Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reference state for the generalized Yvon–Born–Green theory: Application for coarse-grained model of hydrophobic hydration

Identifieur interne : 000556 ( Pmc/Checkpoint ); précédent : 000555; suivant : 000557

Reference state for the generalized Yvon–Born–Green theory: Application for coarse-grained model of hydrophobic hydration

Auteurs : J. W. Mullinax ; W. G. Noid

Source :

RBID : PMC:3188631

Abstract

Coarse-grained (CG) models provide a computationally efficient means for investigating phenomena that remain beyond the scope of atomically detailed models. Although CG models are often parametrized to reproduce the results of atomistic simulations, it is highly desirable to determine accurate CG models from experimental data. Recently, we have introduced a generalized Yvon–Born–Green (g-YBG) theory for directly (i.e., noniteratively) determining variationally optimized CG potentials from structural correlation functions. In principle, these correlation functions can be determined from experiment. In the present work, we introduce a reference state potential into the g-YBG framework. The reference state defines a fixed contribution to the CG potential. The remaining terms in the potential are then determined, such that the combined potential provides an optimal approximation to the many-body potential of mean force. By specifying a fixed contribution to the potential, the reference state significantly reduces the computational complexity and structural information necessary for determining the remaining potentials. We also validate the quantitative accuracy of the proposed method and numerically demonstrate that the reference state provides a convenient framework for transferring CG potentials from neat liquids to more complex systems. The resulting CG model provides a surprisingly accurate description of the two- and three-particle solvation structures of a hydrophobic solute in methanol. This work represents a significant step in developing the g-YBG theory as a useful computational framework for determining accurate CG models from limited experimental data.


Url:
DOI: 10.1063/1.3481574
PubMed: 20886924
PubMed Central: 3188631


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3188631

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reference state for the generalized Yvon–Born–Green theory: Application for coarse-grained model of hydrophobic hydration</title>
<author>
<name sortKey="Mullinax, J W" sort="Mullinax, J W" uniqKey="Mullinax J" first="J. W." last="Mullinax">J. W. Mullinax</name>
</author>
<author>
<name sortKey="Noid, W G" sort="Noid, W G" uniqKey="Noid W" first="W. G." last="Noid">W. G. Noid</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">20886924</idno>
<idno type="pmc">3188631</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3188631</idno>
<idno type="RBID">PMC:3188631</idno>
<idno type="doi">10.1063/1.3481574</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">000139</idno>
<idno type="wicri:Area/Pmc/Curation">000139</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000556</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Reference state for the generalized Yvon–Born–Green theory: Application for coarse-grained model of hydrophobic hydration</title>
<author>
<name sortKey="Mullinax, J W" sort="Mullinax, J W" uniqKey="Mullinax J" first="J. W." last="Mullinax">J. W. Mullinax</name>
</author>
<author>
<name sortKey="Noid, W G" sort="Noid, W G" uniqKey="Noid W" first="W. G." last="Noid">W. G. Noid</name>
</author>
</analytic>
<series>
<title level="j">The Journal of Chemical Physics</title>
<idno type="ISSN">0021-9606</idno>
<idno type="eISSN">1089-7690</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Coarse-grained (CG) models provide a computationally efficient means for investigating phenomena that remain beyond the scope of atomically detailed models. Although CG models are often parametrized to reproduce the results of atomistic simulations, it is highly desirable to determine accurate CG models from experimental data. Recently, we have introduced a generalized Yvon–Born–Green (g-YBG) theory for directly (i.e., noniteratively) determining variationally optimized CG potentials from structural correlation functions. In principle, these correlation functions can be determined from experiment. In the present work, we introduce a reference state potential into the g-YBG framework. The reference state defines a fixed contribution to the CG potential. The remaining terms in the potential are then determined, such that the combined potential provides an optimal approximation to the many-body potential of mean force. By specifying a fixed contribution to the potential, the reference state significantly reduces the computational complexity and structural information necessary for determining the remaining potentials. We also validate the quantitative accuracy of the proposed method and numerically demonstrate that the reference state provides a convenient framework for transferring CG potentials from neat liquids to more complex systems. The resulting CG model provides a surprisingly accurate description of the two- and three-particle solvation structures of a hydrophobic solute in methanol. This work represents a significant step in developing the g-YBG theory as a useful computational framework for determining accurate CG models from limited experimental data.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Chem Phys</journal-id>
<journal-title-group>
<journal-title>The Journal of Chemical Physics</journal-title>
</journal-title-group>
<issn pub-type="ppub">0021-9606</issn>
<issn pub-type="epub">1089-7690</issn>
<publisher>
<publisher-name>American Institute of Physics</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">20886924</article-id>
<article-id pub-id-type="pmc">3188631</article-id>
<article-id pub-id-type="publisher-id">029032JCP</article-id>
<article-id pub-id-type="doi">10.1063/1.3481574</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Theoretical Methods and Algorithms</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Reference state for the generalized Yvon–Born–Green theory: Application for coarse-grained model of hydrophobic hydration</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Mullinax</surname>
<given-names>J. W.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Noid</surname>
<given-names>W. G.</given-names>
</name>
<xref ref-type="author-notes" rid="n1">a)</xref>
</contrib>
<aff>Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA</aff>
</contrib-group>
<author-notes>
<fn id="n1">
<label>a)</label>
<p>Electronic mail:
<email>wnoid@chem.psu.edu</email>
.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<day>28</day>
<month>9</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="epub">
<day>29</day>
<month>9</month>
<year>2010</year>
</pub-date>
<volume>133</volume>
<issue>12</issue>
<elocation-id>124107</elocation-id>
<history>
<date date-type="received">
<day>15</day>
<month>6</month>
<year>2010</year>
</date>
<date date-type="accepted">
<day>02</day>
<month>8</month>
<year>2010</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2010 American Institute of Physics</copyright-statement>
<copyright-year>2010</copyright-year>
<copyright-holder>American Institute of Physics</copyright-holder>
</permissions>
<abstract>
<p>Coarse-grained (CG) models provide a computationally efficient means for investigating phenomena that remain beyond the scope of atomically detailed models. Although CG models are often parametrized to reproduce the results of atomistic simulations, it is highly desirable to determine accurate CG models from experimental data. Recently, we have introduced a generalized Yvon–Born–Green (g-YBG) theory for directly (i.e., noniteratively) determining variationally optimized CG potentials from structural correlation functions. In principle, these correlation functions can be determined from experiment. In the present work, we introduce a reference state potential into the g-YBG framework. The reference state defines a fixed contribution to the CG potential. The remaining terms in the potential are then determined, such that the combined potential provides an optimal approximation to the many-body potential of mean force. By specifying a fixed contribution to the potential, the reference state significantly reduces the computational complexity and structural information necessary for determining the remaining potentials. We also validate the quantitative accuracy of the proposed method and numerically demonstrate that the reference state provides a convenient framework for transferring CG potentials from neat liquids to more complex systems. The resulting CG model provides a surprisingly accurate description of the two- and three-particle solvation structures of a hydrophobic solute in methanol. This work represents a significant step in developing the g-YBG theory as a useful computational framework for determining accurate CG models from limited experimental data.</p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>CCC information</meta-name>
<meta-value>0021-9606/2010/133(12)/124107/11/$30.00</meta-value>
</custom-meta>
<custom-meta>
<meta-name>sisac</meta-name>
<meta-value>0021-9606()133:12L.124107;1</meta-value>
</custom-meta>
<custom-meta>
<meta-name>edcode</meta-name>
<meta-value>A10.06.0209R</meta-value>
</custom-meta>
<custom-meta>
<meta-name>aipkey</meta-name>
<meta-value>1.3481574</meta-value>
</custom-meta>
<custom-meta>
<meta-name>spin</meta-name>
<meta-value>
<named-content content-type="el-docanal">
<named-content content-type="el-pacs">
<named-content content-type="att-pacsyr">2010</named-content>
<named-content content-type="el-pacscode">3420-b</named-content>
<named-content content-type="el-pacscode">3115-p</named-content>
</named-content>
</named-content>
<named-content content-type="el-jouidx">
<named-content content-type="el-country">US</named-content>
<named-content content-type="el-totalidx">6</named-content>
<named-content content-type="el-addidx">hydrophobicity</named-content>
<named-content content-type="el-addidx">many-body problems</named-content>
<named-content content-type="el-addidx">molecular dynamics method</named-content>
<named-content content-type="el-addidx">organic compounds</named-content>
<named-content content-type="el-addidx">potential energy functions</named-content>
<named-content content-type="el-addidx">solvation</named-content>
</named-content>
</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Mullinax, J W" sort="Mullinax, J W" uniqKey="Mullinax J" first="J. W." last="Mullinax">J. W. Mullinax</name>
<name sortKey="Noid, W G" sort="Noid, W G" uniqKey="Noid W" first="W. G." last="Noid">W. G. Noid</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000556 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000556 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:3188631
   |texte=   Reference state for the generalized Yvon–Born–Green theory: Application for coarse-grained model of hydrophobic hydration
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:20886924" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a CyberinfraV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024