Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exploring Real‐Time Geoprocessing in Cloud Computing: Navigation Services Case Study

Identifieur interne : 000533 ( Istex/Corpus ); précédent : 000532; suivant : 000534

Exploring Real‐Time Geoprocessing in Cloud Computing: Navigation Services Case Study

Auteurs : Hassan Ali Karimi ; Duangduen Roongpiboonsopit ; Haopeng Wang

Source :

RBID : ISTEX:F71128D1A6D3F95712B17E5216632789293D1DCF

Abstract

Today, many real‐time geospatial applications (e.g. navigation and location‐based services) involve data‐ and/or compute‐intensive geoprocessing tasks where performance is of great importance. Cloud computing, a promising platform with a large pool of storage and computing resources, could be a practical solution for hosting vast amounts of data and for real‐time processing. In this article, we explored the feasibility of using Google App Engine (GAE), the cloud computing technology by Google, for a module in navigation services, called Integrated GNSS (iGNSS) QoS prediction. The objective of this module is to predict quality of iGNSS positioning solutions for prospective routes in advance. iGNSS QoS prediction involves the real‐time computation of large Triangulated Irregular Networks (TINs) generated from LiDAR data. We experimented with the Google App Engine (GAE) and stored a large TIN for two geoprocessing operations (proximity and bounding box) required for iGNSS QoS prediction. The experimental results revealed that while cloud computing can potentially be used for development and deployment of data‐ and/or compute‐intensive geospatial applications, current cloud platforms require improvements and special tools for handling real‐time geoprocessing, such as iGNSS QoS prediction, efficiently. The article also provides a set of general guidelines for future development of real‐time geoprocessing in clouds.

Url:
DOI: 10.1111/j.1467-9671.2011.01263.x

Links to Exploration step

ISTEX:F71128D1A6D3F95712B17E5216632789293D1DCF

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exploring Real‐Time Geoprocessing in Cloud Computing: Navigation Services Case Study</title>
<author>
<name sortKey="Karimi, Hassan Ali" sort="Karimi, Hassan Ali" uniqKey="Karimi H" first="Hassan Ali" last="Karimi">Hassan Ali Karimi</name>
<affiliation>
<mods:affiliation>School of Information Sciences, University of Pittsburgh</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roongpiboonsopit, Duangduen" sort="Roongpiboonsopit, Duangduen" uniqKey="Roongpiboonsopit D" first="Duangduen" last="Roongpiboonsopit">Duangduen Roongpiboonsopit</name>
<affiliation>
<mods:affiliation>School of Information Sciences, University of Pittsburgh</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Haopeng" sort="Wang, Haopeng" uniqKey="Wang H" first="Haopeng" last="Wang">Haopeng Wang</name>
<affiliation>
<mods:affiliation>School of Information Sciences, University of Pittsburgh</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F71128D1A6D3F95712B17E5216632789293D1DCF</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1111/j.1467-9671.2011.01263.x</idno>
<idno type="url">https://api.istex.fr/document/F71128D1A6D3F95712B17E5216632789293D1DCF/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000533</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Exploring Real‐Time Geoprocessing in Cloud Computing: Navigation Services Case Study</title>
<author>
<name sortKey="Karimi, Hassan Ali" sort="Karimi, Hassan Ali" uniqKey="Karimi H" first="Hassan Ali" last="Karimi">Hassan Ali Karimi</name>
<affiliation>
<mods:affiliation>School of Information Sciences, University of Pittsburgh</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Roongpiboonsopit, Duangduen" sort="Roongpiboonsopit, Duangduen" uniqKey="Roongpiboonsopit D" first="Duangduen" last="Roongpiboonsopit">Duangduen Roongpiboonsopit</name>
<affiliation>
<mods:affiliation>School of Information Sciences, University of Pittsburgh</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Haopeng" sort="Wang, Haopeng" uniqKey="Wang H" first="Haopeng" last="Wang">Haopeng Wang</name>
<affiliation>
<mods:affiliation>School of Information Sciences, University of Pittsburgh</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Transactions in GIS</title>
<idno type="ISSN">1361-1682</idno>
<idno type="eISSN">1467-9671</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-10">2011-10</date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="613">613</biblScope>
<biblScope unit="page" to="633">633</biblScope>
</imprint>
<idno type="ISSN">1361-1682</idno>
</series>
<idno type="istex">F71128D1A6D3F95712B17E5216632789293D1DCF</idno>
<idno type="DOI">10.1111/j.1467-9671.2011.01263.x</idno>
<idno type="ArticleID">TGIS1263</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1361-1682</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Today, many real‐time geospatial applications (e.g. navigation and location‐based services) involve data‐ and/or compute‐intensive geoprocessing tasks where performance is of great importance. Cloud computing, a promising platform with a large pool of storage and computing resources, could be a practical solution for hosting vast amounts of data and for real‐time processing. In this article, we explored the feasibility of using Google App Engine (GAE), the cloud computing technology by Google, for a module in navigation services, called Integrated GNSS (iGNSS) QoS prediction. The objective of this module is to predict quality of iGNSS positioning solutions for prospective routes in advance. iGNSS QoS prediction involves the real‐time computation of large Triangulated Irregular Networks (TINs) generated from LiDAR data. We experimented with the Google App Engine (GAE) and stored a large TIN for two geoprocessing operations (proximity and bounding box) required for iGNSS QoS prediction. The experimental results revealed that while cloud computing can potentially be used for development and deployment of data‐ and/or compute‐intensive geospatial applications, current cloud platforms require improvements and special tools for handling real‐time geoprocessing, such as iGNSS QoS prediction, efficiently. The article also provides a set of general guidelines for future development of real‐time geoprocessing in clouds.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Hassan Ali Karimi</name>
<affiliations>
<json:string>School of Information Sciences, University of Pittsburgh</json:string>
</affiliations>
</json:item>
<json:item>
<name>Duangduen Roongpiboonsopit</name>
<affiliations>
<json:string>School of Information Sciences, University of Pittsburgh</json:string>
</affiliations>
</json:item>
<json:item>
<name>Haopeng Wang</name>
<affiliations>
<json:string>School of Information Sciences, University of Pittsburgh</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>TGIS1263</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Today, many real‐time geospatial applications (e.g. navigation and location‐based services) involve data‐ and/or compute‐intensive geoprocessing tasks where performance is of great importance. Cloud computing, a promising platform with a large pool of storage and computing resources, could be a practical solution for hosting vast amounts of data and for real‐time processing. In this article, we explored the feasibility of using Google App Engine (GAE), the cloud computing technology by Google, for a module in navigation services, called Integrated GNSS (iGNSS) QoS prediction. The objective of this module is to predict quality of iGNSS positioning solutions for prospective routes in advance. iGNSS QoS prediction involves the real‐time computation of large Triangulated Irregular Networks (TINs) generated from LiDAR data. We experimented with the Google App Engine (GAE) and stored a large TIN for two geoprocessing operations (proximity and bounding box) required for iGNSS QoS prediction. The experimental results revealed that while cloud computing can potentially be used for development and deployment of data‐ and/or compute‐intensive geospatial applications, current cloud platforms require improvements and special tools for handling real‐time geoprocessing, such as iGNSS QoS prediction, efficiently. The article also provides a set of general guidelines for future development of real‐time geoprocessing in clouds.</abstract>
<qualityIndicators>
<score>7.4</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>484.7 x 697.3 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1433</abstractCharCount>
<pdfWordCount>7391</pdfWordCount>
<pdfCharCount>45738</pdfCharCount>
<pdfPageCount>21</pdfPageCount>
<abstractWordCount>200</abstractWordCount>
</qualityIndicators>
<title>Exploring Real‐Time Geoprocessing in Cloud Computing: Navigation Services Case Study</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>15</volume>
<publisherId>
<json:string>TGIS</json:string>
</publisherId>
<pages>
<total>21</total>
<last>633</last>
<first>613</first>
</pages>
<issn>
<json:string>1361-1682</json:string>
</issn>
<issue>5</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1467-9671</json:string>
</eissn>
<title>Transactions in GIS</title>
<doi>
<json:string>10.1111/(ISSN)1467-9671</json:string>
</doi>
</host>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1111/j.1467-9671.2011.01263.x</json:string>
</doi>
<id>F71128D1A6D3F95712B17E5216632789293D1DCF</id>
<score>0.13951916</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/F71128D1A6D3F95712B17E5216632789293D1DCF/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/F71128D1A6D3F95712B17E5216632789293D1DCF/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/F71128D1A6D3F95712B17E5216632789293D1DCF/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Exploring Real‐Time Geoprocessing in Cloud Computing: Navigation Services Case Study</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>© 2011 Blackwell Publishing Ltd</p>
</availability>
<date>2011</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Exploring Real‐Time Geoprocessing in Cloud Computing: Navigation Services Case Study</title>
<author xml:id="author-1">
<persName>
<forename type="first">Hassan Ali</forename>
<surname>Karimi</surname>
</persName>
<note type="correspondence">
<p>Correspondence: Hassan Karimi, Geoinformatics Laboratory, School of Information Sciences, University of Pittsburgh, 135 North Bellefield Avenue, Pittsburgh, Pennsylvania 15213, USA. Email:</p>
</note>
<affiliation>School of Information Sciences, University of Pittsburgh</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Duangduen</forename>
<surname>Roongpiboonsopit</surname>
</persName>
<affiliation>School of Information Sciences, University of Pittsburgh</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Haopeng</forename>
<surname>Wang</surname>
</persName>
<affiliation>School of Information Sciences, University of Pittsburgh</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Transactions in GIS</title>
<idno type="pISSN">1361-1682</idno>
<idno type="eISSN">1467-9671</idno>
<idno type="DOI">10.1111/(ISSN)1467-9671</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-10"></date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="613">613</biblScope>
<biblScope unit="page" to="633">633</biblScope>
</imprint>
</monogr>
<idno type="istex">F71128D1A6D3F95712B17E5216632789293D1DCF</idno>
<idno type="DOI">10.1111/j.1467-9671.2011.01263.x</idno>
<idno type="ArticleID">TGIS1263</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Today, many real‐time geospatial applications (e.g. navigation and location‐based services) involve data‐ and/or compute‐intensive geoprocessing tasks where performance is of great importance. Cloud computing, a promising platform with a large pool of storage and computing resources, could be a practical solution for hosting vast amounts of data and for real‐time processing. In this article, we explored the feasibility of using Google App Engine (GAE), the cloud computing technology by Google, for a module in navigation services, called Integrated GNSS (iGNSS) QoS prediction. The objective of this module is to predict quality of iGNSS positioning solutions for prospective routes in advance. iGNSS QoS prediction involves the real‐time computation of large Triangulated Irregular Networks (TINs) generated from LiDAR data. We experimented with the Google App Engine (GAE) and stored a large TIN for two geoprocessing operations (proximity and bounding box) required for iGNSS QoS prediction. The experimental results revealed that while cloud computing can potentially be used for development and deployment of data‐ and/or compute‐intensive geospatial applications, current cloud platforms require improvements and special tools for handling real‐time geoprocessing, such as iGNSS QoS prediction, efficiently. The article also provides a set of general guidelines for future development of real‐time geoprocessing in clouds.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2011-10">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/F71128D1A6D3F95712B17E5216632789293D1DCF/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1467-9671</doi>
<issn type="print">1361-1682</issn>
<issn type="electronic">1467-9671</issn>
<idGroup>
<id type="product" value="TGIS"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="TRANSACTIONS IN GIS">Transactions in GIS</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10105">
<doi origin="wiley">10.1111/tgis.2011.15.issue-5</doi>
<numberingGroup>
<numbering type="journalVolume" number="15">15</numbering>
<numbering type="journalIssue" number="5">5</numbering>
</numberingGroup>
<coverDate startDate="2011-10">October 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="4" status="forIssue">
<doi origin="wiley">10.1111/j.1467-9671.2011.01263.x</doi>
<idGroup>
<id type="unit" value="TGIS1263"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="21"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright>© 2011 Blackwell Publishing Ltd</copyright>
<eventGroup>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.10 mode:FullText" date="2011-10-10"></event>
<event type="firstOnline" date="2011-10-10"></event>
<event type="publishedOnlineFinalForm" date="2011-10-10"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-10"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="613">613</numbering>
<numbering type="pageLast" number="633">633</numbering>
</numberingGroup>
<correspondenceTo>Hassan Karimi, Geoinformatics Laboratory, School of Information Sciences, University of Pittsburgh, 135 North Bellefield Avenue, Pittsburgh, Pennsylvania 15213, USA. Email:
<email>hkarimi@pitt.edu</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:TGIS.TGIS1263.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="12"></count>
<count type="tableTotal" number="2"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="45"></count>
<count type="wordTotal" number="8121"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">Exploring Real‐Time Geoprocessing in Cloud Computing: Navigation Services Case Study</title>
<title type="shortAuthors">H A Karimi, D Roongpiboonsopit and H Wang</title>
<title type="short">Exploring Real‐Time Geoprocessing in Cloud Computing</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1" corresponding="yes">
<personName>
<givenNames>Hassan Ali</givenNames>
<familyName>Karimi</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>Duangduen</givenNames>
<familyName>Roongpiboonsopit</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1">
<personName>
<givenNames>Haopeng</givenNames>
<familyName>Wang</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1">
<unparsedAffiliation>School of Information Sciences, University of Pittsburgh</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Today, many real‐time geospatial applications (e.g. navigation and location‐based services) involve data‐ and/or compute‐intensive geoprocessing tasks where performance is of great importance. Cloud computing, a promising platform with a large pool of storage and computing resources, could be a practical solution for hosting vast amounts of data and for real‐time processing. In this article, we explored the feasibility of using Google App Engine (GAE), the cloud computing technology by Google, for a module in navigation services, called Integrated GNSS (iGNSS) QoS prediction. The objective of this module is to predict quality of iGNSS positioning solutions for prospective routes in advance. iGNSS QoS prediction involves the real‐time computation of large Triangulated Irregular Networks (TINs) generated from LiDAR data. We experimented with the Google App Engine (GAE) and stored a large TIN for two geoprocessing operations (proximity and bounding box) required for iGNSS QoS prediction. The experimental results revealed that while cloud computing can potentially be used for development and deployment of data‐ and/or compute‐intensive geospatial applications, current cloud platforms require improvements and special tools for handling real‐time geoprocessing, such as iGNSS QoS prediction, efficiently. The article also provides a set of general guidelines for future development of real‐time geoprocessing in clouds.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Exploring Real‐Time Geoprocessing in Cloud Computing: Navigation Services Case Study</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Exploring Real‐Time Geoprocessing in Cloud Computing</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Exploring Real‐Time Geoprocessing in Cloud Computing: Navigation Services Case Study</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hassan Ali</namePart>
<namePart type="family">Karimi</namePart>
<affiliation>School of Information Sciences, University of Pittsburgh</affiliation>
<description>Correspondence: Hassan Karimi, Geoinformatics Laboratory, School of Information Sciences, University of Pittsburgh, 135 North Bellefield Avenue, Pittsburgh, Pennsylvania 15213, USA. Email: </description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Duangduen</namePart>
<namePart type="family">Roongpiboonsopit</namePart>
<affiliation>School of Information Sciences, University of Pittsburgh</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haopeng</namePart>
<namePart type="family">Wang</namePart>
<affiliation>School of Information Sciences, University of Pittsburgh</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-10</dateIssued>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">12</extent>
<extent unit="tables">2</extent>
<extent unit="references">45</extent>
<extent unit="words">8121</extent>
</physicalDescription>
<abstract lang="en">Today, many real‐time geospatial applications (e.g. navigation and location‐based services) involve data‐ and/or compute‐intensive geoprocessing tasks where performance is of great importance. Cloud computing, a promising platform with a large pool of storage and computing resources, could be a practical solution for hosting vast amounts of data and for real‐time processing. In this article, we explored the feasibility of using Google App Engine (GAE), the cloud computing technology by Google, for a module in navigation services, called Integrated GNSS (iGNSS) QoS prediction. The objective of this module is to predict quality of iGNSS positioning solutions for prospective routes in advance. iGNSS QoS prediction involves the real‐time computation of large Triangulated Irregular Networks (TINs) generated from LiDAR data. We experimented with the Google App Engine (GAE) and stored a large TIN for two geoprocessing operations (proximity and bounding box) required for iGNSS QoS prediction. The experimental results revealed that while cloud computing can potentially be used for development and deployment of data‐ and/or compute‐intensive geospatial applications, current cloud platforms require improvements and special tools for handling real‐time geoprocessing, such as iGNSS QoS prediction, efficiently. The article also provides a set of general guidelines for future development of real‐time geoprocessing in clouds.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Transactions in GIS</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">1361-1682</identifier>
<identifier type="eISSN">1467-9671</identifier>
<identifier type="DOI">10.1111/(ISSN)1467-9671</identifier>
<identifier type="PublisherID">TGIS</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>613</start>
<end>633</end>
<total>21</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">F71128D1A6D3F95712B17E5216632789293D1DCF</identifier>
<identifier type="DOI">10.1111/j.1467-9671.2011.01263.x</identifier>
<identifier type="ArticleID">TGIS1263</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2011 Blackwell Publishing Ltd</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<json:item>
<type>multicat</type>
<uri>https://api.istex.fr/document/F71128D1A6D3F95712B17E5216632789293D1DCF/enrichments/multicat</uri>
</json:item>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000533 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000533 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:F71128D1A6D3F95712B17E5216632789293D1DCF
   |texte=   Exploring Real‐Time Geoprocessing in Cloud Computing: Navigation Services Case Study
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024