Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics

Identifieur interne : 000675 ( Main/Merge ); précédent : 000674; suivant : 000676

Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics

Auteurs : Jan-Hendrik Prinz [Allemagne] ; John D. Chodera [États-Unis] ; Vijay S. Pande [États-Unis] ; William C. Swope [États-Unis] ; Jeremy C. Smith [États-Unis] ; Frank Noé [Allemagne]

Source :

RBID : PMC:3139503

Abstract

Parallel tempering (PT) molecular dynamics simulations have been extensively investigated as a means of efficient sampling of the configurations of biomolecular systems. Recent work has demonstrated how the short physical trajectories generated in PT simulations of biomolecules can be used to construct the Markov models describing biomolecular dynamics at each simulated temperature. While this approach describes the temperature-dependent kinetics, it does not make optimal use of all available PT data, instead estimating the rates at a given temperature using only data from that temperature. This can be problematic, as some relevant transitions or states may not be sufficiently sampled at the temperature of interest, but might be readily sampled at nearby temperatures. Further, the comparison of temperature-dependent properties can suffer from the false assumption that data collected from different temperatures are uncorrelated. We propose here a strategy in which, by a simple modification of the PT protocol, the harvested trajectories can be reweighted, permitting data from all temperatures to contribute to the estimated kinetic model. The method reduces the statistical uncertainty in the kinetic model relative to the single temperature approach and provides estimates of transition probabilities even for transitions not observed at the temperature of interest. Further, the method allows the kinetics to be estimated at temperatures other than those at which simulations were run. We illustrate this method by applying it to the generation of a Markov model of the conformational dynamics of the solvated terminally blocked alanine peptide.


Url:
DOI: 10.1063/1.3592153
PubMed: 21721613
PubMed Central: 3139503

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3139503

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics</title>
<author>
<name sortKey="Prinz, Jan Hendrik" sort="Prinz, Jan Hendrik" uniqKey="Prinz J" first="Jan-Hendrik" last="Prinz">Jan-Hendrik Prinz</name>
<affiliation wicri:level="3">
<nlm:aff id="a1">Institute for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, 69126 Heidelberg, Germany and DFG Research Center Matheon, FU Berlin, Arnimallee 6, 14195 Berlin, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, 69126 Heidelberg, Germany and DFG Research Center Matheon, FU Berlin, Arnimallee 6, 14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chodera, John D" sort="Chodera, John D" uniqKey="Chodera J" first="John D." last="Chodera">John D. Chodera</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">California Institute of Quantitative Biosciences (QB3), University of California at Berkeley, 260 J Stanley Hall, Berkeley, California 94720, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>California Institute of Quantitative Biosciences (QB3), University of California at Berkeley, 260 J Stanley Hall, Berkeley, California 94720</wicri:regionArea>
<wicri:noRegion>California 94720</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pande, Vijay S" sort="Pande, Vijay S" uniqKey="Pande V" first="Vijay S." last="Pande">Vijay S. Pande</name>
<affiliation wicri:level="1">
<nlm:aff id="a3">Department of Chemistry, Stanford University, Stanford, California 94305, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Stanford University, Stanford, California 94305</wicri:regionArea>
<wicri:noRegion>California 94305</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Swope, William C" sort="Swope, William C" uniqKey="Swope W" first="William C." last="Swope">William C. Swope</name>
<affiliation wicri:level="1">
<nlm:aff id="a4">IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120</wicri:regionArea>
<wicri:noRegion>California 95120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smith, Jeremy C" sort="Smith, Jeremy C" uniqKey="Smith J" first="Jeremy C." last="Smith">Jeremy C. Smith</name>
<affiliation wicri:level="1">
<nlm:aff id="a5">UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831</wicri:regionArea>
<wicri:noRegion>Tennessee 37831</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Noe, Frank" sort="Noe, Frank" uniqKey="Noe F" first="Frank" last="Noé">Frank Noé</name>
<affiliation wicri:level="3">
<nlm:aff id="a6">DFG Research Center Matheon, FU Berlin, Arnimallee 6, 14195 Berlin, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>DFG Research Center Matheon, FU Berlin, Arnimallee 6, 14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">21721613</idno>
<idno type="pmc">3139503</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139503</idno>
<idno type="RBID">PMC:3139503</idno>
<idno type="doi">10.1063/1.3592153</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">000137</idno>
<idno type="wicri:Area/Pmc/Curation">000137</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000490</idno>
<idno type="wicri:Area/Ncbi/Merge">000243</idno>
<idno type="wicri:Area/Ncbi/Curation">000243</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000243</idno>
<idno type="wicri:doubleKey">0021-9606:2011:Prinz J:optimal:use:of</idno>
<idno type="wicri:Area/Main/Merge">000675</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics</title>
<author>
<name sortKey="Prinz, Jan Hendrik" sort="Prinz, Jan Hendrik" uniqKey="Prinz J" first="Jan-Hendrik" last="Prinz">Jan-Hendrik Prinz</name>
<affiliation wicri:level="3">
<nlm:aff id="a1">Institute for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, 69126 Heidelberg, Germany and DFG Research Center Matheon, FU Berlin, Arnimallee 6, 14195 Berlin, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, 69126 Heidelberg, Germany and DFG Research Center Matheon, FU Berlin, Arnimallee 6, 14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chodera, John D" sort="Chodera, John D" uniqKey="Chodera J" first="John D." last="Chodera">John D. Chodera</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">California Institute of Quantitative Biosciences (QB3), University of California at Berkeley, 260 J Stanley Hall, Berkeley, California 94720, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>California Institute of Quantitative Biosciences (QB3), University of California at Berkeley, 260 J Stanley Hall, Berkeley, California 94720</wicri:regionArea>
<wicri:noRegion>California 94720</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pande, Vijay S" sort="Pande, Vijay S" uniqKey="Pande V" first="Vijay S." last="Pande">Vijay S. Pande</name>
<affiliation wicri:level="1">
<nlm:aff id="a3">Department of Chemistry, Stanford University, Stanford, California 94305, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Stanford University, Stanford, California 94305</wicri:regionArea>
<wicri:noRegion>California 94305</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Swope, William C" sort="Swope, William C" uniqKey="Swope W" first="William C." last="Swope">William C. Swope</name>
<affiliation wicri:level="1">
<nlm:aff id="a4">IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120</wicri:regionArea>
<wicri:noRegion>California 95120</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smith, Jeremy C" sort="Smith, Jeremy C" uniqKey="Smith J" first="Jeremy C." last="Smith">Jeremy C. Smith</name>
<affiliation wicri:level="1">
<nlm:aff id="a5">UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831</wicri:regionArea>
<wicri:noRegion>Tennessee 37831</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Noe, Frank" sort="Noe, Frank" uniqKey="Noe F" first="Frank" last="Noé">Frank Noé</name>
<affiliation wicri:level="3">
<nlm:aff id="a6">DFG Research Center Matheon, FU Berlin, Arnimallee 6, 14195 Berlin, Germany</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>DFG Research Center Matheon, FU Berlin, Arnimallee 6, 14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of Chemical Physics</title>
<idno type="ISSN">0021-9606</idno>
<idno type="eISSN">1089-7690</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Parallel tempering (PT) molecular dynamics simulations have been extensively investigated as a means of efficient sampling of the configurations of biomolecular systems. Recent work has demonstrated how the short physical trajectories generated in PT simulations of biomolecules can be used to construct the Markov models describing biomolecular dynamics at each simulated temperature. While this approach describes the temperature-dependent kinetics, it does not make optimal use of all available PT data, instead estimating the rates at a given temperature using only data from that temperature. This can be problematic, as some relevant transitions or states may not be sufficiently sampled at the temperature of interest, but might be readily sampled at nearby temperatures. Further, the comparison of temperature-dependent properties can suffer from the false assumption that data collected from different temperatures are uncorrelated. We propose here a strategy in which, by a simple modification of the PT protocol, the harvested trajectories can be reweighted, permitting data from all temperatures to contribute to the estimated kinetic model. The method reduces the statistical uncertainty in the kinetic model relative to the single temperature approach and provides estimates of transition probabilities even for transitions not observed at the temperature of interest. Further, the method allows the kinetics to be estimated at temperatures other than those at which simulations were run. We illustrate this method by applying it to the generation of a Markov model of the conformational dynamics of the solvated terminally blocked alanine peptide.</p>
</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000675 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 000675 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:3139503
   |texte=   Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Merge/RBID.i   -Sk "pubmed:21721613" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a CyberinfraV1 

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024