Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS).

Identifieur interne : 000179 ( PubMed/Curation ); précédent : 000178; suivant : 000180

Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS).

Auteurs : Yuegao Huang [États-Unis] ; Daniel Coman ; Meser M. Ali ; Fahmeed Hyder

Source :

RBID : pubmed:24801742

Descripteurs français

English descriptors

Abstract

Relaxivity-based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd(3+)) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the nonexchangeable or the exchangeable protons on the lanthanide complexes themselves. The nonexchangeable protons (e.g. -CHx, where 3 ≥ x ≥ 1) are detected using a three-dimensional chemical shift imaging method called biosensor imaging of redundant deviation in shifts (BIRDS), whereas the exchangeable protons (e.g. -OH or -NHy , where 2 ≥ y ≥ 1) are measured with chemical exchange saturation transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP(8-)) chelated with thulium (Tm(3+) ) and ytterbium (Yb(3+)). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e. 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP(5-) than with TmDOTA-4AmP(5-). In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging.

DOI: 10.1002/cmmi.1604
PubMed: 24801742

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24801742

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS).</title>
<author>
<name sortKey="Huang, Yuegao" sort="Huang, Yuegao" uniqKey="Huang Y" first="Yuegao" last="Huang">Yuegao Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, 06520, USA; Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT, 06520, USA; Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
</author>
<author>
<name sortKey="Ali, Meser M" sort="Ali, Meser M" uniqKey="Ali M" first="Meser M" last="Ali">Meser M. Ali</name>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="????">
<PubDate>
<MedlineDate>2015 Jan-Feb</MedlineDate>
</PubDate>
</date>
<idno type="RBID">pubmed:24801742</idno>
<idno type="pmid">24801742</idno>
<idno type="doi">10.1002/cmmi.1604</idno>
<idno type="wicri:Area/PubMed/Corpus">000179</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000179</idno>
<idno type="wicri:Area/PubMed/Curation">000179</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000179</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS).</title>
<author>
<name sortKey="Huang, Yuegao" sort="Huang, Yuegao" uniqKey="Huang Y" first="Yuegao" last="Huang">Yuegao Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, 06520, USA; Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT, 06520, USA; Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
</author>
<author>
<name sortKey="Ali, Meser M" sort="Ali, Meser M" uniqKey="Ali M" first="Meser M" last="Ali">Meser M. Ali</name>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
</author>
</analytic>
<series>
<title level="j">Contrast media & molecular imaging</title>
<idno type="eISSN">1555-4317</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biosensing Techniques</term>
<term>Contrast Media (chemistry)</term>
<term>Diagnostic Imaging (methods)</term>
<term>Gadolinium (chemistry)</term>
<term>Heterocyclic Compounds (chemistry)</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
<term>Lanthanoid Series Elements (chemistry)</term>
<term>Thulium (chemistry)</term>
<term>Ytterbium (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Composés hétérocycliques ()</term>
<term>Concentration en ions d'hydrogène</term>
<term>Diagnostic par imagerie ()</term>
<term>Gadolinium ()</term>
<term>Humains</term>
<term>Lanthanides ()</term>
<term>Produits de contraste ()</term>
<term>Techniques de biocapteur</term>
<term>Thulium ()</term>
<term>Ytterbium ()</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Contrast Media</term>
<term>Gadolinium</term>
<term>Heterocyclic Compounds</term>
<term>Lanthanoid Series Elements</term>
<term>Thulium</term>
<term>Ytterbium</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Diagnostic Imaging</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biosensing Techniques</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Composés hétérocycliques</term>
<term>Concentration en ions d'hydrogène</term>
<term>Diagnostic par imagerie</term>
<term>Gadolinium</term>
<term>Humains</term>
<term>Lanthanides</term>
<term>Produits de contraste</term>
<term>Techniques de biocapteur</term>
<term>Thulium</term>
<term>Ytterbium</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Relaxivity-based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd(3+)) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the nonexchangeable or the exchangeable protons on the lanthanide complexes themselves. The nonexchangeable protons (e.g. -CHx, where 3 ≥ x ≥ 1) are detected using a three-dimensional chemical shift imaging method called biosensor imaging of redundant deviation in shifts (BIRDS), whereas the exchangeable protons (e.g. -OH or -NHy , where 2 ≥ y ≥ 1) are measured with chemical exchange saturation transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP(8-)) chelated with thulium (Tm(3+) ) and ytterbium (Yb(3+)). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e. 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP(5-) than with TmDOTA-4AmP(5-). In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">24801742</PMID>
<DateCreated>
<Year>2015</Year>
<Month>02</Month>
<Day>23</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>01</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1555-4317</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>1</Issue>
<PubDate>
<MedlineDate>2015 Jan-Feb</MedlineDate>
</PubDate>
</JournalIssue>
<Title>Contrast media & molecular imaging</Title>
<ISOAbbreviation>Contrast Media Mol Imaging</ISOAbbreviation>
</Journal>
<ArticleTitle>Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS).</ArticleTitle>
<Pagination>
<MedlinePgn>51-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/cmmi.1604</ELocationID>
<Abstract>
<AbstractText>Relaxivity-based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd(3+)) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the nonexchangeable or the exchangeable protons on the lanthanide complexes themselves. The nonexchangeable protons (e.g. -CHx, where 3 ≥ x ≥ 1) are detected using a three-dimensional chemical shift imaging method called biosensor imaging of redundant deviation in shifts (BIRDS), whereas the exchangeable protons (e.g. -OH or -NHy , where 2 ≥ y ≥ 1) are measured with chemical exchange saturation transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP(8-)) chelated with thulium (Tm(3+) ) and ytterbium (Yb(3+)). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e. 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP(5-) than with TmDOTA-4AmP(5-). In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging.</AbstractText>
<CopyrightInformation>Copyright © 2014 John Wiley & Sons, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Yuegao</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, 06520, USA; Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coman</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ali</LastName>
<ForeName>Meser M</ForeName>
<Initials>MM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hyder</LastName>
<ForeName>Fahmeed</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>K25 CA-129173-04</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K25 CA129173</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 NS-052519</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 NS052519</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA140102</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB-011968</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB011968</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01CA-140102</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>UL1 TR000142</GrantID>
<Acronym>TR</Acronym>
<Agency>NCATS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>05</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Contrast Media Mol Imaging</MedlineTA>
<NlmUniqueID>101286760</NlmUniqueID>
<ISSNLinking>1555-4309</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003287">Contrast Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006571">Heterocyclic Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D028581">Lanthanoid Series Elements</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>294-90-6</RegistryNumber>
<NameOfSubstance UI="C038072">cyclen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8RKC5ATI4P</RegistryNumber>
<NameOfSubstance UI="D013932">Thulium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>AU0V1LM3JT</RegistryNumber>
<NameOfSubstance UI="D005682">Gadolinium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>MNQ4O4WSI1</RegistryNumber>
<NameOfSubstance UI="D015018">Ytterbium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>NMR Biomed. 2009 Feb;22(2):229-39</RefSource>
<PMID Version="1">19130468</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NMR Biomed. 2010 Apr;23(3):277-85</RefSource>
<PMID Version="1">19957287</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Nucl Med. 2010 Aug;51(8):1167-70</RefSource>
<PMID Version="1">20660380</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NMR Biomed. 2011 Jul;24(6):582-91</RefSource>
<PMID Version="1">21387439</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chem Commun (Camb). 2011 Aug 28;47(32):9194-6</RefSource>
<PMID Version="1">21748170</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Contrast Media Mol Imaging. 2011 Nov-Dec;6(6):459-64</RefSource>
<PMID Version="1">22144023</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NMR Biomed. 2011 Dec;24(10):1216-25</RefSource>
<PMID Version="1">22020775</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NMR Biomed. 2013 Nov;26(11):1589-95</RefSource>
<PMID Version="1">23881869</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NMR Biomed. 1999 Dec;12(8):495-504</RefSource>
<PMID Version="1">10668042</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Magn Reson. 2000 Mar;143(1):79-87</RefSource>
<PMID Version="1">10698648</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2000 Nov;44(5):799-802</RefSource>
<PMID Version="1">11064415</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2001 Sep 1;61(17):6524-31</RefSource>
<PMID Version="1">11522650</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2002 Apr;47(4):639-48</RefSource>
<PMID Version="1">11948724</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Hyperthermia. 2002 May-Jun;18(3):165-79</RefSource>
<PMID Version="1">12028635</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2003 Feb;49(2):249-57</RefSource>
<PMID Version="1">12541244</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Radiol. 2003 Jan;58(1):1-19</RefSource>
<PMID Version="1">12565203</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2003 Aug;9(8):1085-90</RefSource>
<PMID Version="1">12872167</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Assist Tomogr. 2003 Nov-Dec;27(6):825-46</RefSource>
<PMID Version="1">14600447</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Magn Reson. 1998 Jul;133(1):36-45</RefSource>
<PMID Version="1">9654466</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Magn Reson. 1998 Jul;133(1):53-60</RefSource>
<PMID Version="1">9654468</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Br J Cancer. 1998 Sep;78(5):606-11</RefSource>
<PMID Version="1">9744499</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2006 Feb;55(2):309-15</RefSource>
<PMID Version="1">16402385</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Inorg Chem. 2007 Jun 25;46(13):5260-70</RefSource>
<PMID Version="1">17539632</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Jun 12;453(7197):940-3</RefSource>
<PMID Version="1">18509335</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chemistry. 2008;14(24):7250-8</RefSource>
<PMID Version="1">18601236</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Radiol. 2008 Sep;67(3):453-8</RefSource>
<PMID Version="1">18455343</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D015374">Biosensing Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003287">Contrast Media</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003952">Diagnostic Imaging</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005682">Gadolinium</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006571">Heterocyclic Compounds</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006863">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D028581">Lanthanoid Series Elements</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013932">Thulium</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015018">Ytterbium</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS611388</OtherID>
<OtherID Source="NLM">PMC4222994</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">BIRDS</Keyword>
<Keyword MajorTopicYN="N">CEST</Keyword>
<Keyword MajorTopicYN="N">CSI</Keyword>
<Keyword MajorTopicYN="N">pH</Keyword>
<Keyword MajorTopicYN="N">paramagnetic complex</Keyword>
<Keyword MajorTopicYN="N">temperature</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>12</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>3</Month>
<Day>7</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>3</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2014</Year>
<Month>5</Month>
<Day>6</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24801742</ArticleId>
<ArticleId IdType="doi">10.1002/cmmi.1604</ArticleId>
<ArticleId IdType="pmc">PMC4222994</ArticleId>
<ArticleId IdType="mid">NIHMS611388</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000179 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000179 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:24801742
   |texte=   Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate for dual biosensing of pH with chemical exchange saturation transfer (CEST) and biosensor imaging of redundant deviation in shifts (BIRDS).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:24801742" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024