Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Incorporation of computed tomography and magnetic resonance imaging function into NaYF4:Yb/Tm upconversion nanoparticles for in vivo trimodal bioimaging.

Identifieur interne : 000225 ( PubMed/Curation ); précédent : 000224; suivant : 000226

Incorporation of computed tomography and magnetic resonance imaging function into NaYF4:Yb/Tm upconversion nanoparticles for in vivo trimodal bioimaging.

Auteurs : Ji-Wei Shen [République populaire de Chine] ; Cheng-Xiong Yang ; Lu-Xi Dong ; Hao-Ran Sun ; Kai Gao ; Xiu-Ping Yan

Source :

RBID : pubmed:24237132

Descripteurs français

English descriptors

Abstract

Rational design and fabrication of multimodal imaging nanoprobes are of great significance for in vivo imaging. Here we report the fabrication of a multishell structured NaYF4:Yb/Tm@NaLuF4@NaYF4@NaGdF4 nanoprobe via a seed-mediated epitaxial growth strategy for upconversion luminescence (UCL), X-ray computed tomography (CT), and magnetic resonance (MR) trimodal imaging. Hexagonal phase NaYF4:Yb/Tm is used as the core to provide UCL, while the shell of NaLuF4 is epitaxially grown on the core not only to provide an optically inert layer for enhancing the UCL but also to serve as a contrast agent for CT. The outermost NaGdF4 shell is fabricated as a thin layer to give the high longitudinal relaxivity (r1) desired for MR imaging. The transition shell layer of NaYF4 not only provides an interface to facilitate the formation of NaGdF4 shell but also inhibits the energy transfer from inner upconversion activator to surface paramagnetic Gd(3+) ions. The fabricated multishell structured nanoprobe shows intense near-infrared UCL, high r1 value of 3.76 mM(-1) s(-1), and in vitro CT contrast effect. The multishell structured nanoprobe offers great potential for in vivo UCL/CT/MR trimodal imaging. Further covalent bonding of folic acid makes the multishell structured nanoprobe promising for in vivo targeted UCL imaging of tumor-bearing mice.

DOI: 10.1021/ac403486r
PubMed: 24237132

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24237132

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Incorporation of computed tomography and magnetic resonance imaging function into NaYF4:Yb/Tm upconversion nanoparticles for in vivo trimodal bioimaging.</title>
<author>
<name sortKey="Shen, Ji Wei" sort="Shen, Ji Wei" uniqKey="Shen J" first="Ji-Wei" last="Shen">Ji-Wei Shen</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Medicinal Chemical Biology (Nankai University), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and Research Center for Analytical Sciences, College of Chemistry, Nankai University , 94 Weijin Road, Tianjin 300071, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Medicinal Chemical Biology (Nankai University), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and Research Center for Analytical Sciences, College of Chemistry, Nankai University , 94 Weijin Road, Tianjin 300071</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Yang, Cheng Xiong" sort="Yang, Cheng Xiong" uniqKey="Yang C" first="Cheng-Xiong" last="Yang">Cheng-Xiong Yang</name>
</author>
<author>
<name sortKey="Dong, Lu Xi" sort="Dong, Lu Xi" uniqKey="Dong L" first="Lu-Xi" last="Dong">Lu-Xi Dong</name>
</author>
<author>
<name sortKey="Sun, Hao Ran" sort="Sun, Hao Ran" uniqKey="Sun H" first="Hao-Ran" last="Sun">Hao-Ran Sun</name>
</author>
<author>
<name sortKey="Gao, Kai" sort="Gao, Kai" uniqKey="Gao K" first="Kai" last="Gao">Kai Gao</name>
</author>
<author>
<name sortKey="Yan, Xiu Ping" sort="Yan, Xiu Ping" uniqKey="Yan X" first="Xiu-Ping" last="Yan">Xiu-Ping Yan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1021/ac403486r</idno>
<idno type="RBID">pubmed:24237132</idno>
<idno type="pmid">24237132</idno>
<idno type="wicri:Area/PubMed/Corpus">000225</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000225</idno>
<idno type="wicri:Area/PubMed/Curation">000225</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000225</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Incorporation of computed tomography and magnetic resonance imaging function into NaYF4:Yb/Tm upconversion nanoparticles for in vivo trimodal bioimaging.</title>
<author>
<name sortKey="Shen, Ji Wei" sort="Shen, Ji Wei" uniqKey="Shen J" first="Ji-Wei" last="Shen">Ji-Wei Shen</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Medicinal Chemical Biology (Nankai University), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and Research Center for Analytical Sciences, College of Chemistry, Nankai University , 94 Weijin Road, Tianjin 300071, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Medicinal Chemical Biology (Nankai University), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and Research Center for Analytical Sciences, College of Chemistry, Nankai University , 94 Weijin Road, Tianjin 300071</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Yang, Cheng Xiong" sort="Yang, Cheng Xiong" uniqKey="Yang C" first="Cheng-Xiong" last="Yang">Cheng-Xiong Yang</name>
</author>
<author>
<name sortKey="Dong, Lu Xi" sort="Dong, Lu Xi" uniqKey="Dong L" first="Lu-Xi" last="Dong">Lu-Xi Dong</name>
</author>
<author>
<name sortKey="Sun, Hao Ran" sort="Sun, Hao Ran" uniqKey="Sun H" first="Hao-Ran" last="Sun">Hao-Ran Sun</name>
</author>
<author>
<name sortKey="Gao, Kai" sort="Gao, Kai" uniqKey="Gao K" first="Kai" last="Gao">Kai Gao</name>
</author>
<author>
<name sortKey="Yan, Xiu Ping" sort="Yan, Xiu Ping" uniqKey="Yan X" first="Xiu-Ping" last="Yan">Xiu-Ping Yan</name>
</author>
</analytic>
<series>
<title level="j">Analytical chemistry</title>
<idno type="eISSN">1520-6882</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Fluorides (chemistry)</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Magnetic Resonance Imaging (methods)</term>
<term>Mice</term>
<term>Nanoparticles (chemistry)</term>
<term>Nanoparticles (toxicity)</term>
<term>Thulium (chemistry)</term>
<term>Tomography, X-Ray Computed (methods)</term>
<term>Ytterbium (chemistry)</term>
<term>Yttrium (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Cellules HeLa</term>
<term>Fluorures ()</term>
<term>Humains</term>
<term>Imagerie par résonance magnétique ()</term>
<term>Nanoparticules ()</term>
<term>Nanoparticules (toxicité)</term>
<term>Souris</term>
<term>Thulium ()</term>
<term>Tomodensitométrie ()</term>
<term>Ytterbium ()</term>
<term>Yttrium ()</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Fluorides</term>
<term>Thulium</term>
<term>Ytterbium</term>
<term>Yttrium</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Magnetic Resonance Imaging</term>
<term>Tomography, X-Ray Computed</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicity" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Nanoparticules</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Mice</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules HeLa</term>
<term>Fluorures</term>
<term>Humains</term>
<term>Imagerie par résonance magnétique</term>
<term>Nanoparticules</term>
<term>Souris</term>
<term>Thulium</term>
<term>Tomodensitométrie</term>
<term>Ytterbium</term>
<term>Yttrium</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rational design and fabrication of multimodal imaging nanoprobes are of great significance for in vivo imaging. Here we report the fabrication of a multishell structured NaYF4:Yb/Tm@NaLuF4@NaYF4@NaGdF4 nanoprobe via a seed-mediated epitaxial growth strategy for upconversion luminescence (UCL), X-ray computed tomography (CT), and magnetic resonance (MR) trimodal imaging. Hexagonal phase NaYF4:Yb/Tm is used as the core to provide UCL, while the shell of NaLuF4 is epitaxially grown on the core not only to provide an optically inert layer for enhancing the UCL but also to serve as a contrast agent for CT. The outermost NaGdF4 shell is fabricated as a thin layer to give the high longitudinal relaxivity (r1) desired for MR imaging. The transition shell layer of NaYF4 not only provides an interface to facilitate the formation of NaGdF4 shell but also inhibits the energy transfer from inner upconversion activator to surface paramagnetic Gd(3+) ions. The fabricated multishell structured nanoprobe shows intense near-infrared UCL, high r1 value of 3.76 mM(-1) s(-1), and in vitro CT contrast effect. The multishell structured nanoprobe offers great potential for in vivo UCL/CT/MR trimodal imaging. Further covalent bonding of folic acid makes the multishell structured nanoprobe promising for in vivo targeted UCL imaging of tumor-bearing mice.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">24237132</PMID>
<DateCreated>
<Year>2013</Year>
<Month>12</Month>
<Day>17</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>07</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>11</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-6882</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>85</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2013</Year>
<Month>Dec</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Analytical chemistry</Title>
<ISOAbbreviation>Anal. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Incorporation of computed tomography and magnetic resonance imaging function into NaYF4:Yb/Tm upconversion nanoparticles for in vivo trimodal bioimaging.</ArticleTitle>
<Pagination>
<MedlinePgn>12166-72</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/ac403486r</ELocationID>
<Abstract>
<AbstractText>Rational design and fabrication of multimodal imaging nanoprobes are of great significance for in vivo imaging. Here we report the fabrication of a multishell structured NaYF4:Yb/Tm@NaLuF4@NaYF4@NaGdF4 nanoprobe via a seed-mediated epitaxial growth strategy for upconversion luminescence (UCL), X-ray computed tomography (CT), and magnetic resonance (MR) trimodal imaging. Hexagonal phase NaYF4:Yb/Tm is used as the core to provide UCL, while the shell of NaLuF4 is epitaxially grown on the core not only to provide an optically inert layer for enhancing the UCL but also to serve as a contrast agent for CT. The outermost NaGdF4 shell is fabricated as a thin layer to give the high longitudinal relaxivity (r1) desired for MR imaging. The transition shell layer of NaYF4 not only provides an interface to facilitate the formation of NaGdF4 shell but also inhibits the energy transfer from inner upconversion activator to surface paramagnetic Gd(3+) ions. The fabricated multishell structured nanoprobe shows intense near-infrared UCL, high r1 value of 3.76 mM(-1) s(-1), and in vitro CT contrast effect. The multishell structured nanoprobe offers great potential for in vivo UCL/CT/MR trimodal imaging. Further covalent bonding of folic acid makes the multishell structured nanoprobe promising for in vivo targeted UCL imaging of tumor-bearing mice.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shen</LastName>
<ForeName>Ji-Wei</ForeName>
<Initials>JW</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Medicinal Chemical Biology (Nankai University), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and Research Center for Analytical Sciences, College of Chemistry, Nankai University , 94 Weijin Road, Tianjin 300071, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Cheng-Xiong</ForeName>
<Initials>CX</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dong</LastName>
<ForeName>Lu-Xi</ForeName>
<Initials>LX</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Hao-Ran</ForeName>
<Initials>HR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Kai</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Xiu-Ping</ForeName>
<Initials>XP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>11</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Anal Chem</MedlineTA>
<NlmUniqueID>0370536</NlmUniqueID>
<ISSNLinking>0003-2700</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C525362">sodium yttriumtetrafluoride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>58784XQC3Y</RegistryNumber>
<NameOfSubstance UI="D015019">Yttrium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8RKC5ATI4P</RegistryNumber>
<NameOfSubstance UI="D013932">Thulium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>MNQ4O4WSI1</RegistryNumber>
<NameOfSubstance UI="D015018">Ytterbium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Q80VPU408O</RegistryNumber>
<NameOfSubstance UI="D005459">Fluorides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005459">Fluorides</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006367">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008279">Magnetic Resonance Imaging</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D051379">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D053758">Nanoparticles</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000633">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013932">Thulium</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014057">Tomography, X-Ray Computed</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015018">Ytterbium</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015019">Yttrium</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>11</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/ac403486r</ArticleId>
<ArticleId IdType="pubmed">24237132</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000225 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000225 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:24237132
   |texte=   Incorporation of computed tomography and magnetic resonance imaging function into NaYF4:Yb/Tm upconversion nanoparticles for in vivo trimodal bioimaging.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:24237132" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024