Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Subcellular localization of marine bacterial alkaline phosphatases

Identifieur interne : 000B86 ( Main/Merge ); précédent : 000B85; suivant : 000B87

Subcellular localization of marine bacterial alkaline phosphatases

Auteurs : Haiwei Luo ; Ronald Benner ; Richard A. Long ; Jianjun Hu [États-Unis]

Source :

RBID : PMC:2795515

Abstract

Bacterial alkaline phosphatases (APases) are important enzymes in organophosphate utilization in the ocean. The subcellular localization of APases has significant ecological implications for marine biota but is largely unknown. The extensive metagenomic sequence databases from the Global Ocean Sampling Expedition provide an opportunity to address this question. A bioinformatics pipeline was developed to identify marine bacterial APases from the metagenomic databases, and a consensus classification algorithm was designed to predict their subcellular localizations. We identified 3,733 bacterial APase sequences (including PhoA, PhoD, and PhoX) and found that cytoplasmic (41%) and extracellular (30%) APases exceed their periplasmic (17%), outer membrane (12%), and inner membrane (0.9%) counterparts. The unexpectedly high abundance of cytoplasmic APases suggests that the transport and intracellular hydrolysis of small organophosphate molecules is an important mechanism for bacterial acquisition of phosphorus (P) in the surface ocean. On average, each marine bacterium possessed at least one suite of uptake of glycerol phosphate (ugp) genes (e.g., ugpA, ugpB, ugpC, ugpE) for dissolved organic phosphorus (DOP) transport, but only half of them had ugpQ, which hydrolyzes transported DOP, indicating that cytoplasmic APases play a role in hydrolyzing transported DOP. The most abundant heterotrophic marine bacteria, α- and γ-Proteobacteria, might hydrolyze DOP outside the cytoplasmic membrane, but the former could also transport and hydrolyze DOP in the cytoplasm. The abundant extracellular APases could provide bioavailable P for organisms that cannot directly access organophosphates, and thereby increase marine biological productivity and diversity.


Url:
DOI: 10.1073/pnas.0907586106
PubMed: 19926862
PubMed Central: 2795515

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:2795515

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Subcellular localization of marine bacterial alkaline phosphatases</title>
<author>
<name sortKey="Luo, Haiwei" sort="Luo, Haiwei" uniqKey="Luo H" first="Haiwei" last="Luo">Haiwei Luo</name>
<affiliation>
<nlm:aff id="aff1">Department of Biological Sciences,</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Benner, Ronald" sort="Benner, Ronald" uniqKey="Benner R" first="Ronald" last="Benner">Ronald Benner</name>
<affiliation>
<nlm:aff id="aff1">Department of Biological Sciences,</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff2">Marine Science Program</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Long, Richard A" sort="Long, Richard A" uniqKey="Long R" first="Richard A." last="Long">Richard A. Long</name>
<affiliation>
<nlm:aff id="aff1">Department of Biological Sciences,</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff2">Marine Science Program</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jianjun" sort="Hu, Jianjun" uniqKey="Hu J" first="Jianjun" last="Hu">Jianjun Hu</name>
<affiliation wicri:level="2">
<nlm:aff id="aff3">Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
<wicri:cityArea>Department of Computer Science and Engineering, University of South Carolina, Columbia</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">19926862</idno>
<idno type="pmc">2795515</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795515</idno>
<idno type="RBID">PMC:2795515</idno>
<idno type="doi">10.1073/pnas.0907586106</idno>
<date when="2009">2009</date>
<idno type="wicri:Area/Pmc/Corpus">000388</idno>
<idno type="wicri:Area/Pmc/Curation">000388</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000614</idno>
<idno type="wicri:Area/Ncbi/Merge">000116</idno>
<idno type="wicri:Area/Ncbi/Curation">000116</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000116</idno>
<idno type="wicri:doubleKey">0027-8424:2009:Luo H:subcellular:localization:of</idno>
<idno type="wicri:Area/Main/Merge">000B86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Subcellular localization of marine bacterial alkaline phosphatases</title>
<author>
<name sortKey="Luo, Haiwei" sort="Luo, Haiwei" uniqKey="Luo H" first="Haiwei" last="Luo">Haiwei Luo</name>
<affiliation>
<nlm:aff id="aff1">Department of Biological Sciences,</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Benner, Ronald" sort="Benner, Ronald" uniqKey="Benner R" first="Ronald" last="Benner">Ronald Benner</name>
<affiliation>
<nlm:aff id="aff1">Department of Biological Sciences,</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff2">Marine Science Program</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Long, Richard A" sort="Long, Richard A" uniqKey="Long R" first="Richard A." last="Long">Richard A. Long</name>
<affiliation>
<nlm:aff id="aff1">Department of Biological Sciences,</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff2">Marine Science Program</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Jianjun" sort="Hu, Jianjun" uniqKey="Hu J" first="Jianjun" last="Hu">Jianjun Hu</name>
<affiliation wicri:level="2">
<nlm:aff id="aff3">Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
<wicri:cityArea>Department of Computer Science and Engineering, University of South Carolina, Columbia</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Bacterial alkaline phosphatases (APases) are important enzymes in organophosphate utilization in the ocean. The subcellular localization of APases has significant ecological implications for marine biota but is largely unknown. The extensive metagenomic sequence databases from the Global Ocean Sampling Expedition provide an opportunity to address this question. A bioinformatics pipeline was developed to identify marine bacterial APases from the metagenomic databases, and a consensus classification algorithm was designed to predict their subcellular localizations. We identified 3,733 bacterial APase sequences (including PhoA, PhoD, and PhoX) and found that cytoplasmic (41%) and extracellular (30%) APases exceed their periplasmic (17%), outer membrane (12%), and inner membrane (0.9%) counterparts. The unexpectedly high abundance of cytoplasmic APases suggests that the transport and intracellular hydrolysis of small organophosphate molecules is an important mechanism for bacterial acquisition of phosphorus (P) in the surface ocean. On average, each marine bacterium possessed at least one suite of uptake of glycerol phosphate (ugp) genes (e.g., ugpA, ugpB, ugpC, ugpE) for dissolved organic phosphorus (DOP) transport, but only half of them had ugpQ, which hydrolyzes transported DOP, indicating that cytoplasmic APases play a role in hydrolyzing transported DOP. The most abundant heterotrophic marine bacteria, α- and γ-Proteobacteria, might hydrolyze DOP outside the cytoplasmic membrane, but the former could also transport and hydrolyze DOP in the cytoplasm. The abundant extracellular APases could provide bioavailable P for organisms that cannot directly access organophosphates, and thereby increase marine biological productivity and diversity.</p>
</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B86 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 000B86 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:2795515
   |texte=   Subcellular localization of marine bacterial alkaline phosphatases
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Merge/RBID.i   -Sk "pubmed:19926862" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a CyberinfraV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024