sortKey="Gallet, C" uniqKey="Gallet C">C Gallet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karban, R" uniqKey="Karban R">R Karban</name>
</author>
<author>
<name sortKey="Agrawal, Aa" uniqKey="Agrawal A">AA Agrawal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Toju, H" uniqKey="Toju H">H Toju</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Percy, Dm" uniqKey="Percy D">DM Percy</name>
</author>
<author>
<name sortKey="Page, Rdm" uniqKey="Page R">RDM Page</name>
</author>
<author>
<name sortKey="Cronk, Qcb" uniqKey="Cronk Q">QCB Cronk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lopez Vaamonde, C" uniqKey="Lopez Vaamonde C">C Lopez-Vaamonde</name>
</author>
<author>
<name sortKey="Wikstrom, N" uniqKey="Wikstrom N">N Wikström</name>
</author>
<author>
<name sortKey="Labandeira, C" uniqKey="Labandeira C">C Labandeira</name>
</author>
<author>
<name sortKey="Godfray, Hcj" uniqKey="Godfray H">HCJ Godfray</name>
</author>
<author>
<name sortKey="Goodman, Sj" uniqKey="Goodman S">SJ Goodman</name>
</author>
<author>
<name sortKey="Cook, Jm" uniqKey="Cook J">JM Cook</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hunt, T" uniqKey="Hunt T">T Hunt</name>
</author>
<author>
<name sortKey="Bergsten, J" uniqKey="Bergsten J">J Bergsten</name>
</author>
<author>
<name sortKey="Levkanicova, Z" uniqKey="Levkanicova Z">Z Levkanicova</name>
</author>
<author>
<name sortKey="Papadopoulou, A" uniqKey="Papadopoulou A">A Papadopoulou</name>
</author>
<author>
<name sortKey="St John, O" uniqKey="St John O">O St. John</name>
</author>
<author>
<name sortKey="Wild, R" uniqKey="Wild R">R Wild</name>
</author>
<author>
<name sortKey="Hammond, Pm" uniqKey="Hammond P">PM Hammond</name>
</author>
<author>
<name sortKey="Ahrens, D" uniqKey="Ahrens D">D Ahrens</name>
</author>
<author>
<name sortKey="Balke, M" uniqKey="Balke M">M Balke</name>
</author>
<author>
<name sortKey="Caterino, Ms" uniqKey="Caterino M">MS Caterino</name>
</author>
<author>
<name sortKey="G Mez Zurita, H" uniqKey="G Mez Zurita H">H Gómez-Zurita</name>
</author>
<author>
<name sortKey="Ribera, I" uniqKey="Ribera I">I Ribera</name>
</author>
<author>
<name sortKey="Barraclough, Tg" uniqKey="Barraclough T">TG Barraclough</name>
</author>
<author>
<name sortKey="Bocakova, M" uniqKey="Bocakova M">M Bocakova</name>
</author>
<author>
<name sortKey="Bocak, L" uniqKey="Bocak L">L Bocak</name>
</author>
<author>
<name sortKey="Vogler, Ap" uniqKey="Vogler A">AP Vogler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janz, N" uniqKey="Janz N">N Janz</name>
</author>
<author>
<name sortKey="Nylin, S" uniqKey="Nylin S">S Nylin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winkler, Is" uniqKey="Winkler I">IS Winkler</name>
</author>
<author>
<name sortKey="Mitter, C" uniqKey="Mitter C">C Mitter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nyman, T" uniqKey="Nyman T">T Nyman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mitter, C" uniqKey="Mitter C">C Mitter</name>
</author>
<author>
<name sortKey="Farrell, B" uniqKey="Farrell B">B Farrell</name>
</author>
<author>
<name sortKey="Wiegmann, B" uniqKey="Wiegmann B">B Wiegmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dyer, La" uniqKey="Dyer L">LA Dyer</name>
</author>
<author>
<name sortKey="Singer, Ms" uniqKey="Singer M">MS Singer</name>
</author>
<author>
<name sortKey="Lill, Jt" uniqKey="Lill J">JT Lill</name>
</author>
<author>
<name sortKey="Stireman, Jo" uniqKey="Stireman J">JO Stireman</name>
</author>
<author>
<name sortKey="Gentry, Gl" uniqKey="Gentry G">GL Gentry</name>
</author>
<author>
<name sortKey="Marquis, Rj" uniqKey="Marquis R">RJ Marquis</name>
</author>
<author>
<name sortKey="Ricklefs, Re" uniqKey="Ricklefs R">RE Ricklefs</name>
</author>
<author>
<name sortKey="Greeney, Hf" uniqKey="Greeney H">HF Greeney</name>
</author>
<author>
<name sortKey="Wagner, Dl" uniqKey="Wagner D">DL Wagner</name>
</author>
<author>
<name sortKey="Morais, Hc" uniqKey="Morais H">HC Morais</name>
</author>
<author>
<name sortKey="Diniz, Ir" uniqKey="Diniz I">IR Diniz</name>
</author>
<author>
<name sortKey="Kursar, Ta" uniqKey="Kursar T">TA Kursar</name>
</author>
<author>
<name sortKey="Coley, Pd" uniqKey="Coley P">PD Coley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Futuyma, Dj" uniqKey="Futuyma D">DJ Futuyma</name>
</author>
<author>
<name sortKey="Agrawal, Aa" uniqKey="Agrawal A">AA Agrawal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Futuyma, Dj" uniqKey="Futuyma D">DJ Futuyma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Funk, Dj" uniqKey="Funk D">DJ Funk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Funk, Dj" uniqKey="Funk D">DJ Funk</name>
</author>
<author>
<name sortKey="Nosil, P" uniqKey="Nosil P">P Nosil</name>
</author>
<author>
<name sortKey="Etges, Wj" uniqKey="Etges W">WJ Etges</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rundell, Rj" uniqKey="Rundell R">RJ Rundell</name>
</author>
<author>
<name sortKey="Price, Td" uniqKey="Price T">TD Price</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ross, Hh" uniqKey="Ross H">HH Ross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barraclough, Tg" uniqKey="Barraclough T">TG Barraclough</name>
</author>
<author>
<name sortKey="Hogan, Je" uniqKey="Hogan J">JE Hogan</name>
</author>
<author>
<name sortKey="Vogler, Ap" uniqKey="Vogler A">AP Vogler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peterson, At" uniqKey="Peterson A">AT Peterson</name>
</author>
<author>
<name sortKey="Sober N, J" uniqKey="Sober N J">J Soberón</name>
</author>
<author>
<name sortKey="Sanchez Cordero, V" uniqKey="Sanchez Cordero V">V Sánchez-Cordero</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ross, Hh" uniqKey="Ross H">HH Ross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Dr" uniqKey="Smith D">DR Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lacourt, J" uniqKey="Lacourt J">J Lacourt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kouki, J" uniqKey="Kouki J">J Kouki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nyman, T" uniqKey="Nyman T">T Nyman</name>
</author>
<author>
<name sortKey="Farrell, Bd" uniqKey="Farrell B">BD Farrell</name>
</author>
<author>
<name sortKey="Zinovjev, Ag" uniqKey="Zinovjev A">AG Zinovjev</name>
</author>
<author>
<name sortKey="Vikberg, V" uniqKey="Vikberg V">V Vikberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nyman, T" uniqKey="Nyman T">T Nyman</name>
</author>
<author>
<name sortKey="Zinovjev, Ag" uniqKey="Zinovjev A">AG Zinovjev</name>
</author>
<author>
<name sortKey="Vikberg, V" uniqKey="Vikberg V">V Vikberg</name>
</author>
<author>
<name sortKey="Farrell, Bd" uniqKey="Farrell B">BD Farrell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nyman, T" uniqKey="Nyman T">T Nyman</name>
</author>
<author>
<name sortKey="Widmer, A" uniqKey="Widmer A">A Widmer</name>
</author>
<author>
<name sortKey="Roininen, H" uniqKey="Roininen H">H Roininen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Posada, D" uniqKey="Posada D">D Posada</name>
</author>
<author>
<name sortKey="Crandall, Ka" uniqKey="Crandall K">KA Crandall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Swofford, Dl" uniqKey="Swofford D">DL Swofford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ronquist, F" uniqKey="Ronquist F">F Ronquist</name>
</author>
<author>
<name sortKey="Huelsenbeck, Jp" uniqKey="Huelsenbeck J">JP Huelsenbeck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stamatakis, A" uniqKey="Stamatakis A">A Stamatakis</name>
</author>
<author>
<name sortKey="Hoover, P" uniqKey="Hoover P">P Hoover</name>
</author>
<author>
<name sortKey="Rougemont, J" uniqKey="Rougemont J">J Rougemont</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drummond, Aj" uniqKey="Drummond A">AJ Drummond</name>
</author>
<author>
<name sortKey="Rambaut, A" uniqKey="Rambaut A">A Rambaut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rambaut, A" uniqKey="Rambaut A">A Rambaut</name>
</author>
<author>
<name sortKey="Drummond, Aj" uniqKey="Drummond A">AJ Drummond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maddison, Wp" uniqKey="Maddison W">WP Maddison</name>
</author>
<author>
<name sortKey="Maddison, Dr" uniqKey="Maddison D">DR Maddison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huelsenbeck, Jp" uniqKey="Huelsenbeck J">JP Huelsenbeck</name>
</author>
<author>
<name sortKey="Rannala, B" uniqKey="Rannala B">B Rannala</name>
</author>
<author>
<name sortKey="Masly, Jp" uniqKey="Masly J">JP Masly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Dr" uniqKey="Smith D">DR Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Dr" uniqKey="Smith D">DR Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Savolainen, V" uniqKey="Savolainen V">V Savolainen</name>
</author>
<author>
<name sortKey="Anstett, M C" uniqKey="Anstett M">M-C Anstett</name>
</author>
<author>
<name sortKey="Lexer, C" uniqKey="Lexer C">C Lexer</name>
</author>
<author>
<name sortKey="Hutton, I" uniqKey="Hutton I">I Hutton</name>
</author>
<author>
<name sortKey="Clarkson, Jj" uniqKey="Clarkson J">JJ Clarkson</name>
</author>
<author>
<name sortKey="Norup, Mv" uniqKey="Norup M">MV Norup</name>
</author>
<author>
<name sortKey="Powell, Mp" uniqKey="Powell M">MP Powell</name>
</author>
<author>
<name sortKey="Springate, D" uniqKey="Springate D">D Springate</name>
</author>
<author>
<name sortKey="Salamin, N" uniqKey="Salamin N">N Salamin</name>
</author>
<author>
<name sortKey="Baker, Wj" uniqKey="Baker W">WJ Baker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kempf, F" uniqKey="Kempf F">F Kempf</name>
</author>
<author>
<name sortKey="Boulinier, T" uniqKey="Boulinier T">T Boulinier</name>
</author>
<author>
<name sortKey="De Meeus, T" uniqKey="De Meeus T">T De Meeûs</name>
</author>
<author>
<name sortKey="Arnathau, C" uniqKey="Arnathau C">C Arnathau</name>
</author>
<author>
<name sortKey="Mccoy, Kd" uniqKey="Mccoy K">KD McCoy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barraclough, Tg" uniqKey="Barraclough T">TG Barraclough</name>
</author>
<author>
<name sortKey="Vogler, Ap" uniqKey="Vogler A">AP Vogler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barraclough, Tg" uniqKey="Barraclough T">TG Barraclough</name>
</author>
<author>
<name sortKey="Nee, S" uniqKey="Nee S">S Nee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wood, Te" uniqKey="Wood T">TE Wood</name>
</author>
<author>
<name sortKey="Takebayashi, N" uniqKey="Takebayashi N">N Takebayashi</name>
</author>
<author>
<name sortKey="Barker, Ms" uniqKey="Barker M">MS Barker</name>
</author>
<author>
<name sortKey="Mayrose, I" uniqKey="Mayrose I">I Mayrose</name>
</author>
<author>
<name sortKey="Greenspoon, Pb" uniqKey="Greenspoon P">PB Greenspoon</name>
</author>
<author>
<name sortKey="Riesenberg, Lh" uniqKey="Riesenberg L">LH Riesenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kozak, Kh" uniqKey="Kozak K">KH Kozak</name>
</author>
<author>
<name sortKey="Wiens, Jj" uniqKey="Wiens J">JJ Wiens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perret, M" uniqKey="Perret M">M Perret</name>
</author>
<author>
<name sortKey="Chautems, A" uniqKey="Chautems A">A Chautems</name>
</author>
<author>
<name sortKey="Spichiger, R" uniqKey="Spichiger R">R Spichiger</name>
</author>
<author>
<name sortKey="Barraclough, Tg" uniqKey="Barraclough T">TG Barraclough</name>
</author>
<author>
<name sortKey="Savolainen, V" uniqKey="Savolainen V">V Savolainen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Linnen, Cr" uniqKey="Linnen C">CR Linnen</name>
</author>
<author>
<name sortKey="Farrell, Bd" uniqKey="Farrell B">BD Farrell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ehrlich, Pr" uniqKey="Ehrlich P">PR Ehrlich</name>
</author>
<author>
<name sortKey="Raven, Ph" uniqKey="Raven P">PH Raven</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diehl, Sr" uniqKey="Diehl S">SR Diehl</name>
</author>
<author>
<name sortKey="Bush, Gl" uniqKey="Bush G">GL Bush</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ronquist, F" uniqKey="Ronquist F">F Ronquist</name>
</author>
<author>
<name sortKey="Liljeblad, J" uniqKey="Liljeblad J">J Liljeblad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schluter, D" uniqKey="Schluter D">D Schluter</name>
</author>
<author>
<name sortKey="Price, T" uniqKey="Price T">T Price</name>
</author>
<author>
<name sortKey="Mooers, A" uniqKey="Mooers A">AØ Mooers</name>
</author>
<author>
<name sortKey="Ludwig, D" uniqKey="Ludwig D">D Ludwig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kopelke, J P" uniqKey="Kopelke J">J-P Kopelke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roininen, H" uniqKey="Roininen H">H Roininen</name>
</author>
<author>
<name sortKey="Nyman, T" uniqKey="Nyman T">T Nyman</name>
</author>
<author>
<name sortKey="Zinovjev, Ag" uniqKey="Zinovjev A">AG Zinovjev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Price, Pw" uniqKey="Price P">PW Price</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taeger, A" uniqKey="Taeger A">A Taeger</name>
</author>
<author>
<name sortKey="Altenhofer, E" uniqKey="Altenhofer E">E Altenhofer</name>
</author>
<author>
<name sortKey="Blank, Sm" uniqKey="Blank S">SM Blank</name>
</author>
<author>
<name sortKey="Jansen, E" uniqKey="Jansen E">E Jansen</name>
</author>
<author>
<name sortKey="Kraus, M" uniqKey="Kraus M">M Kraus</name>
</author>
<author>
<name sortKey="Pschorn Walcher, H" uniqKey="Pschorn Walcher H">H Pschorn-Walcher</name>
</author>
<author>
<name sortKey="Ritzau, C" uniqKey="Ritzau C">C Ritzau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Farrell, Bd" uniqKey="Farrell B">BD Farrell</name>
</author>
<author>
<name sortKey="Mitter, C" uniqKey="Mitter C">C Mitter</name>
</author>
<author>
<name sortKey="Futuyma, Dj" uniqKey="Futuyma D">DJ Futuyma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Becerra, Jx" uniqKey="Becerra J">JX Becerra</name>
</author>
<author>
<name sortKey="Noge, K" uniqKey="Noge K">K Noge</name>
</author>
<author>
<name sortKey="Venable, Dl" uniqKey="Venable D">DL Venable</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mckenna, Dd" uniqKey="Mckenna D">DD McKenna</name>
</author>
<author>
<name sortKey="Farrell, Bd" uniqKey="Farrell B">BD Farrell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcleish, Mj" uniqKey="Mcleish M">MJ McLeish</name>
</author>
<author>
<name sortKey="Chapman, Tw" uniqKey="Chapman T">TW Chapman</name>
</author>
<author>
<name sortKey="Schwarz, Mp" uniqKey="Schwarz M">MP Schwarz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winkler, Is" uniqKey="Winkler I">IS Winkler</name>
</author>
<author>
<name sortKey="Mitter, C" uniqKey="Mitter C">C Mitter</name>
</author>
<author>
<name sortKey="Scheffer, Sj" uniqKey="Scheffer S">SJ Scheffer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilf, P" uniqKey="Wilf P">P Wilf</name>
</author>
<author>
<name sortKey="Labandeira, Cc" uniqKey="Labandeira C">CC Labandeira</name>
</author>
<author>
<name sortKey="Johnson, Kr" uniqKey="Johnson K">KR Johnson</name>
</author>
<author>
<name sortKey="Coley, Pd" uniqKey="Coley P">PD Coley</name>
</author>
<author>
<name sortKey="Cutter, Ad" uniqKey="Cutter A">AD Cutter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ross, Hh" uniqKey="Ross H">HH Ross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Esselstyn, Ja" uniqKey="Esselstyn J">JA Esselstyn</name>
</author>
<author>
<name sortKey="Timm, Rm" uniqKey="Timm R">RM Timm</name>
</author>
<author>
<name sortKey="Brown, Rm" uniqKey="Brown R">RM Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Proche, " uniqKey="Proche ">Ş Procheş</name>
</author>
<author>
<name sortKey="Forest, F" uniqKey="Forest F">F Forest</name>
</author>
<author>
<name sortKey="Veldtman, R" uniqKey="Veldtman R">R Veldtman</name>
</author>
<author>
<name sortKey="Chown, Sl" uniqKey="Chown S">SL Chown</name>
</author>
<author>
<name sortKey="Cowling, Rm" uniqKey="Cowling R">RM Cowling</name>
</author>
<author>
<name sortKey="Johnson, Sd" uniqKey="Johnson S">SD Johnson</name>
</author>
<author>
<name sortKey="Richardson, Dm" uniqKey="Richardson D">DM Richardson</name>
</author>
<author>
<name sortKey="Savolainen, V" uniqKey="Savolainen V">V Savolainen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taeger, A" uniqKey="Taeger A">A Taeger</name>
</author>
<author>
<name sortKey="Blank, Sm" uniqKey="Blank S">SM Blank</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zachos, Jc" uniqKey="Zachos J">JC Zachos</name>
</author>
<author>
<name sortKey="Dickens, Gr" uniqKey="Dickens G">GR Dickens</name>
</author>
<author>
<name sortKey="Zeebe, Re" uniqKey="Zeebe R">RE Zeebe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Argus, Gw" uniqKey="Argus G">GW Argus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Skvortsov, Ak" uniqKey="Skvortsov A">AK Skvortsov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kennedy, Cej" uniqKey="Kennedy C">CEJ Kennedy</name>
</author>
<author>
<name sortKey="Southwood, Tre" uniqKey="Southwood T">TRE Southwood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mardulyn, P" uniqKey="Mardulyn P">P Mardulyn</name>
</author>
<author>
<name sortKey="Milinkovitch, Mc" uniqKey="Milinkovitch M">MC Milinkovitch</name>
</author>
<author>
<name sortKey="Pasteels, Jm" uniqKey="Pasteels J">JM Pasteels</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lawton, Jh" uniqKey="Lawton J">JH Lawton</name>
</author>
<author>
<name sortKey="Strong, Dr" uniqKey="Strong D">DR Strong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Denno, Rf" uniqKey="Denno R">RF Denno</name>
</author>
<author>
<name sortKey="Mcclure, Ms" uniqKey="Mcclure M">MS McClure</name>
</author>
<author>
<name sortKey="Ott, Jr" uniqKey="Ott J">JR Ott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaplan, I" uniqKey="Kaplan I">I Kaplan</name>
</author>
<author>
<name sortKey="Denno, Rf" uniqKey="Denno R">RF Denno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janzen, Dh" uniqKey="Janzen D">DH Janzen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mckenna, Dd" uniqKey="Mckenna D">DD McKenna</name>
</author>
<author>
<name sortKey="Sequeira, As" uniqKey="Sequeira A">AS Sequeira</name>
</author>
<author>
<name sortKey="Marvaldi, Ae" uniqKey="Marvaldi A">AE Marvaldi</name>
</author>
<author>
<name sortKey="Farrell, Bd" uniqKey="Farrell B">BD Farrell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kelly, Ck" uniqKey="Kelly C">CK Kelly</name>
</author>
<author>
<name sortKey="Southwood, Tre" uniqKey="Southwood T">TRE Southwood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lewinsohn, Tm" uniqKey="Lewinsohn T">TM Lewinsohn</name>
</author>
<author>
<name sortKey="Novotny, V" uniqKey="Novotny V">V Novotny</name>
</author>
<author>
<name sortKey="Basset, Y" uniqKey="Basset Y">Y Basset</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fretwell, Sd" uniqKey="Fretwell S">SD Fretwell</name>
</author>
<author>
<name sortKey="Lucas, Hl" uniqKey="Lucas H">HL Lucas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rabosky, Dl" uniqKey="Rabosky D">DL Rabosky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tack, Ajm" uniqKey="Tack A">AJM Tack</name>
</author>
<author>
<name sortKey="Ovaskainen, O" uniqKey="Ovaskainen O">O Ovaskainen</name>
</author>
<author>
<name sortKey="Harrison, Pj" uniqKey="Harrison P">PJ Harrison</name>
</author>
<author>
<name sortKey="Roslin, T" uniqKey="Roslin T">T Roslin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janz, N" uniqKey="Janz N">N Janz</name>
</author>
<author>
<name sortKey="Nylin, S" uniqKey="Nylin S">S Nylin</name>
</author>
<author>
<name sortKey="Wahlberg, N" uniqKey="Wahlberg N">N Wahlberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emerson, Bc" uniqKey="Emerson B">BC Emerson</name>
</author>
<author>
<name sortKey="Gillespie, Rg" uniqKey="Gillespie R">RG Gillespie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azuma, T" uniqKey="Azuma T">T Azuma</name>
</author>
<author>
<name sortKey="Kajita, T" uniqKey="Kajita T">T Kajita</name>
</author>
<author>
<name sortKey="Yokoyama, J" uniqKey="Yokoyama J">J Yokoyama</name>
</author>
<author>
<name sortKey="Ohashi, H" uniqKey="Ohashi H">H Ohashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, J H" uniqKey="Chen J">J-H Chen</name>
</author>
<author>
<name sortKey="Sun, H" uniqKey="Sun H">H Sun</name>
</author>
<author>
<name sortKey="Wen, J" uniqKey="Wen J">J Wen</name>
</author>
<author>
<name sortKey="Yang, Y P" uniqKey="Yang Y">Y-P Yang</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Evol Biol</journal-id>
<journal-title-group>
<journal-title>BMC Evolutionary Biology</journal-title>
</journal-title-group>
<issn pub-type="epub">1471-2148</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">20807452</article-id>
<article-id pub-id-type="pmc">2936908</article-id>
<article-id pub-id-type="publisher-id">1471-2148-10-266</article-id>
<article-id pub-id-type="doi">10.1186/1471-2148-10-266</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>How common is ecological speciation in plant-feeding insects? A 'Higher' Nematinae perspective</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes" id="A1">
<name>
<surname>Nyman</surname>
<given-names>Tommi</given-names>
</name>
<xref ref-type="aff" rid="I1">1</xref>
<email>Tommi.Nyman@uef.fi</email>
</contrib>
<contrib contrib-type="author" id="A2">
<name>
<surname>Vikberg</surname>
<given-names>Veli</given-names>
</name>
<xref ref-type="aff" rid="I2">2</xref>
<email>Veli.Vikberg@aina.net</email>
</contrib>
<contrib contrib-type="author" id="A3">
<name>
<surname>Smith</surname>
<given-names>David R</given-names>
</name>
<xref ref-type="aff" rid="I3">3</xref>
<email>Dave.Smith@ars.usda.gov</email>
</contrib>
<contrib contrib-type="author" id="A4">
<name>
<surname>Boevé</surname>
<given-names>Jean-Luc</given-names>
</name>
<xref ref-type="aff" rid="I4">4</xref>
<email>Jean-Luc.Boeve@naturalsciences.be</email>
</contrib>
</contrib-group>
<aff id="I1">
<label>1</label>
Department of Biology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland</aff>
<aff id="I2">
<label>2</label>
Liinalammintie 11 as. 6, FI-14200 Turenki, Finland</aff>
<aff id="I3">
<label>3</label>
Systematic Entomology Laboratory, PSI, Agricultural Research Service, US Department of Agriculture, c/o National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 168, Washington, DC 20013-7012, USA</aff>
<aff id="I4">
<label>4</label>
Department of Entomology, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium</aff>
<pub-date pub-type="collection">
<year>2010</year>
</pub-date>
<pub-date pub-type="epub">
<day>1</day>
<month>9</month>
<year>2010</year>
</pub-date>
<volume>10</volume>
<fpage>266</fpage>
<lpage>266</lpage>
<history>
<date date-type="received">
<day>14</day>
<month>2</month>
<year>2010</year>
</date>
<date date-type="accepted">
<day>1</day>
<month>9</month>
<year>2010</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright ©2010 Nyman et al; licensee BioMed Central Ltd.</copyright-statement>
<copyright-year>2010</copyright-year>
<copyright-holder>Nyman et al; licensee BioMed Central Ltd.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/2.0">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/2.0">http://creativecommons.org/licenses/by/2.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<self-uri xlink:href="http://www.biomedcentral.com/1471-2148/10/266"></self-uri>
<abstract>
<sec>
<title>Background</title>
<p>Ecological speciation is a process in which a transiently resource-polymorphic species divides into two specialized sister lineages as a result of divergent selection pressures caused by the use of multiple niches or environments. Ecology-based speciation has been studied intensively in plant-feeding insects, in which both sympatric and allopatric shifts onto novel host plants could speed up diversification. However, while numerous examples of species pairs likely to have originated by resource shifts have been found, the overall importance of ecological speciation in relation to other, non-ecological speciation modes remains unknown. Here, we apply phylogenetic information on sawflies belonging to the 'Higher' Nematinae (Hymenoptera: Tenthredinidae) to infer the frequency of niche shifts in relation to speciation events.</p>
</sec>
<sec>
<title>Results</title>
<p>Phylogenetic trees reconstructed on the basis of DNA sequence data show that the diversification of higher nematines has involved frequent shifts in larval feeding habits and in the use of plant taxa. However, the inferred number of resource shifts is considerably lower than the number of past speciation events, indicating that the majority of divergences have occurred by non-ecological allopatric speciation; based on a time-corrected analysis of sister species, we estimate that a maximum of
<italic>c</italic>
. 20% of lineage splits have been triggered by a change in resource use. In addition, we find that postspeciational changes in geographic distributions have led to broad sympatry in many species having identical host-plant ranges.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>Our analysis indicates that the importance of niche shifts for the diversification of herbivorous insects is at present implicitly and explicitly overestimated. In the case of the Higher Nematinae, employing a time correction for sister-species comparisons lowered the proportion of apparent ecology-based speciation events from
<italic>c</italic>
. 50-60% to around 20%, but such corrections are still lacking in other herbivore groups. The observed convergent but asynchronous shifting among dominant northern plant taxa in many higher-nematine clades, in combination with the broad overlaps in the geographic distributions of numerous nematine species occupying near-identical niches, indicates that host-plant shifts and herbivore community assembly are largely unconstrained by direct or indirect competition among species. More phylogeny-based studies on connections between niche diversification and speciation are needed across many insect taxa, especially in groups that exhibit few host shifts in relation to speciation.</p>
</sec>
</abstract>
</article-meta>
</front>
<body>
<sec>
<title>Background</title>
<p>Ecological speciation is a process in which a shift in resource or habitat use within an ancestral species triggers the formation of two new sister species, each adapted to exploit different niches [
<xref ref-type="bibr" rid="B1">1</xref>
,
<xref ref-type="bibr" rid="B2">2</xref>
]. The speciation process is thought to involve an initial period of resource polymorphism, during which the parent lineage utilizes multiple environments or niches [
<xref ref-type="bibr" rid="B3">3</xref>
,
<xref ref-type="bibr" rid="B4">4</xref>
]; subsequently, tradeoffs in the efficiency by which individuals can use different resources lead to disruptive selection and, eventually, to lineage splitting [
<xref ref-type="bibr" rid="B5">5</xref>
,
<xref ref-type="bibr" rid="B6">6</xref>
]. Ecological speciation has recently been focus of intensive research, and it is becoming increasingly clear that niche-based selection may underlie or at least speed up the diversification of, for example, many bird [
<xref ref-type="bibr" rid="B7">7</xref>
,
<xref ref-type="bibr" rid="B8">8</xref>
], lizard [
<xref ref-type="bibr" rid="B9">9</xref>
], fish [
<xref ref-type="bibr" rid="B10">10</xref>
], and invertebrate [
<xref ref-type="bibr" rid="B11">11</xref>
,
<xref ref-type="bibr" rid="B12">12</xref>
] groups.</p>
<p>Many of the best examples of species pairs that may have formed as a result of ecological speciation come from plant-feeding insects [
<xref ref-type="bibr" rid="B2">2</xref>
,
<xref ref-type="bibr" rid="B13">13</xref>
,
<xref ref-type="bibr" rid="B14">14</xref>
]. Insect herbivores are typically highly specialized in their host-plant preferences, and exhibit elaborate physiological [
<xref ref-type="bibr" rid="B15">15</xref>
], behavioural [
<xref ref-type="bibr" rid="B16">16</xref>
], and morphological [
<xref ref-type="bibr" rid="B17">17</xref>
] adaptations for utilizing their respective host plants. However, although only a small fraction of available plants constitute a suitable food source for most insect species, contrasts of herbivore
<italic>versus </italic>
plant phylogenies have in many cases revealed drastic discrepancies between the phylogenetic trees [
<xref ref-type="bibr" rid="B18">18</xref>
-
<xref ref-type="bibr" rid="B20">20</xref>
]. In essence, this means that host-plant associations are evolvable and change occasionally during the evolutionary history of insect lineages [
<xref ref-type="bibr" rid="B21">21</xref>
-
<xref ref-type="bibr" rid="B23">23</xref>
]. Occasional colonizations of novel hosts can theoretically cause ecological speciation, which could provide an explanation for the enormous species diversity of plant-feeding insects on the Earth [
<xref ref-type="bibr" rid="B24">24</xref>
-
<xref ref-type="bibr" rid="B26">26</xref>
].</p>
<p>A considerable proportion of evolutionary insect-plant research has been devoted to the possibility that ecological speciation in plant-feeding insects occurs in sympatry, so that both sister lineages are formed within a continuous geographical area [
<xref ref-type="bibr" rid="B4">4</xref>
,
<xref ref-type="bibr" rid="B13">13</xref>
,
<xref ref-type="bibr" rid="B27">27</xref>
]. However, a more likely scenario is that ecological speciation is initiated in allopatric or partially allopatric (para- or peripatric) settings; in these cases, increasing specialization onto different hosts in different parts of the geographical range of an insect species is thought to reduce the probability of hybridization if the populations later come into contact again [
<xref ref-type="bibr" rid="B2">2</xref>
,
<xref ref-type="bibr" rid="B28">28</xref>
]. Hence, the main difference to 'ordinary' allopatric speciation is that the cause for reproductive isolation lies in the disparate ecology of the incipient species, rather than in gradual accumulation of genetic incompatibilities between geographically isolated populations [
<xref ref-type="bibr" rid="B29">29</xref>
,
<xref ref-type="bibr" rid="B30">30</xref>
].</p>
<p>While numerous putative cases of ecology-based speciation in plant-feeding insects are known, we still lack an understanding of the actual frequency or importance of ecological shifts in the formation of new species [
<xref ref-type="bibr" rid="B22">22</xref>
,
<xref ref-type="bibr" rid="B27">27</xref>
,
<xref ref-type="bibr" rid="B31">31</xref>
]. Investigations of ecologically divergent species pairs can provide insights into traits or circumstances that enhance the likelihood of niche-based divergence, but studying the frequency of ecological speciation requires use of a broader, phylogeny-based approach [
<xref ref-type="bibr" rid="B22">22</xref>
,
<xref ref-type="bibr" rid="B30">30</xref>
,
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B33">33</xref>
]. The usefulness of phylogenies stems from the fact that different speciational processes should produce very different distributions of niches on the phylogenetic trees of insect herbivores: if speciation is mainly allopatric and non-ecological, particular host taxa should be closely clustered on the tips of the insect phylogeny (Fig.
<xref ref-type="fig" rid="F1">1a</xref>
). Conversely, if speciation is mainly ecology-based, closely related insects should tend to have different hosts, meaning that plants would occur in an intermixed fashion along the tips of the insect phylogeny (Fig.
<xref ref-type="fig" rid="F1">1b</xref>
). In the first case, the number of inferred host-plant shifts should be distinctly lower than the number of speciation events that are required to produce the extant herbivore species, whereas, in the latter case, the number of inferred host shifts should be close to the number of lineage splits.</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>
<bold>Phylogenetic distributions of host-plant taxa arising from different speciation modes in insects</bold>
. (
<bold>a</bold>
) Distribution of host-plant taxa on the phylogeny of a hypothetical insect group in which speciation is mainly allopatric, and in which host shifts occur relatively infrequently in relation to speciation events. (
<bold>b</bold>
) Distribution of host taxa when speciation is mainly associated with host shifts. Note that only two host shifts are needed to explain current host-plant associations in
<bold>a</bold>
, whereas a minimum of six changes are needed to produce the pattern in
<bold>b</bold>
, although the number of speciation events is eight in both cases.</p>
</caption>
<graphic xlink:href="1471-2148-10-266-1"></graphic>
</fig>
<p>Here, we apply a molecular phylogenetic analysis of sawflies belonging to the so-called 'Higher' Nematinae (Hymenoptera: Tenthredinidae) to estimate the relative importance of ecological
<italic>versus </italic>
non-ecological speciation in plant-feeding insects. This group of over 700 species comprises most of the taxonomic and ecological diversity found within the tenthredinid subfamily Nematinae, which prompted Ross [
<xref ref-type="bibr" rid="B34">34</xref>
] to speculate: "The higher group of genera must have evolved some highly beneficial biological characteristics, because they are at present the most abundant boreal sawfly group in number of species and probably also in population." Indeed, higher nematines are ubiquitous in most habitats across the Northern Hemisphere, and their larvae feed on a wide variety of northern plant taxa [
<xref ref-type="bibr" rid="B35">35</xref>
-
<xref ref-type="bibr" rid="B37">37</xref>
]. Their larval feeding habits are equally diverse: in addition to 'normal' external folivores, the group includes berry miners, flower and catkin feeders, leaf folders, and various gall-inducing species (Fig.
<xref ref-type="fig" rid="F2">2</xref>
) [
<xref ref-type="bibr" rid="B38">38</xref>
]. Combined with the high species number, such broad diversity in species-specific resource use presents many possibilities for studying the tempo and mode of speciation.</p>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>
<bold>Examples of the diversity of resource use within the Higher Nematinae</bold>
. (
<bold>a</bold>
) Female of
<italic>Pristiphora mollis </italic>
ovipositing on a leaf of
<italic>Vaccinium myrtillus</italic>
. (
<bold>b</bold>
) Larva of
<italic>Amauronematus amplus </italic>
feeding on
<italic>Betula pubescens</italic>
. (
<bold>c</bold>
) Colony of
<italic>Pristiphora erichsonii </italic>
larvae on
<italic>Larix </italic>
sp. (
<bold>d</bold>
) Larva of
<italic>Phyllocolpa leucosticta </italic>
inside opened leaf fold on
<italic>Salix caprea</italic>
. (
<bold>e</bold>
) Larva of
<italic>Pristiphora angulata </italic>
feeding on flowers of
<italic>Spiraea chamaedryfolia</italic>
. (
<bold>f</bold>
) Larva of
<italic>Pontania pustulator </italic>
inside opened leaf gall on
<italic>Salix phylicifolia</italic>
. (
<bold>g</bold>
)
<italic>Melastola </italic>
sp. larva inside opened berry of
<italic>Vaccinium parvifolium</italic>
. The locations of these exemplar species on the phylogeny of Higher Nematinae are indicated by letters in Fig. 3. (Photographs by T. Nyman).</p>
</caption>
<graphic xlink:href="1471-2148-10-266-2"></graphic>
</fig>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<sec>
<title>Taxon sampling, amplification, and sequencing</title>
<p>Our study builds on a previous phylogenetic analysis of the whole subfamily Nematinae [
<xref ref-type="bibr" rid="B39">39</xref>
] by adding 78 new species and sequences of a third gene (Cytochrome b) to the published dataset. The current taxon sample includes 127 exemplars of 125 Higher Nematinae species, meaning that nearly all higher-nematine species groups and main ecological niches (host-plant taxa and larval habits) are represented [
<xref ref-type="bibr" rid="B35">35</xref>
,
<xref ref-type="bibr" rid="B36">36</xref>
]. Multiple representatives were included for all large genera and species groups (Additional file
<xref ref-type="supplementary-material" rid="S1">1</xref>
). Trees were rooted by including three non-nematine tenthredinids and ten species belonging to the nematine tribes Hoplocampini, Stauronematini, Pseudodineurini, Caulocampini, Susanini, Dineurini, and Cladiini as outgroups in the analyses. These small 'Lower' Nematinae groups form a paraphyletic grade with respect to the ingroup [
<xref ref-type="bibr" rid="B39">39</xref>
].</p>
<p>Sequence data were collected from two mitochondrial genes (Cytochrome oxidase I [CoI]: 810 bp; Cytochrome b [Cytb]: 718 bp) and from two exons (501 bp + 276 bp = 777 bp) of the F2 copy of the nuclear Elongation factor-1α (EF-1α) gene following previously-described protocols [
<xref ref-type="bibr" rid="B39">39</xref>
,
<xref ref-type="bibr" rid="B40">40</xref>
]. The concatenated data matrix consists of 2305 bp of sequence data for 140 species. Sequences are missing for three, nine, and six species for CoI, Cytb, and EF-1α, respectively, but every included species has full-length sequences from at least two genes. New sequences have been submitted to GenBank under accession numbers
<ext-link ext-link-type="gen" xlink:href="HM237366-HM237589">HM237366-HM237589</ext-link>
, and the Nexus-formatted data matrix, together with resultant phylogenetic trees, is available as Additional file
<xref ref-type="supplementary-material" rid="S2">2</xref>
.</p>
</sec>
<sec>
<title>Phylogenetic analyses</title>
<p>Modeltest 3.5 [
<xref ref-type="bibr" rid="B41">41</xref>
] was implemented in conjunction with PAUP* 4.0b10 [
<xref ref-type="bibr" rid="B42">42</xref>
] to identify the least complex substitution model for use in Bayesian phylogenetic analyses in MrBayes 3.1.2 [
<xref ref-type="bibr" rid="B43">43</xref>
]. Hierarchical likelihood ratio tests indicated a GTR+I+Γ
<sub>4 </sub>
model as optimal for each of the three genes. A separate, unlinked substitution model was allowed for each gene in a three-partition analysis. A single run employing default priors was run for eight million generations with eight incrementally heated (t = 0.1) chains; tree sampling was done from the current cold chain every 100th generation, and the first 10,001 trees recovered prior to reaching stationarity were discarded as a burnin. The consensus tree showing all compatible groupings (Fig.
<xref ref-type="fig" rid="F3">3</xref>
) was calculated on the basis of the remaining 70,000 trees. A corresponding maximum-likelihood (ML) analysis was performed using RAxML 7.0.4 [
<xref ref-type="bibr" rid="B44">44</xref>
]. This analysis employed a separate GTR+I+Γ
<sub>4 </sub>
model for each gene, but branch lengths were estimated jointly for the whole data (Additional file
<xref ref-type="supplementary-material" rid="S2">2</xref>
). Clade support was estimated on the basis of 500 bootstrap replicates of the data matrix (Fig.
<xref ref-type="fig" rid="F3">3</xref>
).</p>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>
<bold>Phylogeny of the Higher Nematinae and the diversification of host-plant use within the group</bold>
. The tree was reconstructed according to a Bayesian phylogenetic analysis allowing a separate GTR+I+Γ
<sub>4 </sub>
model of substitution for each gene. Numbers above branches show Bayesian posterior probabilities (%) followed by bootstrap proportions (%) from the corresponding ML analysis (hyphens in the place of bootstrap values denote clades that were not present in the ML tree). Branches are colored according to a maximum-parsimony reconstruction of host-family use, larval feeding habits are indicated by font colors and by symbols after species names (see legend). Species illustrated in Fig. 2 are indicated to the right of the tree.</p>
</caption>
<graphic xlink:href="1471-2148-10-266-3"></graphic>
</fig>
<p>BEAST 1.4.8 [
<xref ref-type="bibr" rid="B45">45</xref>
] was used to estimate the relative ages of various nematine groups based on a Bayesian relaxed molecular clock method. The topologically unconstrained analysis allowed a separate GTR+I+ Γ
<sub>4 </sub>
model of substitution for each gene and employed an uncorrelated relaxed lognormal clock model for rate variation among branches, a Yule prior on speciation, and default priors for other parameters except for the mean of branch rates (ucld.mean), which was fixed to 1. Three independent runs with automatic tuning of operators were run for 80 million generations, and parameters and trees were sampled every 1,000 generations (the XML file is available as Additional file
<xref ref-type="supplementary-material" rid="S3">3</xref>
). After inspection of adequate convergence of runs and effective sample sizes of the parameters in Tracer 1.4.1 [
<xref ref-type="bibr" rid="B46">46</xref>
], the tree files were combined in LogCombiner 1.4.8 (part of the BEAST package). The first 40,000 trees from each file were discarded as a burnin, and the tree file was subsequently thinned by resampling trees every 3,000 generations; the maximum clade credibility (MCC) tree showing mean branch lengths (Fig.
<xref ref-type="fig" rid="F4">4</xref>
) is based on the 40,001 post-stationarity trees that remained after thinning.</p>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>
<bold>Relaxed molecular-clock phylogeny of the Higher Nematinae, and the evolution of different larval habits within the group</bold>
. The maximum clade credibility tree resulted from a topologically unconstrained Bayesian phylogenetic analysis employing a relaxed lognormal clock and a separate GTR+I+Γ
<sub>4 </sub>
model of substitution for each gene. Numbers above branches show posterior probabilities (%), and blue shaded bars the 95% highest posterior density intervals for relative node ages for nodes with probabilities over 50%. Branch colors denote larval feeding habits according to unordered maximum-parsimony optimization, symbols to the right of species names show host-plant genera and families of the exemplar species (see legend). Full host ranges of polyphagous species are given in Additional file
<xref ref-type="supplementary-material" rid="S1">1</xref>
.</p>
</caption>
<graphic xlink:href="1471-2148-10-266-4"></graphic>
</fig>
</sec>
<sec>
<title>Character analyses</title>
<p>To reconstruct ancestral host-plant families and feeding habits, these traits were treated as unordered multistate characters and maximum-parsimony optimized on the phylogenetic trees using Mesquite 2.6 [
<xref ref-type="bibr" rid="B47">47</xref>
]. Oligo- and polyphagous taxa were coded with all used host families.</p>
<p>To estimate the number of ecological shifts that have occurred during the radiation of the Higher Nematinae, we first identified all distinct ecological niches (feeding habit × host plant(s)) found in the ingroup species included in the phylogenetic analysis, and coded each niche with a separate state within a single character (outgroup states were coded as unknown). Because the aim was to calculate numbers of changes, the typical number of steps between two different states was 1. However, we also created 'generalist' states for species that utilize multiple plant taxa and then used the step-matrix option in Mesquite to define the cost to these states, from the plant taxa that are included within the generalist host range, as being zero. By doing so, we essentially assumed that a clear overlap in the host ranges of different species implies that they have not speciated ecologically (theoretical models of resource-based speciation typically assume distinct, non-overlapping niches as the cause of divergent selection [
<xref ref-type="bibr" rid="B2">2</xref>
,
<xref ref-type="bibr" rid="B30">30</xref>
]). Phylogenetic uncertainty in the estimate was taken into account by recording the numbers of steps in the niche character across the 70,000 post-burnin trees that were sampled by MrBayes during the phylogenetic analysis [
<xref ref-type="bibr" rid="B48">48</xref>
].</p>
<p>As a separate estimate of the proportion of lineage splits accompanied by a shift in resource use, we indentified all terminal sister-species pairs across the MCC tree (Fig.
<xref ref-type="fig" rid="F4">4</xref>
), and then separated these 35 pairs into those in which both species have identical or overlapping niches, and into those in which the species have different niches. Thereafter, we performed a logistic regression in SPSS for Windows 17.0 (SPSS, Inc., 233 S. Wacker Drive, Chicago, IL 60606-6307, USA) to test whether the probability that sister species have a different niche depends on the time elapsed since their most recent common ancestor (= relative node height in the MCC tree).</p>
<p>Proportions of higher nematine species feeding on different plant genera (Fig.
<xref ref-type="fig" rid="F5">5</xref>
) were extracted from Lacourt's [
<xref ref-type="bibr" rid="B36">36</xref>
] list of host-plant affiliations of sawflies of the Western Palearctic region. Only species with known hosts were included, and proportions were calculated separately for the tribe Pristiphorini and for the Nematini+Mesoneurini clade (see Figs.
<xref ref-type="fig" rid="F3">3</xref>
,
<xref ref-type="fig" rid="F4">4</xref>
and
<xref ref-type="fig" rid="F5">5</xref>
). Oligo- and polyphagous species were counted as an additional species for each plant genus on which they feed (for example, the oligophagous
<italic>Craesus latipes </italic>
(Villaret) was treated as one species on
<italic>Alnus </italic>
and another on
<italic>Betula</italic>
).</p>
<fig id="F5" position="float">
<label>Figure 5</label>
<caption>
<p>
<bold>Distributions of Higher Nematinae species on different plant genera</bold>
. Proportions are shown separately for the tribe Pristiphorini and for its sister clade composed of the tribes Mesoneurini and Nematini (see Figs. 3 and 4). Host data and estimates of species numbers are from Lacourt's [
<xref ref-type="bibr" rid="B36">36</xref>
] checklist of Western Palearctic sawflies, plant families are denoted by separate font colors (see legend). Numbers in parentheses after tribe names are in the order: total number of species/number of Western Palearctic species/number of Western Palearctic species with known hosts.</p>
</caption>
<graphic xlink:href="1471-2148-10-266-5"></graphic>
</fig>
</sec>
</sec>
<sec>
<title>Results</title>
<sec>
<title>Phylogenetic trees</title>
<p>The Bayesian and ML analyses of the sequence data produced relatively well-supported trees showing that the Higher Nematinae constitutes a monophyletic clade within the subfamily Nematinae (Figs.
<xref ref-type="fig" rid="F3">3</xref>
and
<xref ref-type="fig" rid="F4">4</xref>
; the ML tree is included in Additional file
<xref ref-type="supplementary-material" rid="S2">2</xref>
). The three topologies are largely congruent, with discrepancies mainly evident in tree regions that are weakly supported. Major divisions within the ingroup correspond closely with the traditional tribes Nematini, Pristiphorini, and Mesoneurini (Figs.
<xref ref-type="fig" rid="F3">3</xref>
and
<xref ref-type="fig" rid="F4">4</xref>
). Conflict with traditional classifications is mostly evident in that the largest nematine genera (
<italic>Nematus</italic>
,
<italic>Pristiphora</italic>
, and
<italic>Amauronematus</italic>
) come out as para- and polyphyletic (see [
<xref ref-type="bibr" rid="B39">39</xref>
]). Posterior probabilities and bootstrap proportions of many groupings within Nematini are low, but because these uncertainties concern mainly relationships among strongly supported middle-level clades, they have only minor importance for the conclusions below.</p>
<p>The trees document a pattern of frequent faunal exchange across the Holarctic region, because European, North American, and Asian exemplar species (see Additional file
<xref ref-type="supplementary-material" rid="S1">1</xref>
) are intermixed throughout the trees. Nearctic species are found scattered among European ones in all major higher-nematine genera (
<italic>Nematus</italic>
,
<italic>Amauronematus</italic>
, and
<italic>Pristiphora</italic>
), but also in smaller groups such as
<italic>Eitelius</italic>
,
<italic>Pontopristia</italic>
, and
<italic>Pikonema </italic>
(Figs.
<xref ref-type="fig" rid="F3">3</xref>
and
<xref ref-type="fig" rid="F4">4</xref>
). Our analysis also confirms Smith's [
<xref ref-type="bibr" rid="B49">49</xref>
] hypothesis of a close relationship between the North American
<italic>Nematus erythrogaster </italic>
-group and the Holarctic genus
<italic>Craesus</italic>
, as well as his earlier [
<xref ref-type="bibr" rid="B50">50</xref>
] suggestion of a connection between the exclusively Nearctic genus
<italic>Neopareophora </italic>
and European
<italic>Nepionema</italic>
.</p>
</sec>
<sec>
<title>Evolutionary dynamics of resource use</title>
<p>Diversification of the Higher Nematinae has been a dynamic process in which host-plant associations and larval lifestyles change continually, although feeding-habit changes are distinctly rarer than shifts in host-plant use (Figs.
<xref ref-type="fig" rid="F3">3</xref>
and
<xref ref-type="fig" rid="F4">4</xref>
). Various forms of internal feeding, such as gall induction, leaf folding, catkin feeding, and berry mining, have evolved repeatedly from ancestors whose larvae were external feeders on leaves or on needles (Fig.
<xref ref-type="fig" rid="F4">4</xref>
). Higher-nematine larvae are currently found on plants belonging to over 16 families, but most species are concentrated on plants in Salicaceae, Betulaceae, Rosaceae, Ericaceae, and Pinaceae (Fig.
<xref ref-type="fig" rid="F5">5</xref>
), partly because colonization and recolonization events have occurred repeatedly among these plant taxa (Fig.
<xref ref-type="fig" rid="F3">3</xref>
). Interestingly, the distribution of species across utilized plant families differs between the clade formed by Pristiphorini and its sister clade formed by Nematini+Mesoneurini (Fig.
<xref ref-type="fig" rid="F5">5</xref>
;
<italic>χ</italic>
<sup>2</sup>
= 155.93, df = 15,
<italic>P </italic>
< 0.0001), the clearest discrepancy being the high proportion of
<italic>Salix</italic>
-feeding species within the most species-rich tribe Nematini.</p>
</sec>
<sec>
<title>Speciation and niche shifts</title>
<p>The existence of the 125 sampled ingroup species demands 124 past speciation events, but explaining the current distribution of species-level niches on the Bayesian consensus tree (Fig.
<xref ref-type="fig" rid="F3">3</xref>
) and on the ML tree requires only 68 shifts in feeding habits and/or host taxa. This estimate is robust against phylogenetic uncertainty, because when niches are similarly maximum-parsimony optimized on the 70,000 Bayesian post-burnin trees, 67-69 shifts (mean = 68.13) are needed. Even if shifts to generalist host-use states are treated as a true niche shift (= 1 step from other states), the Bayesian consensus tree is only 75 steps long (ML tree = 74 steps), and all trees in the Bayesian tree sample require between 73 and 75 changes (mean = 74.73 steps).</p>
<p>When only sister-taxon pairs on the MCC tree are considered, species in 19 out of 35 pairs (54.3%) have non-overlapping host ranges and/or a distinct difference in their larval feeding modes. However, the logistic regression (Fig.
<xref ref-type="fig" rid="F6">6</xref>
) shows that the probability of sister species having different niches is strongly affected by the time since their most recent common ancestor:
<italic>P</italic>
<sub>difference </sub>
= 1/(1+e
<sup>-(-1.29+15.12*split age)</sup>
), the constant (
<italic>P </italic>
= 0.045) and the effect of split age (
<italic>P </italic>
= 0.013) being statistically significant.</p>
<fig id="F6" position="float">
<label>Figure 6</label>
<caption>
<p>
<bold>The probability that higher-nematine sister species have different niches in relation to time since their divergence</bold>
. Data on pairwise niche differences (1 = different hosts and/or larval feeding habits; 0 = identical or overlapping niches) and split ages (= relative time since common ancestor) was taken from the 35 terminal sister-taxon pairs in the Bayesian MCC tree (Fig. 4), and the probability curve was estimated using logistic regression.</p>
</caption>
<graphic xlink:href="1471-2148-10-266-6"></graphic>
</fig>
</sec>
</sec>
<sec>
<title>Discussion</title>
<p>Research on ecological speciation has traditionally focussed on sister-species pairs or on small groups of closely related lineages that differ in their resource use, and which could therefore have originated by niche shifts. While such studies have convincingly shown that ecology-based diversification is possible in highly disparate taxa and under many plausible scenarios (
<italic>e.g</italic>
., [
<xref ref-type="bibr" rid="B8">8</xref>
,
<xref ref-type="bibr" rid="B51">51</xref>
,
<xref ref-type="bibr" rid="B52">52</xref>
]), the overall frequency of ecological speciation remains unknown. Recently, broader phylogenetic approaches have provided insights into the relative importance of alternative speciation modes [
<xref ref-type="bibr" rid="B53">53</xref>
-
<xref ref-type="bibr" rid="B55">55</xref>
]. For example, comparative analyses employing age-range corrections have shown that closely related species tend to have less overlap in their geographical ranges than do distantly related species, which indicates that speciation rarely occurs in sympatric settings [
<xref ref-type="bibr" rid="B53">53</xref>
,
<xref ref-type="bibr" rid="B56">56</xref>
-
<xref ref-type="bibr" rid="B58">58</xref>
]. However, the finding that speciation is largely allopatric does not exclude the possibility that the build-up of reproductive isolation between incipient species has an ecological basis: as mentioned above, ecological divergence can, and in fact is more likely to, occur in complete or partial allopatry [
<xref ref-type="bibr" rid="B27">27</xref>
,
<xref ref-type="bibr" rid="B28">28</xref>
,
<xref ref-type="bibr" rid="B30">30</xref>
]. Therefore, phylogenetic studies on the frequency of niche shifts in relation to the number of past speciation events are more likely to produce a correct view of the prevalence of ecological speciation [
<xref ref-type="bibr" rid="B22">22</xref>
,
<xref ref-type="bibr" rid="B31">31</xref>
,
<xref ref-type="bibr" rid="B33">33</xref>
,
<xref ref-type="bibr" rid="B56">56</xref>
].</p>
<p>The traditional paradigm in plant-herbivore research is that host shifts are a major factor promoting species divergence [
<xref ref-type="bibr" rid="B23">23</xref>
,
<xref ref-type="bibr" rid="B59">59</xref>
,
<xref ref-type="bibr" rid="B60">60</xref>
]. However, there are two good reasons for suspecting that the importance of niche shifts for speciation is overestimated: First, there has been a huge--most likely disproportionate--interest in the intriguing possibility that host-associated speciation in insect herbivores could occur in sympatry,
<italic>i.e</italic>
., without geographical isolation [
<xref ref-type="bibr" rid="B4">4</xref>
,
<xref ref-type="bibr" rid="B13">13</xref>
,
<xref ref-type="bibr" rid="B27">27</xref>
,
<xref ref-type="bibr" rid="B58">58</xref>
]. Second, it seems probable--and perfectly logical--that insect groups that are chosen for phylogenetic studies on host-plant shifts are selected preferentially from taxa in which species are known
<italic>a priori </italic>
to be relatively specialized and to exhibit clear interspecific variation in host-plant use (
<italic>e.g</italic>
., [
<xref ref-type="bibr" rid="B19">19</xref>
,
<xref ref-type="bibr" rid="B40">40</xref>
,
<xref ref-type="bibr" rid="B61">61</xref>
]).</p>
<p>In the case of the Higher Nematinae, our phylogenetic analysis reveals a pattern of frequent niche shifts both in terms of larval lifestyles and host-plant use (Figs.
<xref ref-type="fig" rid="F3">3</xref>
and
<xref ref-type="fig" rid="F4">4</xref>
). Despite this, optimizing larval niches on the Bayesian tree sample shows that at most about 60% of lineage splits could have been caused by ecological factors. This value should be considered as an upper limit, because our ecologically overdispersed taxon-sampling scheme will raise the relative number of niche shifts, and the sampling design should also override the tendency of maximum parsimony to underestimate the frequency of changes in fast-evolving traits [
<xref ref-type="bibr" rid="B62">62</xref>
]. When only sister species are considered, the percentage of pairs having divergent niches is 54. This raw value is intriguingly close to Winkler & Mitter's [
<xref ref-type="bibr" rid="B22">22</xref>
] recent 'fifty-fifty' estimate of the proportions of ecological vs. nonecological speciation, which was based on a broad literature survey of sister species of herbivorous insects. However, our logistic regression (Fig.
<xref ref-type="fig" rid="F6">6</xref>
) shows that immediately after speciation only an estimated 21.6% of higher-nematine sister-species pairs would have non-overlapping niches. The discrepancy between the methods is most likely explained by postspeciational host shifts, which can inflate the apparent frequency of ecological speciation in uncorrected sister-species comparisons. Although denser taxon sampling will be needed for a more exact estimate of the prevalence of ecology-based diversification within the Higher Nematinae, the marked drop in the inferred proportion in the age-adjusted analysis suggests that phylogenetic time corrections would be useful also in surveys of other insect herbivore taxa.</p>
<p>It is possible, however, that the frequency of ecological speciation varies among clades [
<xref ref-type="bibr" rid="B22">22</xref>
,
<xref ref-type="bibr" rid="B31">31</xref>
]. In particular, it appears that the extreme diversity (400-500 species [
<xref ref-type="bibr" rid="B63">63</xref>
,
<xref ref-type="bibr" rid="B64">64</xref>
]) of gall-inducing nematines in the subtribe Euurina (Figs.
<xref ref-type="fig" rid="F3">3</xref>
and
<xref ref-type="fig" rid="F4">4</xref>
) has been spurred by host-shifting among
<italic>Salix </italic>
species. Like other gall-inducing insects [
<xref ref-type="bibr" rid="B65">65</xref>
], Euurina gallers are very host-specific compared to willow-associated nematines having external-feeding larvae, which tend to utilize multiple host species [
<xref ref-type="bibr" rid="B36">36</xref>
,
<xref ref-type="bibr" rid="B66">66</xref>
], and which therefore probably may have radiated mainly allopatrically. Higher-nematine subgenera and species-groups feeding externally on other plant taxa are likewise often dominated by species having identical or broadly overlapping host-plant ranges [
<xref ref-type="bibr" rid="B36">36</xref>
,
<xref ref-type="bibr" rid="B38">38</xref>
,
<xref ref-type="bibr" rid="B66">66</xref>
], and niche shifting seems to be particularly infrequent in relation to speciation in groups associated with
<italic>Picea</italic>
,
<italic>Larix, Vaccinium</italic>
, and plants within Betulaceae (Fig.
<xref ref-type="fig" rid="F3">3</xref>
). It remains to be studied whether such non-ecological radiations can be used to estimate the proportion of non-ecological speciation in related groups in which species differ in their host use, because some proportion of host switches also in these groups undoubtedly have occurred well before or after speciation events (
<italic>cf</italic>
. [
<xref ref-type="bibr" rid="B33">33</xref>
]).</p>
<p>While earlier hypotheses on insect diversification emphasized coevolution of plant defenses and herbivore counterdefenses as a major driver of insect diversification [
<xref ref-type="bibr" rid="B59">59</xref>
,
<xref ref-type="bibr" rid="B67">67</xref>
,
<xref ref-type="bibr" rid="B68">68</xref>
], recent studies applying dated phylogenies have uncovered a possible role of long-term climatic conditions in determining rates of speciation and extinction in various herbivore groups [
<xref ref-type="bibr" rid="B69">69</xref>
-
<xref ref-type="bibr" rid="B71">71</xref>
]. Throughout the Earth's history, climatic changes have lead to major shifts in plant communities and global vegetation patterns, with direct negative or positive consequences for associated herbivores [
<xref ref-type="bibr" rid="B72">72</xref>
]. In particular, systems experiencing repeated cycles of range contractions, expansions, and faunal mixing can constitute 'speciation machines' that lead to escalating diversification across multiple trophic levels [
<xref ref-type="bibr" rid="B73">73</xref>
-
<xref ref-type="bibr" rid="B75">75</xref>
]. A Cenozoic high-latitude speciation machine could explain why higher nematines seem to have an inordinate fondness for willows: nearly a third of Western Palearctic species in the tribe Pristiphorini feed on
<italic>Salix </italic>
species, and in the Nematini the percentage is as high as 68 (Fig.
<xref ref-type="fig" rid="F5">5</xref>
; this general pattern holds also in North America [
<xref ref-type="bibr" rid="B35">35</xref>
,
<xref ref-type="bibr" rid="B37">37</xref>
]). The largest willow-associated radiations have occurred within the aforementioned gall-inducing subtribe Euurina, and in the predominantly willow-feeding
<italic>Amauronematus+Pontopristia </italic>
clade, which includes at least 112 species [
<xref ref-type="bibr" rid="B36">36</xref>
,
<xref ref-type="bibr" rid="B76">76</xref>
]. These temporally overlapping radiations began
<italic>c</italic>
. 30 million years ago (Mya), assuming that the most recent common ancestor of the Higher Nematinae lived about 70 Mya (Fig.
<xref ref-type="fig" rid="F4">4</xref>
; see [
<xref ref-type="bibr" rid="B39">39</xref>
]). Interestingly, this would place the onset of these radiations at the time of strong cooling of the global climate, which began in the early Oligocene
<italic>c</italic>
. 35 Mya, and which was followed by alternating periods of cold ice ages and warmer interglacials [
<xref ref-type="bibr" rid="B77">77</xref>
]. Such climatic oscillations, with resultant long-distance migrations of whole ecosystems, could have promoted the diversification of willows that are concentrated in relatively cool habitats and that currently comprise over 400 species [
<xref ref-type="bibr" rid="B78">78</xref>
,
<xref ref-type="bibr" rid="B79">79</xref>
]. The conditions that generated diversity in
<italic>Salix </italic>
would simultaneously have acted also on the insect groups that depend on them and, like in higher nematines, willows currently support a considerable proportion of species also in, for example, northern butterflies and moths [
<xref ref-type="bibr" rid="B80">80</xref>
], phytophagous beetles [
<xref ref-type="bibr" rid="B80">80</xref>
,
<xref ref-type="bibr" rid="B81">81</xref>
], and leafhoppers [
<xref ref-type="bibr" rid="B31">31</xref>
].</p>
<p>The role of competition in directing the historical assembly and present structure of herbivore communities has been debated for decades [
<xref ref-type="bibr" rid="B82">82</xref>
-
<xref ref-type="bibr" rid="B84">84</xref>
]. If competition was a force directing host switching, shifts would tend to occur towards un- or underused plant taxa, meaning that, over time, herbivore host-plant associations would become overdispersed with regard to plant phylogeny. By contrast, higher-nematine host use is strongly underdispersed, shifts having occurred repeatedly and in many directions among a handful of dominant northern plant families, while a large proportion of the Holarctic flora apparently has been effectively ignored for tens of millions of years. This shifting pattern conforms to the 'resource island model' [
<xref ref-type="bibr" rid="B23">23</xref>
,
<xref ref-type="bibr" rid="B85">85</xref>
,
<xref ref-type="bibr" rid="B86">86</xref>
] of herbivore diversification, in which phylogenetically biased colonizations and back-colonizations among plant taxa, in combination with abundance-dependent extinction, lead to accumulation of herbivore species on common plants that have many relatives [
<xref ref-type="bibr" rid="B80">80</xref>
,
<xref ref-type="bibr" rid="B87">87</xref>
,
<xref ref-type="bibr" rid="B88">88</xref>
]. Competition could still operate more subtly, if recruitment follows a 'macroevolutionary ideal free distribution' (
<italic>cf</italic>
. [
<xref ref-type="bibr" rid="B89">89</xref>
]), so that the number of herbivore species that can be supported depends on the commonness (or overall biomass) of a given plant [
<xref ref-type="bibr" rid="B90">90</xref>
]. However, the convergent, asynchronous, and undoubtedly ongoing colonizations of many plant taxa by various higher-nematine groups (Figs.
<xref ref-type="fig" rid="F3">3</xref>
and
<xref ref-type="fig" rid="F4">4</xref>
) indicates that ecological pre-emption of host taxa does not occur, and that northern insect-plant communities are still unsaturated and could therefore soak up even more herbivore species in the future. The broad overlaps in the geographical distributions [
<xref ref-type="bibr" rid="B35">35</xref>
,
<xref ref-type="bibr" rid="B36">36</xref>
] of many closely related, ecologically near-identical higher-nematine species--that necessarily must have diverged in allopatry and then brought to sympatry by postspeciational range shifts--provides further support for the view that interspecific competition, either via direct resource competition or via indirect competition caused by shared natural enemies, is of minor importance in structuring herbivore communities [
<xref ref-type="bibr" rid="B73">73</xref>
,
<xref ref-type="bibr" rid="B82">82</xref>
,
<xref ref-type="bibr" rid="B84">84</xref>
,
<xref ref-type="bibr" rid="B91">91</xref>
].</p>
</sec>
<sec>
<title>Conclusions</title>
<p>Our phylogeny-based analysis of the Higher Nematinae strongly indicates that the importance of niche shifts for speciation in plant-feeding insects is at present explicitly and implicitly overestimated. In particular, applying a time correction for sister-group comparisons lowered the proportion of apparent ecology-based speciation events from roughly 50% to around 20%. The vast majority of lineage splits in higher nematines therefore seem to have occurred non-ecologically in allopatry, and this may well be true also for most other plant-feeding insects. Reconciling this result with the finding of Janz
<italic>et al. </italic>
[
<xref ref-type="bibr" rid="B92">92</xref>
] that species richness in nymphalid butterfly clades correlates positively with collective host ranges requires further work; we propose that the correlation follows from reduced extinction probabilities in ecologically versatile groups, rather than from increased ecological speciation within them.</p>
<p>Evolutionary dynamics observed within the Higher Nematinae favour a largely non-interactive, non-equilibrium view of community assembly in northern plant-herbivore networks: geographical shifts across the whole Northern Hemisphere have been commonplace in many higher-nematine groups, and the frequent co-occurrence of related species utilizing seemingly identical niches indicates that distributional changes occur largely unimpeded by direct or indirect competitive interactions. More detailed surveys of local communities are, however, necessary in order to exclude the possibility that competitive repulsion occurs on smaller geographical scales, which could lead to a mosaic pattern of patch occupancy by ecologically equivalent relatives [
<xref ref-type="bibr" rid="B93">93</xref>
].</p>
<p>The Higher Nematinae comprises well over 70% of the species in the subfamily Nematinae, but the main part of higher-nematine diversity lies within the tribe Nematini, in which a strikingly high proportion of species use willows as hosts. This suggests that the success of higher nematines was caused, not by the evolution of superior biological characteristics as suggested by Ross [
<xref ref-type="bibr" rid="B34">34</xref>
], but by a fortuitous association with willows at a time of a cyclically cooling global climate. Reliably dated molecular-phylogenetic analyses of
<italic>Salix </italic>
and
<italic>Salix</italic>
-associated herbivores are desperately needed to test our hypothesis that the diversification of willow-based food webs was accelerated during the latter half of the Cenozoic Era. The genus
<italic>Salix </italic>
has thus far proven to be an extremely challenging target for such studies [
<xref ref-type="bibr" rid="B94">94</xref>
,
<xref ref-type="bibr" rid="B95">95</xref>
], but even comparative analyses across herbivore taxa would surely provide interesting insights into the evolutionary history of Holarctic plant-herbivore communities.</p>
</sec>
<sec>
<title>Authors' contributions</title>
<p>The study was conceived and designed by TN and JLB. TN performed laboratory and data analyses, prepared figures, and wrote the manuscript. JLB planned taxon sampling and study setup, and assisted in writing. VV and DRS provided taxonomic and ecological background information and identified specimens used in the analyses. All authors read and approved the manuscript.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="S1">
<caption>
<title>Additional file 1</title>
<p>
<bold>Collection data for exemplar specimens, and taxonomic and ecological background information</bold>
. Excel file containing collection data for the specimens used in the study, as well as species numbers, geographical distributions, larval lifestyles, and collective host ranges of genera, subgenera, and species groups within the Higher Nematinae.</p>
</caption>
<media xlink:href="1471-2148-10-266-S1.XLS" mimetype="application" mime-subtype="vnd.ms-excel">
<caption>
<p>Click here for file</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="S2">
<caption>
<title>Additional file 2</title>
<p>
<bold>Sequence data used in phylogeny reconstruction and resultant phylogenetic trees</bold>
. NEXUS file containing the data matrix and trees obtained from the Bayesian phylogenetic analyses in MrBayes and BEAST, and the maximum-likelihood tree from the analysis using RAxML.</p>
</caption>
<media xlink:href="1471-2148-10-266-S2.NEX" mimetype="text" mime-subtype="plain">
<caption>
<p>Click here for file</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="S3">
<caption>
<title>Additional file 3</title>
<p>
<bold>Data file and run parameters for BEAST</bold>
. XML file used for the phylogenetic analysis in BEAST.</p>
</caption>
<media xlink:href="1471-2148-10-266-S3.XML" mimetype="text" mime-subtype="xml">
<caption>
<p>Click here for file</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<sec>
<title>Acknowledgements</title>
<p>We especially wish to thank colleagues who provided samples of higher-nematine species, many of which would otherwise have been impossible to obtain: Lauri Kapari, Heikki Roininen, Alexey Zinovjev, Ewald Altenhofer, Mikk Heidemaa, Marko Prous, Akira Yamagami, Matti Viitasaari, Herbert R. Jacobson, Valerie Caron, Urs Schaffner, Jens Rydell, Jeffrey Joy, and B. DeJonge. We also thank two anonymous referees for their constructive criticisms, which helped to improve the manuscript. The Centre of Scientific Computing in Helsinki and the Cyberinfrastructure for Phylogenetic Research (CIPRES) project in San Diego allocated computing resources for phylogenetic analyses on their servers. This research was initiated with support from the SYNTHESYS Project
<ext-link ext-link-type="uri" xlink:href="http://www.synthesys.info">http://www.synthesys.info</ext-link>
which is financed by the European Community Research Infrastructure Action under the FP6 "Structuring the European Research Area Programme" (project BE-TAF-1462), and the main part of the funding was provided by the Academy of Finland (project 124695 for TN).</p>
</sec>
<ref-list>
<ref id="B1">
<mixed-citation publication-type="book">
<name>
<surname>Schluter</surname>
<given-names>D</given-names>
</name>
<source>The Ecology of Adaptive Radiation</source>
<year>2000</year>
<publisher-name>Oxford, Oxford University Press</publisher-name>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<name>
<surname>Rundle</surname>
<given-names>HD</given-names>
</name>
<name>
<surname>Nosil</surname>
<given-names>P</given-names>
</name>
<article-title>Ecological speciation</article-title>
<source>Ecol Lett</source>
<year>2005</year>
<volume>8</volume>
<fpage>336</fpage>
<lpage>352</lpage>
<pub-id pub-id-type="doi">10.1111/j.1461-0248.2004.00715.x</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<name>
<surname>Smith</surname>
<given-names>TB</given-names>
</name>
<name>
<surname>Skúlason</surname>
<given-names>S</given-names>
</name>
<article-title>Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds</article-title>
<source>Annu Rev Ecol Syst</source>
<year>1996</year>
<volume>27</volume>
<fpage>111</fpage>
<lpage>133</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.ecolsys.27.1.111</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<name>
<surname>Drès</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mallet</surname>
<given-names>J</given-names>
</name>
<article-title>Host races in plant-feeding insects and their importance in sympatric speciation</article-title>
<source>Phil Trans R Soc Lond B</source>
<year>2002</year>
<volume>357</volume>
<fpage>471</fpage>
<lpage>492</lpage>
<pub-id pub-id-type="doi">10.1098/rstb.2002.1059</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<name>
<surname>Räsänen</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hendry</surname>
<given-names>AP</given-names>
</name>
<article-title>Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification</article-title>
<source>Ecol Lett</source>
<year>2008</year>
<volume>11</volume>
<fpage>624</fpage>
<lpage>636</lpage>
<pub-id pub-id-type="doi">10.1111/j.1461-0248.2008.01176.x</pub-id>
<pub-id pub-id-type="pmid">18384363</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<name>
<surname>Nosil</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Harmon</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Seehausen</surname>
<given-names>O</given-names>
</name>
<article-title>Ecological explanations for (incomplete) speciation</article-title>
<source>Trends Ecol Evol</source>
<year>2009</year>
<volume>24</volume>
<fpage>145</fpage>
<lpage>156</lpage>
<pub-id pub-id-type="doi">10.1016/j.tree.2008.10.011</pub-id>
<pub-id pub-id-type="pmid">19185951</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<name>
<surname>Ryan</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Bloomer</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Moloney</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Grant</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Delport</surname>
<given-names>W</given-names>
</name>
<article-title>Ecological speciation in South Atlantic island finches</article-title>
<source>Science</source>
<year>2007</year>
<volume>315</volume>
<fpage>1420</fpage>
<lpage>1423</lpage>
<pub-id pub-id-type="doi">10.1126/science.1138829</pub-id>
<pub-id pub-id-type="pmid">17347442</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<name>
<surname>Irestedt</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fjeldså</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dalén</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ericson</surname>
<given-names>PGP</given-names>
</name>
<article-title>Convergent evolution, habitat shifts and variable diversification rates in the ovenbird-woodcreeper family (Furnariidae)</article-title>
<source>BMC Evol Biol</source>
<year>2009</year>
<volume>9</volume>
<fpage>268</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2148-9-268</pub-id>
<pub-id pub-id-type="pmid">19930590</pub-id>
</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<name>
<surname>Thorpe</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Surget-Groba</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Johansson</surname>
<given-names>H</given-names>
</name>
<article-title>The relative importance of ecology and geographic isolation for speciation in anoles</article-title>
<source>Phil Trans R Soc B</source>
<year>2008</year>
<volume>363</volume>
<fpage>3071</fpage>
<lpage>3081</lpage>
<pub-id pub-id-type="doi">10.1098/rstb.2008.0077</pub-id>
<pub-id pub-id-type="pmid">18579479</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<name>
<surname>Schluter</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Conte</surname>
<given-names>GL</given-names>
</name>
<article-title>Genetics and ecological speciation</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2009</year>
<volume>106</volume>
<fpage>9955</fpage>
<lpage>9962</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0901264106</pub-id>
<pub-id pub-id-type="pmid">19528639</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<name>
<surname>Parent</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Crespi</surname>
<given-names>BJ</given-names>
</name>
<article-title>Sequential colonization and diversification of Galápagos endemic land snail genus
<italic>Bulimulus </italic>
(Gastropoda: Stylommatophora)</article-title>
<source>Evolution</source>
<year>2006</year>
<volume>60</volume>
<fpage>2311</fpage>
<lpage>2328</lpage>
<pub-id pub-id-type="pmid">17236423</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<name>
<surname>Nyman</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Bokma</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kopelke</surname>
<given-names>J-P</given-names>
</name>
<article-title>Reciprocal diversification in a complex plant-herbivore-parasitoid food web</article-title>
<source>BMC Biol</source>
<year>2007</year>
<volume>5</volume>
<fpage>49</fpage>
<pub-id pub-id-type="doi">10.1186/1741-7007-5-49</pub-id>
<pub-id pub-id-type="pmid">17976232</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<name>
<surname>Via</surname>
<given-names>S</given-names>
</name>
<article-title>Sympatric speciation in animals: the ugly duckling grows up</article-title>
<source>Trends Ecol Evol</source>
<year>2001</year>
<volume>16</volume>
<fpage>381</fpage>
<lpage>390</lpage>
<pub-id pub-id-type="doi">10.1016/S0169-5347(01)02188-7</pub-id>
<pub-id pub-id-type="pmid">11403871</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<name>
<surname>Peccoud</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ollivier</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Plantegenest</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Simon</surname>
<given-names>J-C</given-names>
</name>
<article-title>A continuum of genetic divergence from sympatric host races to species in the pea aphid complex</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2009</year>
<volume>106</volume>
<fpage>7495</fpage>
<lpage>7500</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0811117106</pub-id>
<pub-id pub-id-type="pmid">19380742</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<name>
<surname>Després</surname>
<given-names>L</given-names>
</name>
<name>
<surname>David</surname>
<given-names>J-P</given-names>
</name>
<name>
<surname>Gallet</surname>
<given-names>C</given-names>
</name>
<article-title>The evolutionary ecology of insect resistance to plant chemicals</article-title>
<source>Trends Ecol Evol</source>
<year>2007</year>
<volume>22</volume>
<fpage>298</fpage>
<lpage>307</lpage>
<pub-id pub-id-type="doi">10.1016/j.tree.2007.02.010</pub-id>
<pub-id pub-id-type="pmid">17324485</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<name>
<surname>Karban</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Agrawal</surname>
<given-names>AA</given-names>
</name>
<article-title>Herbivore offense</article-title>
<source>Annu Rev Ecol Syst</source>
<year>2002</year>
<volume>33</volume>
<fpage>641</fpage>
<lpage>664</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.ecolsys.33.010802.150443</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<name>
<surname>Toju</surname>
<given-names>H</given-names>
</name>
<article-title>Natural selection drives the fine-scale divergence of a coevolutionary arms race involving a long-mouthed weevil and its obligate host plant</article-title>
<source>BMC Evol Biol</source>
<year>2009</year>
<volume>9</volume>
<fpage>273</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2148-9-273</pub-id>
<pub-id pub-id-type="pmid">19941669</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<name>
<surname>Percy</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Page</surname>
<given-names>RDM</given-names>
</name>
<name>
<surname>Cronk</surname>
<given-names>QCB</given-names>
</name>
<article-title>Plant-insect interactions: double-dating associated insect and plant lineages reveals asynchronous radiations</article-title>
<source>Syst Biol</source>
<year>2004</year>
<volume>53</volume>
<fpage>120</fpage>
<lpage>127</lpage>
<pub-id pub-id-type="doi">10.1080/10635150490264996</pub-id>
<pub-id pub-id-type="pmid">14965907</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<name>
<surname>Lopez-Vaamonde</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wikström</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Labandeira</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Godfray</surname>
<given-names>HCJ</given-names>
</name>
<name>
<surname>Goodman</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Cook</surname>
<given-names>JM</given-names>
</name>
<article-title>Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated several million years after their host plants</article-title>
<source>J Evol Biol</source>
<year>2006</year>
<volume>19</volume>
<fpage>1314</fpage>
<lpage>1326</lpage>
<pub-id pub-id-type="doi">10.1111/j.1420-9101.2005.01070.x</pub-id>
<pub-id pub-id-type="pmid">16780532</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<name>
<surname>Hunt</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Bergsten</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Levkanicova</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Papadopoulou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>St. John</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Wild</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hammond</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Ahrens</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Balke</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Caterino</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Gómez-Zurita</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ribera</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Barraclough</surname>
<given-names>TG</given-names>
</name>
<name>
<surname>Bocakova</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bocak</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Vogler</surname>
<given-names>AP</given-names>
</name>
<article-title>A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation</article-title>
<source>Science</source>
<year>2007</year>
<volume>318</volume>
<fpage>1913</fpage>
<lpage>1916</lpage>
<pub-id pub-id-type="doi">10.1126/science.1146954</pub-id>
<pub-id pub-id-type="pmid">18096805</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="book">
<name>
<surname>Janz</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Nylin</surname>
<given-names>S</given-names>
</name>
<person-group person-group-type="editor">Tilmon KJ</person-group>
<article-title>The oscillation hypothesis of host plant-range and speciation</article-title>
<source>Specialization, Speciation, and Radiation: the Evolutionary Biology of Herbivorous Insects</source>
<year>2008</year>
<publisher-name>Berkeley, University of California Press</publisher-name>
<fpage>203</fpage>
<lpage>215</lpage>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="book">
<name>
<surname>Winkler</surname>
<given-names>IS</given-names>
</name>
<name>
<surname>Mitter</surname>
<given-names>C</given-names>
</name>
<person-group person-group-type="editor">Tilmon KJ</person-group>
<article-title>The phylogenetic dimension of insect-plant interactions: a review of recent evidence</article-title>
<source>Specialization, Speciation, and Radiation: the Evolutionary Biology of Herbivorous Insects</source>
<year>2008</year>
<publisher-name>Berkeley, University of California Press</publisher-name>
<fpage>240</fpage>
<lpage>263</lpage>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<name>
<surname>Nyman</surname>
<given-names>T</given-names>
</name>
<article-title>To speciate, or not to speciate? Resource heterogeneity, the subjectivity of similarity, and the macroevolutionary consequences of niche-width shifts in plant-feeding insects</article-title>
<source>Biol Rev</source>
<year>2010</year>
<volume>85</volume>
<fpage>393</fpage>
<lpage>411</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-185X.2009.00109.x</pub-id>
<pub-id pub-id-type="pmid">20002390</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<name>
<surname>Mitter</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Farrell</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Wiegmann</surname>
<given-names>B</given-names>
</name>
<article-title>The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification?</article-title>
<source>Am Nat</source>
<year>1988</year>
<volume>132</volume>
<fpage>107</fpage>
<lpage>128</lpage>
<pub-id pub-id-type="doi">10.1086/284840</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<name>
<surname>Dyer</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Singer</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Lill</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Stireman</surname>
<given-names>JO</given-names>
</name>
<name>
<surname>Gentry</surname>
<given-names>GL</given-names>
</name>
<name>
<surname>Marquis</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Ricklefs</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Greeney</surname>
<given-names>HF</given-names>
</name>
<name>
<surname>Wagner</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Morais</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Diniz</surname>
<given-names>IR</given-names>
</name>
<name>
<surname>Kursar</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Coley</surname>
<given-names>PD</given-names>
</name>
<article-title>Host specificity of Lepidoptera in tropical and temperate forests</article-title>
<source>Nature</source>
<year>2007</year>
<volume>448</volume>
<fpage>696</fpage>
<lpage>700</lpage>
<pub-id pub-id-type="doi">10.1038/nature05884</pub-id>
<pub-id pub-id-type="pmid">17687325</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<name>
<surname>Futuyma</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Agrawal</surname>
<given-names>AA</given-names>
</name>
<article-title>Macroevolution and the biological diversity of plants and herbivores</article-title>
<source>Proc Natl Acad. Sci USA</source>
<year>2009</year>
<volume>106</volume>
<fpage>18054</fpage>
<lpage>18061</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0904106106</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="book">
<name>
<surname>Futuyma</surname>
<given-names>DJ</given-names>
</name>
<person-group person-group-type="editor">Tilmon KJ</person-group>
<article-title>Sympatric speciation: norm or exception?</article-title>
<source>Specialization, Speciation, and Radiation: the Evolutionary Biology of Herbivorous Insects</source>
<year>2008</year>
<publisher-name>Berkeley, University of California Press</publisher-name>
<fpage>136</fpage>
<lpage>148</lpage>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<name>
<surname>Funk</surname>
<given-names>DJ</given-names>
</name>
<article-title>Isolating a role for natural selection in speciation: host adaptation and sexual isolation in
<italic>Neochlamisus bebbianae </italic>
leaf beetles</article-title>
<source>Evolution</source>
<year>1998</year>
<volume>52</volume>
<fpage>1744</fpage>
<lpage>1759</lpage>
<pub-id pub-id-type="doi">10.2307/2411347</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<name>
<surname>Funk</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Nosil</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Etges</surname>
<given-names>WJ</given-names>
</name>
<article-title>Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2006</year>
<volume>103</volume>
<fpage>3209</fpage>
<lpage>3213</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0508653103</pub-id>
<pub-id pub-id-type="pmid">16492742</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<name>
<surname>Rundell</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Price</surname>
<given-names>TD</given-names>
</name>
<article-title>Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation</article-title>
<source>Trends Ecol Evol</source>
<year>2009</year>
<volume>24</volume>
<fpage>394</fpage>
<lpage>399</lpage>
<pub-id pub-id-type="doi">10.1016/j.tree.2009.02.007</pub-id>
<pub-id pub-id-type="pmid">19409647</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<name>
<surname>Ross</surname>
<given-names>HH</given-names>
</name>
<article-title>An uncertainty principle in ecological evolution</article-title>
<source>Univ Arkansas Mus Occ Pap</source>
<year>1972</year>
<volume>4</volume>
<fpage>133</fpage>
<lpage>157</lpage>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<name>
<surname>Barraclough</surname>
<given-names>TG</given-names>
</name>
<name>
<surname>Hogan</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Vogler</surname>
<given-names>AP</given-names>
</name>
<article-title>Testing whether ecological factors promote cladogenesis in a group of tiger beetles (Coleoptera: Cicindelidae)</article-title>
<source>Proc R Soc Lond B</source>
<year>1999</year>
<volume>266</volume>
<fpage>1061</fpage>
<lpage>1067</lpage>
<pub-id pub-id-type="doi">10.1098/rspb.1999.0744</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<name>
<surname>Peterson</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Soberón</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sánchez-Cordero</surname>
<given-names>V</given-names>
</name>
<article-title>Conservatism of ecological niches in evolutionary time</article-title>
<source>Science</source>
<year>1999</year>
<volume>285</volume>
<fpage>1265</fpage>
<lpage>1267</lpage>
<pub-id pub-id-type="doi">10.1126/science.285.5431.1265</pub-id>
<pub-id pub-id-type="pmid">10455053</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<name>
<surname>Ross</surname>
<given-names>HH</given-names>
</name>
<article-title>A generic classification of the Nearctic sawflies</article-title>
<source>Ill Biol Monogr</source>
<year>1937</year>
<volume>34</volume>
<fpage>1</fpage>
<lpage>173</lpage>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="book">
<name>
<surname>Smith</surname>
<given-names>DR</given-names>
</name>
<person-group person-group-type="editor">Krombein KV, Hurd PD Jr, Smith DR, Burks BD</person-group>
<article-title>Suborder Symphyta</article-title>
<source>Catalog of Hymenoptera in America North of Mexico</source>
<year>1979</year>
<publisher-name>Washington, Smithsonian Institution Press</publisher-name>
<fpage>3</fpage>
<lpage>137</lpage>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<name>
<surname>Lacourt</surname>
<given-names>J</given-names>
</name>
<article-title>Répertoire des Tenthredinidae ouest-paléarctiques</article-title>
<source>Mém SEF</source>
<year>1999</year>
<volume>3</volume>
<fpage>1</fpage>
<lpage>432</lpage>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<name>
<surname>Kouki</surname>
<given-names>J</given-names>
</name>
<article-title>Latitudinal gradients in species richness in northern areas: some exceptional patterns</article-title>
<source>Ecol Bull</source>
<year>1999</year>
<volume>47</volume>
<fpage>30</fpage>
<lpage>37</lpage>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<name>
<surname>Nyman</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Farrell</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Zinovjev</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Vikberg</surname>
<given-names>V</given-names>
</name>
<article-title>Larval habits, host-plant associations, and speciation in nematine sawflies (Hymenoptera: Tenthredinidae)</article-title>
<source>Evolution</source>
<year>2006</year>
<volume>60</volume>
<fpage>1622</fpage>
<lpage>1637</lpage>
<pub-id pub-id-type="pmid">17017063</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<name>
<surname>Nyman</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zinovjev</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Vikberg</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Farrell</surname>
<given-names>BD</given-names>
</name>
<article-title>Molecular phylogeny of the sawfly subfamily Nematinae (Hymenoptera: Tenthredinidae)</article-title>
<source>Syst Entomol</source>
<year>2006</year>
<volume>31</volume>
<fpage>569</fpage>
<lpage>583</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-3113.2006.00336.x</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<name>
<surname>Nyman</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Widmer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Roininen</surname>
<given-names>H</given-names>
</name>
<article-title>Evolution of gall morphology and host-plant relationships in willow-feeding sawflies (Hymenoptera: Tenthredinidae)</article-title>
<source>Evolution</source>
<year>2000</year>
<volume>54</volume>
<fpage>526</fpage>
<lpage>533</lpage>
<pub-id pub-id-type="pmid">10937229</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<name>
<surname>Posada</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Crandall</surname>
<given-names>KA</given-names>
</name>
<article-title>Modeltest: testing the model of DNA substitution</article-title>
<source>Bioinformatics</source>
<year>1998</year>
<volume>14</volume>
<fpage>817</fpage>
<lpage>818</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/14.9.817</pub-id>
<pub-id pub-id-type="pmid">9918953</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="book">
<name>
<surname>Swofford</surname>
<given-names>DL</given-names>
</name>
<source>PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), version 40b10</source>
<year>2002</year>
<publisher-name>Sunderland, Sinauer</publisher-name>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<name>
<surname>Ronquist</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Huelsenbeck</surname>
<given-names>JP</given-names>
</name>
<article-title>MrBayes 3: Bayesian phylogenetic inference under mixed models</article-title>
<source>Bioinformatics</source>
<year>2003</year>
<volume>19</volume>
<fpage>1572</fpage>
<lpage>1574</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btg180</pub-id>
<pub-id pub-id-type="pmid">12912839</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<name>
<surname>Stamatakis</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hoover</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Rougemont</surname>
<given-names>J</given-names>
</name>
<article-title>A rapid bootstrap algorithm for the RAxML web-servers</article-title>
<source>Syst Biol</source>
<year>2008</year>
<volume>75</volume>
<fpage>758</fpage>
<lpage>771</lpage>
<pub-id pub-id-type="doi">10.1080/10635150802429642</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<name>
<surname>Drummond</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Rambaut</surname>
<given-names>A</given-names>
</name>
<article-title>BEAST: Bayesian evolutionary analysis by sampling trees</article-title>
<source>BMC Evol Biol</source>
<year>2007</year>
<volume>7</volume>
<fpage>214</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2148-7-214</pub-id>
<pub-id pub-id-type="pmid">17996036</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="other">
<name>
<surname>Rambaut</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Drummond</surname>
<given-names>AJ</given-names>
</name>
<article-title>Tracer, version 1.4.1</article-title>
<year>2007</year>
<ext-link ext-link-type="uri" xlink:href="http://beast.bio.ed.ac.uk/Tracer">http://beast.bio.ed.ac.uk/Tracer</ext-link>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="other">
<name>
<surname>Maddison</surname>
<given-names>WP</given-names>
</name>
<name>
<surname>Maddison</surname>
<given-names>DR</given-names>
</name>
<article-title>Mesquite: a modular system for evolutionary analysis, version 2.6</article-title>
<year>2009</year>
<ext-link ext-link-type="uri" xlink:href="http://mesquiteproject.org">http://mesquiteproject.org</ext-link>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<name>
<surname>Huelsenbeck</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Rannala</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Masly</surname>
<given-names>JP</given-names>
</name>
<article-title>Accommodating phylogenetic uncertainty in phylogenetic studies</article-title>
<source>Science</source>
<year>2000</year>
<volume>288</volume>
<fpage>2349</fpage>
<lpage>2350</lpage>
<pub-id pub-id-type="doi">10.1126/science.288.5475.2349</pub-id>
<pub-id pub-id-type="pmid">10875916</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<name>
<surname>Smith</surname>
<given-names>DR</given-names>
</name>
<article-title>The
<italic>abbotii </italic>
and
<italic>erythrogaster </italic>
groups of
<italic>Nematus </italic>
Panzer (Hymenoptera: Tenthredinidae) in North America</article-title>
<source>Proc Entomol Soc Wash</source>
<year>2008</year>
<volume>110</volume>
<fpage>647</fpage>
<lpage>667</lpage>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<name>
<surname>Smith</surname>
<given-names>DR</given-names>
</name>
<article-title>
<italic>Nepionema</italic>
, a nematine sawfly genus new to North America, and an unusual new species of
<italic>Nematus </italic>
(Hymenoptera: Tenthredinidae)</article-title>
<source>Proc Entomol Soc Wash</source>
<year>1994</year>
<volume>96</volume>
<fpage>133</fpage>
<lpage>138</lpage>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<name>
<surname>Savolainen</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Anstett</surname>
<given-names>M-C</given-names>
</name>
<name>
<surname>Lexer</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hutton</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Clarkson</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Norup</surname>
<given-names>MV</given-names>
</name>
<name>
<surname>Powell</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Springate</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Salamin</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>WJ</given-names>
</name>
<article-title>Sympatric speciation in palms on an oceanic island</article-title>
<source>Nature</source>
<year>2006</year>
<volume>441</volume>
<fpage>210</fpage>
<lpage>213</lpage>
<pub-id pub-id-type="doi">10.1038/nature04566</pub-id>
<pub-id pub-id-type="pmid">16467788</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<name>
<surname>Kempf</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Boulinier</surname>
<given-names>T</given-names>
</name>
<name>
<surname>De Meeûs</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Arnathau</surname>
<given-names>C</given-names>
</name>
<name>
<surname>McCoy</surname>
<given-names>KD</given-names>
</name>
<article-title>Recent evolution of host-associated divergence in the seabird tick
<italic>Ixodes uriae</italic>
</article-title>
<source>Mol Ecol</source>
<year>2009</year>
<volume>18</volume>
<fpage>4450</fpage>
<lpage>4462</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-294X.2009.04356.x</pub-id>
<pub-id pub-id-type="pmid">19793353</pub-id>
</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<name>
<surname>Barraclough</surname>
<given-names>TG</given-names>
</name>
<name>
<surname>Vogler</surname>
<given-names>AP</given-names>
</name>
<article-title>Detecting the geographical pattern of speciation from species-level phylogenies</article-title>
<source>Am Nat</source>
<year>2000</year>
<volume>155</volume>
<fpage>419</fpage>
<lpage>434</lpage>
<pub-id pub-id-type="doi">10.1086/303332</pub-id>
<pub-id pub-id-type="pmid">10753072</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<name>
<surname>Barraclough</surname>
<given-names>TG</given-names>
</name>
<name>
<surname>Nee</surname>
<given-names>S</given-names>
</name>
<article-title>Phylogenetics and speciation</article-title>
<source>Trends Ecol Evol</source>
<year>2001</year>
<volume>16</volume>
<fpage>391</fpage>
<lpage>399</lpage>
<pub-id pub-id-type="doi">10.1016/S0169-5347(01)02161-9</pub-id>
<pub-id pub-id-type="pmid">11403872</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<name>
<surname>Wood</surname>
<given-names>TE</given-names>
</name>
<name>
<surname>Takebayashi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Barker</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Mayrose</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Greenspoon</surname>
<given-names>PB</given-names>
</name>
<name>
<surname>Riesenberg</surname>
<given-names>LH</given-names>
</name>
<article-title>The frequency of polyploid speciation in vascular plants</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2009</year>
<volume>106</volume>
<fpage>13875</fpage>
<lpage>13879</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0811575106</pub-id>
<pub-id pub-id-type="pmid">19667210</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<name>
<surname>Kozak</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Wiens</surname>
<given-names>JJ</given-names>
</name>
<article-title>Does niche conservatism promote speciation? A case study in North American salamanders</article-title>
<source>Evolution</source>
<year>2006</year>
<volume>60</volume>
<fpage>2604</fpage>
<lpage>2621</lpage>
<pub-id pub-id-type="pmid">17263120</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<name>
<surname>Perret</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chautems</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Spichiger</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Barraclough</surname>
<given-names>TG</given-names>
</name>
<name>
<surname>Savolainen</surname>
<given-names>V</given-names>
</name>
<article-title>The geographical pattern of speciation and floral diversification in the Neotropics: the tribe Sinningieae (Gesneriaceae) as a case study</article-title>
<source>Evolution</source>
<year>2007</year>
<volume>61</volume>
<fpage>1641</fpage>
<lpage>1660</lpage>
<pub-id pub-id-type="doi">10.1111/j.1558-5646.2007.00136.x</pub-id>
<pub-id pub-id-type="pmid">17598746</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="other">
<name>
<surname>Linnen</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Farrell</surname>
<given-names>BD</given-names>
</name>
<article-title>A test of the sympatric host race formation hypothesis in
<italic>Neodiprion </italic>
(Hymenoptera: Diprionidae)</article-title>
<source>Proc R Soc Lond B</source>
<year>2010</year>
<comment> in press </comment>
</mixed-citation>
</ref>
<ref id="B59">
<mixed-citation publication-type="journal">
<name>
<surname>Ehrlich</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Raven</surname>
<given-names>PH</given-names>
</name>
<article-title>Butterflies and plants: a study in coevolution</article-title>
<source>Evolution</source>
<year>1964</year>
<volume>18</volume>
<fpage>586</fpage>
<lpage>608</lpage>
<pub-id pub-id-type="doi">10.2307/2406212</pub-id>
</mixed-citation>
</ref>
<ref id="B60">
<mixed-citation publication-type="journal">
<name>
<surname>Diehl</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Bush</surname>
<given-names>GL</given-names>
</name>
<article-title>An evolutionary and applied perspective of insect biotypes</article-title>
<source>Annu Rev Entomol</source>
<year>1984</year>
<volume>29</volume>
<fpage>471</fpage>
<lpage>504</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.en.29.010184.002351</pub-id>
</mixed-citation>
</ref>
<ref id="B61">
<mixed-citation publication-type="journal">
<name>
<surname>Ronquist</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Liljeblad</surname>
<given-names>J</given-names>
</name>
<article-title>Evolution of the gall wasp-host plant association</article-title>
<source>Evolution</source>
<year>2001</year>
<volume>55</volume>
<fpage>2503</fpage>
<lpage>2522</lpage>
<pub-id pub-id-type="pmid">11831666</pub-id>
</mixed-citation>
</ref>
<ref id="B62">
<mixed-citation publication-type="journal">
<name>
<surname>Schluter</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Price</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mooers</surname>
<given-names></given-names>
</name>
<name>
<surname>Ludwig</surname>
<given-names>D</given-names>
</name>
<article-title>Likelihood of ancestor states in adaptive radiation</article-title>
<source>Evolution</source>
<year>1997</year>
<volume>51</volume>
<fpage>1699</fpage>
<lpage>1711</lpage>
<pub-id pub-id-type="doi">10.2307/2410994</pub-id>
</mixed-citation>
</ref>
<ref id="B63">
<mixed-citation publication-type="journal">
<name>
<surname>Kopelke</surname>
<given-names>J-P</given-names>
</name>
<article-title>Gall-forming Nematinae, their willow hosts (
<italic>Salix </italic>
spp.) and biological strategies (Insecta, Hymenoptera, Symphyta, Tenthredinidae, Nematinae: Euura,
<italic>Phyllocolpa</italic>
,
<italic>Pontania</italic>
)</article-title>
<source>Senckenb Biol</source>
<year>2003</year>
<volume>82</volume>
<fpage>163</fpage>
<lpage>189</lpage>
</mixed-citation>
</ref>
<ref id="B64">
<mixed-citation publication-type="book">
<name>
<surname>Roininen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Nyman</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zinovjev</surname>
<given-names>AG</given-names>
</name>
<person-group person-group-type="editor">Raman A, Schaefer CW, Withers TM</person-group>
<article-title>Biology, ecology, and evolution of gall-inducing sawflies (Hymenoptera: Tenthredinidae and Xyelidae)</article-title>
<source>Biology, Ecology, and Evolution of Gall-inducing Arthropods</source>
<year>2005</year>
<publisher-name>Enfield, Science Publishers Inc</publisher-name>
<fpage>467</fpage>
<lpage>494</lpage>
</mixed-citation>
</ref>
<ref id="B65">
<mixed-citation publication-type="journal">
<name>
<surname>Price</surname>
<given-names>PW</given-names>
</name>
<article-title>Adaptive radiation of gall-inducing insects</article-title>
<source>Basic Appl Ecol</source>
<year>2005</year>
<volume>6</volume>
<fpage>413</fpage>
<lpage>421</lpage>
<pub-id pub-id-type="doi">10.1016/j.baae.2005.07.002</pub-id>
</mixed-citation>
</ref>
<ref id="B66">
<mixed-citation publication-type="book">
<name>
<surname>Taeger</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Altenhofer</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Blank</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Kraus</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pschorn-Walcher</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ritzau</surname>
<given-names>C</given-names>
</name>
<person-group person-group-type="editor">Taeger A, Blank SM</person-group>
<article-title>Kommentare zur Biologie, Verbreitung und Gefährdung der Pflanzenwespen Deutschlands (Hymenoptera, Symphyta)</article-title>
<source>Pflanzenwespen Deutschlands (Hymenoptera: Symphyta)</source>
<year>1998</year>
<publisher-name>Keltern, Goecke & Evers</publisher-name>
<fpage>49</fpage>
<lpage>135</lpage>
</mixed-citation>
</ref>
<ref id="B67">
<mixed-citation publication-type="journal">
<name>
<surname>Farrell</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Mitter</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Futuyma</surname>
<given-names>DJ</given-names>
</name>
<article-title>Diversification at the insect-plant interface. Insights from phylogenetics</article-title>
<source>BioScience</source>
<year>1992</year>
<volume>42</volume>
<fpage>34</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="doi">10.2307/1311626</pub-id>
</mixed-citation>
</ref>
<ref id="B68">
<mixed-citation publication-type="journal">
<name>
<surname>Becerra</surname>
<given-names>JX</given-names>
</name>
<name>
<surname>Noge</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Venable</surname>
<given-names>DL</given-names>
</name>
<article-title>Macroevolutionary chemical escalation in an ancient plant-herbivore arms race</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2009</year>
<volume>106</volume>
<fpage>18062</fpage>
<lpage>18066</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0904456106</pub-id>
<pub-id pub-id-type="pmid">19706441</pub-id>
</mixed-citation>
</ref>
<ref id="B69">
<mixed-citation publication-type="journal">
<name>
<surname>McKenna</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Farrell</surname>
<given-names>BD</given-names>
</name>
<article-title>Tropical forests are both evolutionary cradles and museums of leaf beetle diversity</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2006</year>
<volume>103</volume>
<fpage>10947</fpage>
<lpage>10951</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0602712103</pub-id>
<pub-id pub-id-type="pmid">16818884</pub-id>
</mixed-citation>
</ref>
<ref id="B70">
<mixed-citation publication-type="journal">
<name>
<surname>McLeish</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Chapman</surname>
<given-names>TW</given-names>
</name>
<name>
<surname>Schwarz</surname>
<given-names>MP</given-names>
</name>
<article-title>Host-driven diversification of gall-inducing
<italic>Acacia </italic>
thrips and the aridification of Australia</article-title>
<source>BMC Biol</source>
<year>2007</year>
<volume>5</volume>
<fpage>3</fpage>
<pub-id pub-id-type="doi">10.1186/1741-7007-5-3</pub-id>
<pub-id pub-id-type="pmid">17257412</pub-id>
</mixed-citation>
</ref>
<ref id="B71">
<mixed-citation publication-type="journal">
<name>
<surname>Winkler</surname>
<given-names>IS</given-names>
</name>
<name>
<surname>Mitter</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Scheffer</surname>
<given-names>SJ</given-names>
</name>
<article-title>Repeated climate-linked host shifts have promoted diversification in a temperate clade of leaf-mining flies</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2009</year>
<volume>106</volume>
<fpage>18103</fpage>
<lpage>18108</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0904852106</pub-id>
<pub-id pub-id-type="pmid">19805134</pub-id>
</mixed-citation>
</ref>
<ref id="B72">
<mixed-citation publication-type="journal">
<name>
<surname>Wilf</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Labandeira</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Coley</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>Cutter</surname>
<given-names>AD</given-names>
</name>
<article-title>Insect herbivory, plant defense, and early Cenozoic climate change</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2001</year>
<volume>98</volume>
<fpage>6221</fpage>
<lpage>6226</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.111069498</pub-id>
<pub-id pub-id-type="pmid">11353840</pub-id>
</mixed-citation>
</ref>
<ref id="B73">
<mixed-citation publication-type="journal">
<name>
<surname>Ross</surname>
<given-names>HH</given-names>
</name>
<article-title>The origin of species diversity in ecological communities</article-title>
<source>Taxon</source>
<year>1972</year>
<volume>21</volume>
<fpage>253</fpage>
<lpage>259</lpage>
<pub-id pub-id-type="doi">10.2307/1218192</pub-id>
</mixed-citation>
</ref>
<ref id="B74">
<mixed-citation publication-type="journal">
<name>
<surname>Esselstyn</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Timm</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>RM</given-names>
</name>
<article-title>Do geological or climatic processes drive speciation in dynamic archipelagos? The tempo and mode of diversification in Southeast Asian shrews</article-title>
<source>Evolution</source>
<year>2009</year>
<volume>63</volume>
<fpage>2595</fpage>
<lpage>2610</lpage>
<pub-id pub-id-type="doi">10.1111/j.1558-5646.2009.00743.x</pub-id>
<pub-id pub-id-type="pmid">19500148</pub-id>
</mixed-citation>
</ref>
<ref id="B75">
<mixed-citation publication-type="journal">
<name>
<surname>Procheş</surname>
<given-names>Ş</given-names>
</name>
<name>
<surname>Forest</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Veldtman</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Chown</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Cowling</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Richardson</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Savolainen</surname>
<given-names>V</given-names>
</name>
<article-title>Dissecting the plant-insect diversity relationship in the Cape</article-title>
<source>Mol Phylogenet Evol</source>
<year>2009</year>
<volume>51</volume>
<fpage>94</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="doi">10.1016/j.ympev.2008.05.040</pub-id>
<pub-id pub-id-type="pmid">18588992</pub-id>
</mixed-citation>
</ref>
<ref id="B76">
<mixed-citation publication-type="book">
<name>
<surname>Taeger</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Blank</surname>
<given-names>SM</given-names>
</name>
<source>ECatSym - Electronic World Catalog of Symphyta (Insecta, Hymenoptera). Program version 3.9, data version 34</source>
<year>2008</year>
<publisher-name>Müncheberg, Digital Entomological Information</publisher-name>
</mixed-citation>
</ref>
<ref id="B77">
<mixed-citation publication-type="journal">
<name>
<surname>Zachos</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Dickens</surname>
<given-names>GR</given-names>
</name>
<name>
<surname>Zeebe</surname>
<given-names>RE</given-names>
</name>
<article-title>An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics</article-title>
<source>Nature</source>
<year>2008</year>
<volume>451</volume>
<fpage>279</fpage>
<lpage>283</lpage>
<pub-id pub-id-type="doi">10.1038/nature06588</pub-id>
<pub-id pub-id-type="pmid">18202643</pub-id>
</mixed-citation>
</ref>
<ref id="B78">
<mixed-citation publication-type="journal">
<name>
<surname>Argus</surname>
<given-names>GW</given-names>
</name>
<article-title>Infrageneric classification of
<italic>Salix </italic>
(Salicaceae) in the New World</article-title>
<source>Syst Bot Monogr</source>
<year>1997</year>
<volume>52</volume>
<fpage>1</fpage>
<lpage>121</lpage>
</mixed-citation>
</ref>
<ref id="B79">
<mixed-citation publication-type="journal">
<name>
<surname>Skvortsov</surname>
<given-names>AK</given-names>
</name>
<article-title>Willows of Russia and adjacent countries. Taxonomical and geographical revision</article-title>
<source>Univ Joensuu Fac Math Nat Sci Rep Ser</source>
<year>1999</year>
<volume>39</volume>
<fpage>1</fpage>
<lpage>307</lpage>
</mixed-citation>
</ref>
<ref id="B80">
<mixed-citation publication-type="journal">
<name>
<surname>Kennedy</surname>
<given-names>CEJ</given-names>
</name>
<name>
<surname>Southwood</surname>
<given-names>TRE</given-names>
</name>
<article-title>The number of species of insects associated with British trees: a re-analysis</article-title>
<source>J Anim Ecol</source>
<year>1984</year>
<volume>53</volume>
<fpage>455</fpage>
<lpage>478</lpage>
<pub-id pub-id-type="doi">10.2307/4528</pub-id>
</mixed-citation>
</ref>
<ref id="B81">
<mixed-citation publication-type="journal">
<name>
<surname>Mardulyn</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Milinkovitch</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Pasteels</surname>
<given-names>JM</given-names>
</name>
<article-title>Phylogenetic analyses of DNA and allozyme data suggest that
<italic>Gonioctena </italic>
leaf beetles (Coleoptera; Chrysomelidae) experienced convergent evolution in their history of host-plant family shifts</article-title>
<source>Syst Biol</source>
<year>1997</year>
<volume>46</volume>
<fpage>722</fpage>
<lpage>747</lpage>
<pub-id pub-id-type="pmid">11975339</pub-id>
</mixed-citation>
</ref>
<ref id="B82">
<mixed-citation publication-type="journal">
<name>
<surname>Lawton</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Strong</surname>
<given-names>DR</given-names>
<suffix>Jr</suffix>
</name>
<article-title>Community patterns and competition in folivorous insects</article-title>
<source>Am Nat</source>
<year>1981</year>
<volume>118</volume>
<fpage>317</fpage>
<lpage>338</lpage>
<pub-id pub-id-type="doi">10.1086/283826</pub-id>
</mixed-citation>
</ref>
<ref id="B83">
<mixed-citation publication-type="journal">
<name>
<surname>Denno</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>McClure</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Ott</surname>
<given-names>JR</given-names>
</name>
<article-title>Interspecific interactions in phytophagous insects: competition reexamined and resurrected</article-title>
<source>Annu Rev Entomol</source>
<year>1995</year>
<volume>40</volume>
<fpage>297</fpage>
<lpage>331</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.en.40.010195.001501</pub-id>
</mixed-citation>
</ref>
<ref id="B84">
<mixed-citation publication-type="journal">
<name>
<surname>Kaplan</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Denno</surname>
<given-names>RF</given-names>
</name>
<article-title>Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory</article-title>
<source>Ecol Lett</source>
<year>2007</year>
<volume>10</volume>
<fpage>977</fpage>
<lpage>994</lpage>
<pub-id pub-id-type="doi">10.1111/j.1461-0248.2007.01093.x</pub-id>
<pub-id pub-id-type="pmid">17855811</pub-id>
</mixed-citation>
</ref>
<ref id="B85">
<mixed-citation publication-type="journal">
<name>
<surname>Janzen</surname>
<given-names>DH</given-names>
</name>
<article-title>Host plants as islands in evolutionary and contemporary time</article-title>
<source>Am Nat</source>
<year>1968</year>
<volume>102</volume>
<fpage>592</fpage>
<lpage>595</lpage>
<pub-id pub-id-type="doi">10.1086/282574</pub-id>
</mixed-citation>
</ref>
<ref id="B86">
<mixed-citation publication-type="journal">
<name>
<surname>McKenna</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Sequeira</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Marvaldi</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Farrell</surname>
<given-names>BD</given-names>
</name>
<article-title>Temporal lags and overlap in the diversification of weevils and flowering plants</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2009</year>
<volume>106</volume>
<fpage>7083</fpage>
<lpage>7088</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0810618106</pub-id>
<pub-id pub-id-type="pmid">19365072</pub-id>
</mixed-citation>
</ref>
<ref id="B87">
<mixed-citation publication-type="journal">
<name>
<surname>Kelly</surname>
<given-names>CK</given-names>
</name>
<name>
<surname>Southwood</surname>
<given-names>TRE</given-names>
</name>
<article-title>Species richness and resource availability: a phylogenetic analysis of insects associated with trees</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1999</year>
<volume>96</volume>
<fpage>8013</fpage>
<lpage>8016</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.96.14.8013</pub-id>
<pub-id pub-id-type="pmid">10393939</pub-id>
</mixed-citation>
</ref>
<ref id="B88">
<mixed-citation publication-type="journal">
<name>
<surname>Lewinsohn</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Novotny</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Basset</surname>
<given-names>Y</given-names>
</name>
<article-title>Insects on plants: diversity of herbivore assemblages revisited</article-title>
<source>Annu Rev Ecol Evol Syst</source>
<year>2005</year>
<volume>36</volume>
<fpage>597</fpage>
<lpage>620</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.ecolsys.36.091704.175520</pub-id>
</mixed-citation>
</ref>
<ref id="B89">
<mixed-citation publication-type="journal">
<name>
<surname>Fretwell</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Lucas</surname>
<given-names>HL</given-names>
<suffix>Jr</suffix>
</name>
<article-title>On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development</article-title>
<source>Acta Biotheor</source>
<year>1970</year>
<volume>19</volume>
<fpage>16</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="doi">10.1007/BF01601953</pub-id>
</mixed-citation>
</ref>
<ref id="B90">
<mixed-citation publication-type="journal">
<name>
<surname>Rabosky</surname>
<given-names>DL</given-names>
</name>
<article-title>Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions</article-title>
<source>Ecol Lett</source>
<year>2009</year>
<volume>12</volume>
<fpage>735</fpage>
<lpage>743</lpage>
<pub-id pub-id-type="doi">10.1111/j.1461-0248.2009.01333.x</pub-id>
<pub-id pub-id-type="pmid">19558515</pub-id>
</mixed-citation>
</ref>
<ref id="B91">
<mixed-citation publication-type="journal">
<name>
<surname>Tack</surname>
<given-names>AJM</given-names>
</name>
<name>
<surname>Ovaskainen</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Harrison</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Roslin</surname>
<given-names>T</given-names>
</name>
<article-title>Competition as a structuring force in leaf miner communities</article-title>
<source>Oikos</source>
<year>2009</year>
<volume>118</volume>
<fpage>809</fpage>
<lpage>818</lpage>
<pub-id pub-id-type="doi">10.1111/j.1600-0706.2008.17397.x</pub-id>
</mixed-citation>
</ref>
<ref id="B92">
<mixed-citation publication-type="journal">
<name>
<surname>Janz</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Nylin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wahlberg</surname>
<given-names>N</given-names>
</name>
<article-title>Diversity begets diversity: host expansions and the diversification of plant-feeding insects</article-title>
<source>BMC Evol Biol</source>
<year>2006</year>
<volume>6</volume>
<fpage>4</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2148-6-4</pub-id>
<pub-id pub-id-type="pmid">16420707</pub-id>
</mixed-citation>
</ref>
<ref id="B93">
<mixed-citation publication-type="journal">
<name>
<surname>Emerson</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Gillespie</surname>
<given-names>RG</given-names>
</name>
<article-title>Phylogenetic analysis of community assembly and structure over space and time</article-title>
<source>Trends Ecol Evol</source>
<year>2008</year>
<volume>23</volume>
<fpage>619</fpage>
<lpage>630</lpage>
<pub-id pub-id-type="doi">10.1016/j.tree.2008.07.005</pub-id>
<pub-id pub-id-type="pmid">18823678</pub-id>
</mixed-citation>
</ref>
<ref id="B94">
<mixed-citation publication-type="journal">
<name>
<surname>Azuma</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kajita</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yokoyama</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ohashi</surname>
<given-names>H</given-names>
</name>
<article-title>Phylogenetic relationships of
<italic>Salix </italic>
(Salicaceae) based on
<italic>rbcL </italic>
sequence data</article-title>
<source>Am J Bot</source>
<year>2000</year>
<volume>87</volume>
<fpage>67</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="doi">10.2307/2656686</pub-id>
<pub-id pub-id-type="pmid">10636831</pub-id>
</mixed-citation>
</ref>
<ref id="B95">
<mixed-citation publication-type="journal">
<name>
<surname>Chen</surname>
<given-names>J-H</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y-P</given-names>
</name>
<article-title>Molecular phylogeny of
<italic>Salix </italic>
L. (Salicaceae) inferred from three chloroplast datasets and its systematic implications</article-title>
<source>Taxon</source>
<year>2010</year>
<volume>59</volume>
<fpage>29</fpage>
<lpage>37</lpage>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000489 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000489 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:2936908
   |texte=   How common is ecological speciation in plant-feeding insects? A 'Higher' Nematinae perspective
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:20807452" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CyberinfraV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024