Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

23Na chemical shift imaging and Gd enhancement of myocardial edema.

Identifieur interne : 000351 ( PubMed/Curation ); précédent : 000350; suivant : 000352

23Na chemical shift imaging and Gd enhancement of myocardial edema.

Auteurs : Eissa N E. Aguor [Pays-Bas] ; Cees W A. Van De Kolk ; Fatih Arslan ; Marcel G J. Nederhoff ; Pieter A F M. Doevendans ; Gerard Pasterkamp ; Gustav J. Strijkers ; Cees J A. Van Echteld

Source :

RBID : pubmed:22790331

Descripteurs français

English descriptors

Abstract

Myocardial edema can arise in several disease states. MRI contrast agent can accumulate in edematous tissue, which complicates differential diagnosis with contrast-enhanced (CE)-MRI and might lead to overestimation of infarct size. Sodium Chemical Shift Imaging ((23)Na-CSI) may provide an alternative for edema imaging. We have developed a non-infarct, isolated rat heart model with two levels of edema, which was studied with (23)Na-CSI and CE-MRI. In edematous, but viable tissue the extracellular sodium (Na (e) (+)) signal is hypothesized to increase, but not the intracellular sodium (Na (i) (+)) signal. Isolated hearts were perfused at 60 (n = 6) and 140 mmHg (n = 5). Dimethyl methylphosphonate (DMMP) and phenylphosphonate (PPA) were used to follow edema formation by (31)P-MR Spectroscopy. In separate groups, Thulium(III)1,4,7,10 tetraazacyclododecane-N,N',N″,N'''-tetra(methylenephosphonate) (TmDOTP(5-)) and Gadovist were used for (23)Na-CSI (n = 8) and CE-MRI (n = 6), respectively. PPA normalized signal intensity (SI) was higher at 140 versus 60 mmHg, with a ratio of 1.27 ± 0.12 (p < 0.05). The (DMMP-PPA)/dry weight ratio, as a marker of intracellular volume, remained unchanged. The mid-heart cross sectional area (CSA) of the left ventricle (LV) was significantly increased at 140 mmHg. In addition, at 140 mmHg, the LV Na (e) (+) SI increased with a 140 mmHg/60 mmHg ratio of 1.24 ± 0.18 (p < 0.05). Na (i) (+) SI remained essentially unchanged. With CE-MRI, a subendocardially enhanced CSA was identified, increasing from 0.20 ± 0.02 cm(2) at 60 mmHg to 0.31 ± 0.02 cm(2) at 140 mmHg (p < 0.05). Edema shows up in both CE-MRI and Na (e) (+) . High perfusion pressure causes more edema subendocardially than subepicardially. (23)Na-CSI is an attractive alternative for imaging of edema and is a promising tool to discriminate between edema, acute and chronic MI.

DOI: 10.1007/s10554-012-0093-6
PubMed: 22790331

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22790331

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">23Na chemical shift imaging and Gd enhancement of myocardial edema.</title>
<author>
<name sortKey="Aguor, Eissa N E" sort="Aguor, Eissa N E" uniqKey="Aguor E" first="Eissa N E" last="Aguor">Eissa N E. Aguor</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Experimental Cardiology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands. e.n.e.aguor@umcutrecht.nl</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Laboratory of Experimental Cardiology, University Medical Center Utrecht (UMCU), Utrecht</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Van De Kolk, Cees W A" sort="Van De Kolk, Cees W A" uniqKey="Van De Kolk C" first="Cees W A" last="Van De Kolk">Cees W A. Van De Kolk</name>
</author>
<author>
<name sortKey="Arslan, Fatih" sort="Arslan, Fatih" uniqKey="Arslan F" first="Fatih" last="Arslan">Fatih Arslan</name>
</author>
<author>
<name sortKey="Nederhoff, Marcel G J" sort="Nederhoff, Marcel G J" uniqKey="Nederhoff M" first="Marcel G J" last="Nederhoff">Marcel G J. Nederhoff</name>
</author>
<author>
<name sortKey="Doevendans, Pieter A F M" sort="Doevendans, Pieter A F M" uniqKey="Doevendans P" first="Pieter A F M" last="Doevendans">Pieter A F M. Doevendans</name>
</author>
<author>
<name sortKey="Pasterkamp, Gerard" sort="Pasterkamp, Gerard" uniqKey="Pasterkamp G" first="Gerard" last="Pasterkamp">Gerard Pasterkamp</name>
</author>
<author>
<name sortKey="Strijkers, Gustav J" sort="Strijkers, Gustav J" uniqKey="Strijkers G" first="Gustav J" last="Strijkers">Gustav J. Strijkers</name>
</author>
<author>
<name sortKey="Van Echteld, Cees J A" sort="Van Echteld, Cees J A" uniqKey="Van Echteld C" first="Cees J A" last="Van Echteld">Cees J A. Van Echteld</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1007/s10554-012-0093-6</idno>
<idno type="RBID">pubmed:22790331</idno>
<idno type="pmid">22790331</idno>
<idno type="wicri:Area/PubMed/Corpus">000351</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000351</idno>
<idno type="wicri:Area/PubMed/Curation">000351</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000351</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">23Na chemical shift imaging and Gd enhancement of myocardial edema.</title>
<author>
<name sortKey="Aguor, Eissa N E" sort="Aguor, Eissa N E" uniqKey="Aguor E" first="Eissa N E" last="Aguor">Eissa N E. Aguor</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Experimental Cardiology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands. e.n.e.aguor@umcutrecht.nl</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Laboratory of Experimental Cardiology, University Medical Center Utrecht (UMCU), Utrecht</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Van De Kolk, Cees W A" sort="Van De Kolk, Cees W A" uniqKey="Van De Kolk C" first="Cees W A" last="Van De Kolk">Cees W A. Van De Kolk</name>
</author>
<author>
<name sortKey="Arslan, Fatih" sort="Arslan, Fatih" uniqKey="Arslan F" first="Fatih" last="Arslan">Fatih Arslan</name>
</author>
<author>
<name sortKey="Nederhoff, Marcel G J" sort="Nederhoff, Marcel G J" uniqKey="Nederhoff M" first="Marcel G J" last="Nederhoff">Marcel G J. Nederhoff</name>
</author>
<author>
<name sortKey="Doevendans, Pieter A F M" sort="Doevendans, Pieter A F M" uniqKey="Doevendans P" first="Pieter A F M" last="Doevendans">Pieter A F M. Doevendans</name>
</author>
<author>
<name sortKey="Pasterkamp, Gerard" sort="Pasterkamp, Gerard" uniqKey="Pasterkamp G" first="Gerard" last="Pasterkamp">Gerard Pasterkamp</name>
</author>
<author>
<name sortKey="Strijkers, Gustav J" sort="Strijkers, Gustav J" uniqKey="Strijkers G" first="Gustav J" last="Strijkers">Gustav J. Strijkers</name>
</author>
<author>
<name sortKey="Van Echteld, Cees J A" sort="Van Echteld, Cees J A" uniqKey="Van Echteld C" first="Cees J A" last="Van Echteld">Cees J A. Van Echteld</name>
</author>
</analytic>
<series>
<title level="j">The international journal of cardiovascular imaging</title>
<idno type="eISSN">1875-8312</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Contrast Media</term>
<term>Diagnosis, Differential</term>
<term>Edema, Cardiac (diagnosis)</term>
<term>Edema, Cardiac (metabolism)</term>
<term>Edema, Cardiac (pathology)</term>
<term>In Vitro Techniques</term>
<term>Magnetic Resonance Imaging</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Male</term>
<term>Myocardial Infarction (pathology)</term>
<term>Myocardium (metabolism)</term>
<term>Myocardium (pathology)</term>
<term>Organometallic Compounds</term>
<term>Organophosphorus Compounds</term>
<term>Perfusion</term>
<term>Predictive Value of Tests</term>
<term>Rats</term>
<term>Rats, Wistar</term>
<term>Sodium Isotopes</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Composés organiques du phosphore</term>
<term>Composés organométalliques</term>
<term>Diagnostic différentiel</term>
<term>Facteurs temps</term>
<term>Imagerie par résonance magnétique</term>
<term>Infarctus du myocarde (anatomopathologie)</term>
<term>Isotopes du sodium</term>
<term>Myocarde (anatomopathologie)</term>
<term>Myocarde (métabolisme)</term>
<term>Mâle</term>
<term>Oedème cardiaque (anatomopathologie)</term>
<term>Oedème cardiaque (diagnostic)</term>
<term>Oedème cardiaque (métabolisme)</term>
<term>Perfusion</term>
<term>Produits de contraste</term>
<term>Rat Wistar</term>
<term>Rats</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Techniques in vitro</term>
<term>Valeur prédictive des tests</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Contrast Media</term>
<term>Organometallic Compounds</term>
<term>Organophosphorus Compounds</term>
<term>Sodium Isotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Infarctus du myocarde</term>
<term>Myocarde</term>
<term>Oedème cardiaque</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnosis" xml:lang="en">
<term>Edema, Cardiac</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnostic" xml:lang="fr">
<term>Oedème cardiaque</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Edema, Cardiac</term>
<term>Myocardium</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Myocarde</term>
<term>Oedème cardiaque</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Edema, Cardiac</term>
<term>Myocardial Infarction</term>
<term>Myocardium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Diagnosis, Differential</term>
<term>In Vitro Techniques</term>
<term>Magnetic Resonance Imaging</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Male</term>
<term>Perfusion</term>
<term>Predictive Value of Tests</term>
<term>Rats</term>
<term>Rats, Wistar</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Composés organiques du phosphore</term>
<term>Composés organométalliques</term>
<term>Diagnostic différentiel</term>
<term>Facteurs temps</term>
<term>Imagerie par résonance magnétique</term>
<term>Isotopes du sodium</term>
<term>Mâle</term>
<term>Perfusion</term>
<term>Produits de contraste</term>
<term>Rat Wistar</term>
<term>Rats</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Techniques in vitro</term>
<term>Valeur prédictive des tests</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Myocardial edema can arise in several disease states. MRI contrast agent can accumulate in edematous tissue, which complicates differential diagnosis with contrast-enhanced (CE)-MRI and might lead to overestimation of infarct size. Sodium Chemical Shift Imaging ((23)Na-CSI) may provide an alternative for edema imaging. We have developed a non-infarct, isolated rat heart model with two levels of edema, which was studied with (23)Na-CSI and CE-MRI. In edematous, but viable tissue the extracellular sodium (Na (e) (+)) signal is hypothesized to increase, but not the intracellular sodium (Na (i) (+)) signal. Isolated hearts were perfused at 60 (n = 6) and 140 mmHg (n = 5). Dimethyl methylphosphonate (DMMP) and phenylphosphonate (PPA) were used to follow edema formation by (31)P-MR Spectroscopy. In separate groups, Thulium(III)1,4,7,10 tetraazacyclododecane-N,N',N″,N'''-tetra(methylenephosphonate) (TmDOTP(5-)) and Gadovist were used for (23)Na-CSI (n = 8) and CE-MRI (n = 6), respectively. PPA normalized signal intensity (SI) was higher at 140 versus 60 mmHg, with a ratio of 1.27 ± 0.12 (p < 0.05). The (DMMP-PPA)/dry weight ratio, as a marker of intracellular volume, remained unchanged. The mid-heart cross sectional area (CSA) of the left ventricle (LV) was significantly increased at 140 mmHg. In addition, at 140 mmHg, the LV Na (e) (+) SI increased with a 140 mmHg/60 mmHg ratio of 1.24 ± 0.18 (p < 0.05). Na (i) (+) SI remained essentially unchanged. With CE-MRI, a subendocardially enhanced CSA was identified, increasing from 0.20 ± 0.02 cm(2) at 60 mmHg to 0.31 ± 0.02 cm(2) at 140 mmHg (p < 0.05). Edema shows up in both CE-MRI and Na (e) (+) . High perfusion pressure causes more edema subendocardially than subepicardially. (23)Na-CSI is an attractive alternative for imaging of edema and is a promising tool to discriminate between edema, acute and chronic MI.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22790331</PMID>
<DateCreated>
<Year>2013</Year>
<Month>02</Month>
<Day>01</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>07</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>11</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1875-8312</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2013</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>The international journal of cardiovascular imaging</Title>
<ISOAbbreviation>Int J Cardiovasc Imaging</ISOAbbreviation>
</Journal>
<ArticleTitle>23Na chemical shift imaging and Gd enhancement of myocardial edema.</ArticleTitle>
<Pagination>
<MedlinePgn>343-54</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10554-012-0093-6</ELocationID>
<Abstract>
<AbstractText>Myocardial edema can arise in several disease states. MRI contrast agent can accumulate in edematous tissue, which complicates differential diagnosis with contrast-enhanced (CE)-MRI and might lead to overestimation of infarct size. Sodium Chemical Shift Imaging ((23)Na-CSI) may provide an alternative for edema imaging. We have developed a non-infarct, isolated rat heart model with two levels of edema, which was studied with (23)Na-CSI and CE-MRI. In edematous, but viable tissue the extracellular sodium (Na (e) (+)) signal is hypothesized to increase, but not the intracellular sodium (Na (i) (+)) signal. Isolated hearts were perfused at 60 (n = 6) and 140 mmHg (n = 5). Dimethyl methylphosphonate (DMMP) and phenylphosphonate (PPA) were used to follow edema formation by (31)P-MR Spectroscopy. In separate groups, Thulium(III)1,4,7,10 tetraazacyclododecane-N,N',N″,N'''-tetra(methylenephosphonate) (TmDOTP(5-)) and Gadovist were used for (23)Na-CSI (n = 8) and CE-MRI (n = 6), respectively. PPA normalized signal intensity (SI) was higher at 140 versus 60 mmHg, with a ratio of 1.27 ± 0.12 (p < 0.05). The (DMMP-PPA)/dry weight ratio, as a marker of intracellular volume, remained unchanged. The mid-heart cross sectional area (CSA) of the left ventricle (LV) was significantly increased at 140 mmHg. In addition, at 140 mmHg, the LV Na (e) (+) SI increased with a 140 mmHg/60 mmHg ratio of 1.24 ± 0.18 (p < 0.05). Na (i) (+) SI remained essentially unchanged. With CE-MRI, a subendocardially enhanced CSA was identified, increasing from 0.20 ± 0.02 cm(2) at 60 mmHg to 0.31 ± 0.02 cm(2) at 140 mmHg (p < 0.05). Edema shows up in both CE-MRI and Na (e) (+) . High perfusion pressure causes more edema subendocardially than subepicardially. (23)Na-CSI is an attractive alternative for imaging of edema and is a promising tool to discriminate between edema, acute and chronic MI.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aguor</LastName>
<ForeName>Eissa N E</ForeName>
<Initials>EN</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Experimental Cardiology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands. e.n.e.aguor@umcutrecht.nl</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van de Kolk</LastName>
<ForeName>Cees W A</ForeName>
<Initials>CW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Arslan</LastName>
<ForeName>Fatih</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nederhoff</LastName>
<ForeName>Marcel G J</ForeName>
<Initials>MG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Doevendans</LastName>
<ForeName>Pieter A F M</ForeName>
<Initials>PA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pasterkamp</LastName>
<ForeName>Gerard</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Strijkers</LastName>
<ForeName>Gustav J</ForeName>
<Initials>GJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>van Echteld</LastName>
<ForeName>Cees J A</ForeName>
<Initials>CJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>07</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Int J Cardiovasc Imaging</MedlineTA>
<NlmUniqueID>100969716</NlmUniqueID>
<ISSNLinking>1569-5794</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003287">Contrast Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009942">Organometallic Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009943">Organophosphorus Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012975">Sodium Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C069929">thulium(III) 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetramethylenephosphonate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1BJ477IO2L</RegistryNumber>
<NameOfSubstance UI="C090600">gadobutrol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2001 Dec;46(6):1144-51</RefSource>
<PMID Version="1">11746581</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Cell Cardiol. 2011 Dec;51(6):974-9</RefSource>
<PMID Version="1">21910997</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 2004 May 25;109(20):2411-6</RefSource>
<PMID Version="1">15123531</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Coll Cardiol. 1988 Oct;12(4):1064-72</RefSource>
<PMID Version="1">3417979</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1990 Jul;15(1):25-32</RefSource>
<PMID Version="1">2374497</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1994 Aug;32(2):181-8</RefSource>
<PMID Version="1">7968440</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1994 Nov;32(5):556-64</RefSource>
<PMID Version="1">7808256</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1995 Jan;268(1 Pt 2):H178-83</RefSource>
<PMID Version="1">7840262</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 1995 Jan;78(1):132-7</RefSource>
<PMID Version="1">7713802</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1996 Mar;35(3):336-45</RefSource>
<PMID Version="1">8699945</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Cell Cardiol. 1997 Jan;29(1):85-96</RefSource>
<PMID Version="1">9040024</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microcirculation. 1996 Dec;3(4):371-8</RefSource>
<PMID Version="1">9086448</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 1997 Apr 1;95(7):1877-85</RefSource>
<PMID Version="1">9107176</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1998 Nov;40(5):679-83</RefSource>
<PMID Version="1">9797149</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 1999 Jul 13;100(2):185-92</RefSource>
<PMID Version="1">10402449</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 2004 Nov 30;110(22):3457-64</RefSource>
<PMID Version="1">15557379</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Herz. 2005 Feb;30(1):17-25</RefSource>
<PMID Version="1">15754152</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Magn Reson Imaging. 2005 Jun;21(6):744-51</RefSource>
<PMID Version="1">15906335</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 2006 Apr 18;113(15):1865-70</RefSource>
<PMID Version="1">16606793</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lymphat Res Biol. 2007;5(1):45-7</RefSource>
<PMID Version="1">17508901</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Radiology. 2008 Jul;248(1):88-96</RefSource>
<PMID Version="1">18566171</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>JACC Cardiovasc Imaging. 2009 Jul;2(7):825-31</RefSource>
<PMID Version="1">19608131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Heart. 2009 Aug;95(16):1357-61</RefSource>
<PMID Version="1">19447836</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur Radiol. 2009 Nov;19(11):2672-8</RefSource>
<PMID Version="1">19458951</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cardiovasc Magn Reson. 2009;11:56</RefSource>
<PMID Version="1">20042111</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cardiovasc Magn Reson. 2010;12:18</RefSource>
<PMID Version="1">20350309</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Coll Cardiol. 2010 Jun 1;55(22):2480-8</RefSource>
<PMID Version="1">20510215</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cardiovasc Res. 2010 Jul 15;87(2):198-210</RefSource>
<PMID Version="1">20200043</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circ Cardiovasc Imaging. 2010 Sep;3(5):527-35</RefSource>
<PMID Version="1">20631034</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Cardiol. 2010 Oct;7(10):547-9</RefSource>
<PMID Version="1">20865026</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cardiovasc Magn Reson. 2011;13:13</RefSource>
<PMID Version="1">21332972</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 2002 Oct 29;106(18):2322-7</RefSource>
<PMID Version="1">12403661</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D003287">Contrast Media</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003937">Diagnosis, Differential</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004489">Edema, Cardiac</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000175">diagnosis</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000473">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D066298">In Vitro Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008279">Magnetic Resonance Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009682">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009203">Myocardial Infarction</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000473">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009206">Myocardium</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000473">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D009942">Organometallic Compounds</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D009943">Organophosphorus Compounds</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010477">Perfusion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011237">Predictive Value of Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D051381">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017208">Rats, Wistar</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D012975">Sodium Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013997">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3560947</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>4</Month>
<Day>5</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>6</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>7</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s10554-012-0093-6</ArticleId>
<ArticleId IdType="pubmed">22790331</ArticleId>
<ArticleId IdType="pmc">PMC3560947</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000351 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000351 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:22790331
   |texte=   23Na chemical shift imaging and Gd enhancement of myocardial edema.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:22790331" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024