Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Unraveling Genomic Complexity at a Quantitative Disease Resistance Locus in Maize

Identifieur interne : 000361 ( Pmc/Corpus ); précédent : 000360; suivant : 000362

Unraveling Genomic Complexity at a Quantitative Disease Resistance Locus in Maize

Auteurs : Tiffany M. Jamann ; Jesse A. Poland ; Judith M. Kolkman ; Laurie G. Smith ; Rebecca J. Nelson

Source :

RBID : PMC:4174945

Abstract

Multiple disease resistance has important implications for plant fitness, given the selection pressure that many pathogens exert directly on natural plant populations and indirectly via crop improvement programs. Evidence of a locus conditioning resistance to multiple pathogens was found in bin 1.06 of the maize genome with the allele from inbred line “Tx303” conditioning quantitative resistance to northern leaf blight (NLB) and qualitative resistance to Stewart’s wilt. To dissect the genetic basis of resistance in this region and to refine candidate gene hypotheses, we mapped resistance to the two diseases. Both resistance phenotypes were localized to overlapping regions, with the Stewart’s wilt interval refined to a 95.9-kb segment containing three genes and the NLB interval to a 3.60-Mb segment containing 117 genes. Regions of the introgression showed little to no recombination, suggesting structural differences between the inbred lines Tx303 and “B73,” the parents of the fine-mapping population. We examined copy number variation across the region using next-generation sequencing data, and found large variation in read depth in Tx303 across the region relative to the reference genome of B73. In the fine-mapping region, association mapping for NLB implicated candidate genes, including a putative zinc finger and pan1. We tested mutant alleles and found that pan1 is a susceptibility gene for NLB and Stewart’s wilt. Our data strongly suggest that structural variation plays an important role in resistance conditioned by this region, and pan1, a gene conditioning susceptibility for NLB, may underlie the QTL.


Url:
DOI: 10.1534/genetics.114.167486
PubMed: 25009146
PubMed Central: 4174945

Links to Exploration step

PMC:4174945

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Unraveling Genomic Complexity at a Quantitative Disease Resistance Locus in Maize</title>
<author>
<name sortKey="Jamann, Tiffany M" sort="Jamann, Tiffany M" uniqKey="Jamann T" first="Tiffany M." last="Jamann">Tiffany M. Jamann</name>
<affiliation>
<nlm:aff id="aff1">School of Integrative Plant Science, Cornell University, Ithaca, New York 14853</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Poland, Jesse A" sort="Poland, Jesse A" uniqKey="Poland J" first="Jesse A." last="Poland">Jesse A. Poland</name>
<affiliation>
<nlm:aff id="aff2">U.S. Department of Agriculture–Agricultural Research Service, Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas 66502</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Department of Agronomy, Kansas State University, Manhattan, Kansas 66506</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kolkman, Judith M" sort="Kolkman, Judith M" uniqKey="Kolkman J" first="Judith M." last="Kolkman">Judith M. Kolkman</name>
<affiliation>
<nlm:aff>NONE</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Smith, Laurie G" sort="Smith, Laurie G" uniqKey="Smith L" first="Laurie G." last="Smith">Laurie G. Smith</name>
<affiliation>
<nlm:aff id="aff4">Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Rebecca J" sort="Nelson, Rebecca J" uniqKey="Nelson R" first="Rebecca J." last="Nelson">Rebecca J. Nelson</name>
<affiliation>
<nlm:aff id="aff1">School of Integrative Plant Science, Cornell University, Ithaca, New York 14853</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25009146</idno>
<idno type="pmc">4174945</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4174945</idno>
<idno type="RBID">PMC:4174945</idno>
<idno type="doi">10.1534/genetics.114.167486</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000361</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Unraveling Genomic Complexity at a Quantitative Disease Resistance Locus in Maize</title>
<author>
<name sortKey="Jamann, Tiffany M" sort="Jamann, Tiffany M" uniqKey="Jamann T" first="Tiffany M." last="Jamann">Tiffany M. Jamann</name>
<affiliation>
<nlm:aff id="aff1">School of Integrative Plant Science, Cornell University, Ithaca, New York 14853</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Poland, Jesse A" sort="Poland, Jesse A" uniqKey="Poland J" first="Jesse A." last="Poland">Jesse A. Poland</name>
<affiliation>
<nlm:aff id="aff2">U.S. Department of Agriculture–Agricultural Research Service, Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas 66502</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Department of Agronomy, Kansas State University, Manhattan, Kansas 66506</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kolkman, Judith M" sort="Kolkman, Judith M" uniqKey="Kolkman J" first="Judith M." last="Kolkman">Judith M. Kolkman</name>
<affiliation>
<nlm:aff>NONE</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Smith, Laurie G" sort="Smith, Laurie G" uniqKey="Smith L" first="Laurie G." last="Smith">Laurie G. Smith</name>
<affiliation>
<nlm:aff id="aff4">Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nelson, Rebecca J" sort="Nelson, Rebecca J" uniqKey="Nelson R" first="Rebecca J." last="Nelson">Rebecca J. Nelson</name>
<affiliation>
<nlm:aff id="aff1">School of Integrative Plant Science, Cornell University, Ithaca, New York 14853</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genetics</title>
<idno type="ISSN">0016-6731</idno>
<idno type="eISSN">1943-2631</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Multiple disease resistance has important implications for plant fitness, given the selection pressure that many pathogens exert directly on natural plant populations and indirectly via crop improvement programs. Evidence of a locus conditioning resistance to multiple pathogens was found in bin 1.06 of the maize genome with the allele from inbred line “Tx303” conditioning quantitative resistance to northern leaf blight (NLB) and qualitative resistance to Stewart’s wilt. To dissect the genetic basis of resistance in this region and to refine candidate gene hypotheses, we mapped resistance to the two diseases. Both resistance phenotypes were localized to overlapping regions, with the Stewart’s wilt interval refined to a 95.9-kb segment containing three genes and the NLB interval to a 3.60-Mb segment containing 117 genes. Regions of the introgression showed little to no recombination, suggesting structural differences between the inbred lines Tx303 and “B73,” the parents of the fine-mapping population. We examined copy number variation across the region using next-generation sequencing data, and found large variation in read depth in Tx303 across the region relative to the reference genome of B73. In the fine-mapping region, association mapping for NLB implicated candidate genes, including a putative zinc finger and
<italic>pan1</italic>
. We tested mutant alleles and found that
<italic>pan1</italic>
is a susceptibility gene for NLB and Stewart’s wilt. Our data strongly suggest that structural variation plays an important role in resistance conditioned by this region, and
<italic>pan1</italic>
, a gene conditioning susceptibility for NLB, may underlie the QTL.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Genetics</journal-id>
<journal-id journal-id-type="iso-abbrev">Genetics</journal-id>
<journal-id journal-id-type="hwp">genetics</journal-id>
<journal-id journal-id-type="pmc">genetics</journal-id>
<journal-id journal-id-type="publisher-id">genetics</journal-id>
<journal-title-group>
<journal-title>Genetics</journal-title>
</journal-title-group>
<issn pub-type="ppub">0016-6731</issn>
<issn pub-type="epub">1943-2631</issn>
<publisher>
<publisher-name>Genetics Society of America</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25009146</article-id>
<article-id pub-id-type="pmc">4174945</article-id>
<article-id pub-id-type="publisher-id">167486</article-id>
<article-id pub-id-type="doi">10.1534/genetics.114.167486</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Investigations</subject>
<subj-group>
<subject>Genetics of Immunity</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Unraveling Genomic Complexity at a Quantitative Disease Resistance Locus in Maize</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Jamann</surname>
<given-names>Tiffany M.</given-names>
</name>
<xref ref-type="aff" rid="aff1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Poland</surname>
<given-names>Jesse A.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup></sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kolkman</surname>
<given-names>Judith M.</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Smith</surname>
<given-names>Laurie G.</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>§</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nelson</surname>
<given-names>Rebecca J.</given-names>
</name>
<xref ref-type="aff" rid="aff1">*</xref>
<xref ref-type="corresp" rid="cor1">
<sup>1</sup>
</xref>
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0002-9026-7803</contrib-id>
</contrib>
<aff id="aff1">
<label>*</label>
School of Integrative Plant Science, Cornell University, Ithaca, New York 14853</aff>
<aff id="aff2">
<label></label>
U.S. Department of Agriculture–Agricultural Research Service, Hard Winter Wheat Genetics Research Unit, Manhattan, Kansas 66502</aff>
<aff id="aff3">
<label></label>
Department of Agronomy, Kansas State University, Manhattan, Kansas 66506</aff>
<aff id="aff4">
<label>§</label>
Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<label>1</label>
Corresponding author: 303G Plant Science Bldg., 236 Tower Rd., Cornell University, Ithaca, NY 14853. E-mail:
<email>rjn7@cornell.edu</email>
</corresp>
</author-notes>
<pmc-comment>Fake ppub date generated by PMC from publisher pub-date/@pub-type='epub-ppub' </pmc-comment>
<pub-date pub-type="ppub">
<month>9</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>9</day>
<month>7</month>
<year>2014</year>
</pub-date>
<volume>198</volume>
<issue>1</issue>
<fpage>333</fpage>
<lpage>344</lpage>
<history>
<date date-type="received">
<day>03</day>
<month>4</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>6</day>
<month>6</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014 by the Genetics Society of America</copyright-statement>
<copyright-year>2014</copyright-year>
</permissions>
<self-uri xlink:title="pdf" xlink:type="simple" xlink:href="333.pdf"></self-uri>
<abstract>
<p>Multiple disease resistance has important implications for plant fitness, given the selection pressure that many pathogens exert directly on natural plant populations and indirectly via crop improvement programs. Evidence of a locus conditioning resistance to multiple pathogens was found in bin 1.06 of the maize genome with the allele from inbred line “Tx303” conditioning quantitative resistance to northern leaf blight (NLB) and qualitative resistance to Stewart’s wilt. To dissect the genetic basis of resistance in this region and to refine candidate gene hypotheses, we mapped resistance to the two diseases. Both resistance phenotypes were localized to overlapping regions, with the Stewart’s wilt interval refined to a 95.9-kb segment containing three genes and the NLB interval to a 3.60-Mb segment containing 117 genes. Regions of the introgression showed little to no recombination, suggesting structural differences between the inbred lines Tx303 and “B73,” the parents of the fine-mapping population. We examined copy number variation across the region using next-generation sequencing data, and found large variation in read depth in Tx303 across the region relative to the reference genome of B73. In the fine-mapping region, association mapping for NLB implicated candidate genes, including a putative zinc finger and
<italic>pan1</italic>
. We tested mutant alleles and found that
<italic>pan1</italic>
is a susceptibility gene for NLB and Stewart’s wilt. Our data strongly suggest that structural variation plays an important role in resistance conditioned by this region, and
<italic>pan1</italic>
, a gene conditioning susceptibility for NLB, may underlie the QTL.</p>
</abstract>
<kwd-group>
<kwd>quantitative disease resistance</kwd>
<kwd>northern leaf blight</kwd>
<kwd>
<italic>Setosphaeria turcica</italic>
</kwd>
<kwd>multiple disease resistance</kwd>
<kwd>Stewart’s wilt</kwd>
<kwd>Genetics of Immunity</kwd>
</kwd-group>
<counts>
<page-count count="12"></page-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name> DJS Export </meta-name>
<meta-value>v1</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000361 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000361 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4174945
   |texte=   Unraveling Genomic Complexity at a Quantitative Disease Resistance Locus in Maize
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25009146" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CyberinfraV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024