Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crystal field analysis of Dy and Tm implanted silicon for photonic and quantum technologies.

Identifieur interne : 000116 ( PubMed/Curation ); précédent : 000115; suivant : 000117

Crystal field analysis of Dy and Tm implanted silicon for photonic and quantum technologies.

Auteurs : Mark A. Hughes ; Manon A. Lourenço ; J David Carey ; Ben Murdin ; Kevin P. Homewood

Source :

RBID : pubmed:25606863

Descripteurs français

English descriptors

Abstract

We report the lattice site and symmetry of optically active Dy3+ and Tm3+ implanted Si. Local symmetry was determined by fitting crystal field parameters (CFPs), corresponding to various common symmetries, to the ground state splitting determined by photoluminescence measurements. These CFP values were then used to calculate the splitting of every J manifold. We find that both Dy and Tm ions are in a Si substitution site with local tetragonal symmetry. Knowledge of rare-earth ion symmetry is important in maximising the number of optically active centres and for quantum technology applications where local symmetry can be used to control decoherence.

PubMed: 25606863

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25606863

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crystal field analysis of Dy and Tm implanted silicon for photonic and quantum technologies.</title>
<author>
<name sortKey="Hughes, Mark A" sort="Hughes, Mark A" uniqKey="Hughes M" first="Mark A" last="Hughes">Mark A. Hughes</name>
</author>
<author>
<name sortKey="Lourenco, Manon A" sort="Lourenco, Manon A" uniqKey="Lourenco M" first="Manon A" last="Lourenço">Manon A. Lourenço</name>
</author>
<author>
<name sortKey="Carey, J David" sort="Carey, J David" uniqKey="Carey J" first="J David" last="Carey">J David Carey</name>
</author>
<author>
<name sortKey="Murdin, Ben" sort="Murdin, Ben" uniqKey="Murdin B" first="Ben" last="Murdin">Ben Murdin</name>
</author>
<author>
<name sortKey="Homewood, Kevin P" sort="Homewood, Kevin P" uniqKey="Homewood K" first="Kevin P" last="Homewood">Kevin P. Homewood</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25606863</idno>
<idno type="pmid">25606863</idno>
<idno type="wicri:Area/PubMed/Corpus">000116</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000116</idno>
<idno type="wicri:Area/PubMed/Curation">000116</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000116</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Crystal field analysis of Dy and Tm implanted silicon for photonic and quantum technologies.</title>
<author>
<name sortKey="Hughes, Mark A" sort="Hughes, Mark A" uniqKey="Hughes M" first="Mark A" last="Hughes">Mark A. Hughes</name>
</author>
<author>
<name sortKey="Lourenco, Manon A" sort="Lourenco, Manon A" uniqKey="Lourenco M" first="Manon A" last="Lourenço">Manon A. Lourenço</name>
</author>
<author>
<name sortKey="Carey, J David" sort="Carey, J David" uniqKey="Carey J" first="J David" last="Carey">J David Carey</name>
</author>
<author>
<name sortKey="Murdin, Ben" sort="Murdin, Ben" uniqKey="Murdin B" first="Ben" last="Murdin">Ben Murdin</name>
</author>
<author>
<name sortKey="Homewood, Kevin P" sort="Homewood, Kevin P" uniqKey="Homewood K" first="Kevin P" last="Homewood">Kevin P. Homewood</name>
</author>
</analytic>
<series>
<title level="j">Optics express</title>
<idno type="eISSN">1094-4087</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crystallization</term>
<term>Dysprosium (chemistry)</term>
<term>Luminescence</term>
<term>Photons</term>
<term>Quantum Theory</term>
<term>Silicon (chemistry)</term>
<term>Static Electricity</term>
<term>Thermodynamics</term>
<term>Thulium (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cristallisation</term>
<term>Dysprosium ()</term>
<term>Luminescence</term>
<term>Photons</term>
<term>Silicium ()</term>
<term>Thermodynamique</term>
<term>Thulium ()</term>
<term>Théorie quantique</term>
<term>Électricité statique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Dysprosium</term>
<term>Silicon</term>
<term>Thulium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallization</term>
<term>Luminescence</term>
<term>Photons</term>
<term>Quantum Theory</term>
<term>Static Electricity</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cristallisation</term>
<term>Dysprosium</term>
<term>Luminescence</term>
<term>Photons</term>
<term>Silicium</term>
<term>Thermodynamique</term>
<term>Thulium</term>
<term>Théorie quantique</term>
<term>Électricité statique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report the lattice site and symmetry of optically active Dy3+ and Tm3+ implanted Si. Local symmetry was determined by fitting crystal field parameters (CFPs), corresponding to various common symmetries, to the ground state splitting determined by photoluminescence measurements. These CFP values were then used to calculate the splitting of every J manifold. We find that both Dy and Tm ions are in a Si substitution site with local tetragonal symmetry. Knowledge of rare-earth ion symmetry is important in maximising the number of optically active centres and for quantum technology applications where local symmetry can be used to control decoherence.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">25606863</PMID>
<DateCreated>
<Year>2015</Year>
<Month>01</Month>
<Day>22</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>10</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1094-4087</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>22</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
<Day>1</Day>
</PubDate>
</JournalIssue>
<Title>Optics express</Title>
<ISOAbbreviation>Opt Express</ISOAbbreviation>
</Journal>
<ArticleTitle>Crystal field analysis of Dy and Tm implanted silicon for photonic and quantum technologies.</ArticleTitle>
<Pagination>
<MedlinePgn>29292-303</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1364/OE.22.029292</ELocationID>
<Abstract>
<AbstractText>We report the lattice site and symmetry of optically active Dy3+ and Tm3+ implanted Si. Local symmetry was determined by fitting crystal field parameters (CFPs), corresponding to various common symmetries, to the ground state splitting determined by photoluminescence measurements. These CFP values were then used to calculate the splitting of every J manifold. We find that both Dy and Tm ions are in a Si substitution site with local tetragonal symmetry. Knowledge of rare-earth ion symmetry is important in maximising the number of optically active centres and for quantum technology applications where local symmetry can be used to control decoherence.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hughes</LastName>
<ForeName>Mark A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lourenço</LastName>
<ForeName>Manon A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Carey</LastName>
<ForeName>J David</ForeName>
<Initials>JD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Murdin</LastName>
<ForeName>Ben</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Homewood</LastName>
<ForeName>Kevin P</ForeName>
<Initials>KP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Opt Express</MedlineTA>
<NlmUniqueID>101137103</NlmUniqueID>
<ISSNLinking>1094-4087</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>1D4N45714Q</RegistryNumber>
<NameOfSubstance UI="D004419">Dysprosium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8RKC5ATI4P</RegistryNumber>
<NameOfSubstance UI="D013932">Thulium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Z4152N8IUI</RegistryNumber>
<NameOfSubstance UI="D012825">Silicon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003460">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004419">Dysprosium</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D049449">Luminescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D017785">Photons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D011789">Quantum Theory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012825">Silicon</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055672">Static Electricity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013816">Thermodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013932">Thulium</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>1</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">304756</ArticleId>
<ArticleId IdType="pubmed">25606863</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000116 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000116 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25606863
   |texte=   Crystal field analysis of Dy and Tm implanted silicon for photonic and quantum technologies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25606863" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024