Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) as a 23Na shift reagent for the in vivo rat liver.

Identifieur interne : 000782 ( PubMed/Corpus ); précédent : 000781; suivant : 000783

Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) as a 23Na shift reagent for the in vivo rat liver.

Auteurs : N. Bansal ; M J Germann ; V. Seshan ; G T Shires ; C R Malloy ; A D Sherry

Source :

RBID : pubmed:8504084

English descriptors

Abstract

The use of thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate (TmDOTP5-) as an in vivo 23Na NMR shift reagent for rat liver was evaluated by collecting interleaved 23Na and 31P spectra. Infusion of 80 mM TmDOTP5- without added Ca2+ produced baseline-resolved peaks from intra- and extracellular sodium without producing any changes in phosphate metabolite resonances or intracellular pH. Several key physiological parameters measured in parallel groups of animals confirmed that liver physiology is largely unaffected by this shift reagent. A direct comparison of TmDOTP5- versus DyTTHA3- showed that after infusion of 5-8 times more DyTTHA3-, the extracellular sodium peak shifted by the same amount as with TmDOTP5-, but the two 23Na resonances were very broad and not resolved. The baseline-resolved peaks with TmDOTP5- allowed us to measure the in vivo T1 and T2 relaxation characteristics of intra- and extracellular Na+. The measured T1, T2s, and T2f values and the relative contributions from the slow and fast T2 components for intracellular Na+ in liver did not differ significantly from the values reported for perfused frog heart. The T1 and T2 relaxation curves of the extracellular Na+ resonances fit a monoexponential function. Analysis of the relative contribution of the fast- and slow-relaxing T2 components from intracellular Na+ resulted in a calculated visibility factor of 69 +/- 4% and the intracellular Na+ concentration calculated from the NMR peak intensity ratio, the measured visibility factor, and literature values of intra- and extracellular volume was 19 mM. These results indicate that TmDOTP5- promises to be quite useful as an in vivo shift reagent for liver and other organs.

PubMed: 8504084

Links to Exploration step

pubmed:8504084

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) as a 23Na shift reagent for the in vivo rat liver.</title>
<author>
<name sortKey="Bansal, N" sort="Bansal, N" uniqKey="Bansal N" first="N" last="Bansal">N. Bansal</name>
<affiliation>
<nlm:affiliation>Mary Nell and Ralph B. Rogers Magnetic Resonance Center, Department of Radiology, University of Texas Southwestern Medical Center, Dallas 75235-9085.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Germann, M J" sort="Germann, M J" uniqKey="Germann M" first="M J" last="Germann">M J Germann</name>
</author>
<author>
<name sortKey="Seshan, V" sort="Seshan, V" uniqKey="Seshan V" first="V" last="Seshan">V. Seshan</name>
</author>
<author>
<name sortKey="Shires, G T" sort="Shires, G T" uniqKey="Shires G" first="G T" last="Shires">G T Shires</name>
</author>
<author>
<name sortKey="Malloy, C R" sort="Malloy, C R" uniqKey="Malloy C" first="C R" last="Malloy">C R Malloy</name>
</author>
<author>
<name sortKey="Sherry, A D" sort="Sherry, A D" uniqKey="Sherry A" first="A D" last="Sherry">A D Sherry</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1993">1993</date>
<idno type="RBID">pubmed:8504084</idno>
<idno type="pmid">8504084</idno>
<idno type="wicri:Area/PubMed/Corpus">000782</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000782</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) as a 23Na shift reagent for the in vivo rat liver.</title>
<author>
<name sortKey="Bansal, N" sort="Bansal, N" uniqKey="Bansal N" first="N" last="Bansal">N. Bansal</name>
<affiliation>
<nlm:affiliation>Mary Nell and Ralph B. Rogers Magnetic Resonance Center, Department of Radiology, University of Texas Southwestern Medical Center, Dallas 75235-9085.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Germann, M J" sort="Germann, M J" uniqKey="Germann M" first="M J" last="Germann">M J Germann</name>
</author>
<author>
<name sortKey="Seshan, V" sort="Seshan, V" uniqKey="Seshan V" first="V" last="Seshan">V. Seshan</name>
</author>
<author>
<name sortKey="Shires, G T" sort="Shires, G T" uniqKey="Shires G" first="G T" last="Shires">G T Shires</name>
</author>
<author>
<name sortKey="Malloy, C R" sort="Malloy, C R" uniqKey="Malloy C" first="C R" last="Malloy">C R Malloy</name>
</author>
<author>
<name sortKey="Sherry, A D" sort="Sherry, A D" uniqKey="Sherry A" first="A D" last="Sherry">A D Sherry</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="1993" type="published">1993</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Blood Pressure</term>
<term>Extracellular Space (physiology)</term>
<term>Intracellular Fluid (physiology)</term>
<term>Liver (physiology)</term>
<term>Magnetic Resonance Imaging</term>
<term>Magnetic Resonance Spectroscopy (methods)</term>
<term>Male</term>
<term>Membrane Potentials</term>
<term>Organometallic Compounds</term>
<term>Organophosphorus Compounds</term>
<term>Phosphorus</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Sodium (metabolism)</term>
<term>Thulium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Sodium</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Organometallic Compounds</term>
<term>Organophosphorus Compounds</term>
<term>Phosphorus</term>
<term>Thulium</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Magnetic Resonance Spectroscopy</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Extracellular Space</term>
<term>Intracellular Fluid</term>
<term>Liver</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Blood Pressure</term>
<term>Magnetic Resonance Imaging</term>
<term>Male</term>
<term>Membrane Potentials</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The use of thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate (TmDOTP5-) as an in vivo 23Na NMR shift reagent for rat liver was evaluated by collecting interleaved 23Na and 31P spectra. Infusion of 80 mM TmDOTP5- without added Ca2+ produced baseline-resolved peaks from intra- and extracellular sodium without producing any changes in phosphate metabolite resonances or intracellular pH. Several key physiological parameters measured in parallel groups of animals confirmed that liver physiology is largely unaffected by this shift reagent. A direct comparison of TmDOTP5- versus DyTTHA3- showed that after infusion of 5-8 times more DyTTHA3-, the extracellular sodium peak shifted by the same amount as with TmDOTP5-, but the two 23Na resonances were very broad and not resolved. The baseline-resolved peaks with TmDOTP5- allowed us to measure the in vivo T1 and T2 relaxation characteristics of intra- and extracellular Na+. The measured T1, T2s, and T2f values and the relative contributions from the slow and fast T2 components for intracellular Na+ in liver did not differ significantly from the values reported for perfused frog heart. The T1 and T2 relaxation curves of the extracellular Na+ resonances fit a monoexponential function. Analysis of the relative contribution of the fast- and slow-relaxing T2 components from intracellular Na+ resulted in a calculated visibility factor of 69 +/- 4% and the intracellular Na+ concentration calculated from the NMR peak intensity ratio, the measured visibility factor, and literature values of intra- and extracellular volume was 19 mM. These results indicate that TmDOTP5- promises to be quite useful as an in vivo shift reagent for liver and other organs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">8504084</PMID>
<DateCreated>
<Year>1993</Year>
<Month>07</Month>
<Day>06</Day>
</DateCreated>
<DateCompleted>
<Year>1993</Year>
<Month>07</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>32</Volume>
<Issue>21</Issue>
<PubDate>
<Year>1993</Year>
<Month>Jun</Month>
<Day>1</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) as a 23Na shift reagent for the in vivo rat liver.</ArticleTitle>
<Pagination>
<MedlinePgn>5638-43</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The use of thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate (TmDOTP5-) as an in vivo 23Na NMR shift reagent for rat liver was evaluated by collecting interleaved 23Na and 31P spectra. Infusion of 80 mM TmDOTP5- without added Ca2+ produced baseline-resolved peaks from intra- and extracellular sodium without producing any changes in phosphate metabolite resonances or intracellular pH. Several key physiological parameters measured in parallel groups of animals confirmed that liver physiology is largely unaffected by this shift reagent. A direct comparison of TmDOTP5- versus DyTTHA3- showed that after infusion of 5-8 times more DyTTHA3-, the extracellular sodium peak shifted by the same amount as with TmDOTP5-, but the two 23Na resonances were very broad and not resolved. The baseline-resolved peaks with TmDOTP5- allowed us to measure the in vivo T1 and T2 relaxation characteristics of intra- and extracellular Na+. The measured T1, T2s, and T2f values and the relative contributions from the slow and fast T2 components for intracellular Na+ in liver did not differ significantly from the values reported for perfused frog heart. The T1 and T2 relaxation curves of the extracellular Na+ resonances fit a monoexponential function. Analysis of the relative contribution of the fast- and slow-relaxing T2 components from intracellular Na+ resulted in a calculated visibility factor of 69 +/- 4% and the intracellular Na+ concentration calculated from the NMR peak intensity ratio, the measured visibility factor, and literature values of intra- and extracellular volume was 19 mM. These results indicate that TmDOTP5- promises to be quite useful as an in vivo shift reagent for liver and other organs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bansal</LastName>
<ForeName>N</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Mary Nell and Ralph B. Rogers Magnetic Resonance Center, Department of Radiology, University of Texas Southwestern Medical Center, Dallas 75235-9085.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Germann</LastName>
<ForeName>M J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Seshan</LastName>
<ForeName>V</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shires</LastName>
<ForeName>G T</ForeName>
<Initials>GT</Initials>
<Suffix>3rd</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Malloy</LastName>
<ForeName>C R</ForeName>
<Initials>CR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sherry</LastName>
<ForeName>A D</ForeName>
<Initials>AD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM39906</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL-17669</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL-34557</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>UNITED STATES</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009942">Organometallic Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009943">Organophosphorus Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C069929">thulium(III) 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetramethylenephosphonate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27YLU75U4W</RegistryNumber>
<NameOfSubstance UI="D010758">Phosphorus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8RKC5ATI4P</RegistryNumber>
<NameOfSubstance UI="D013932">Thulium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9NEZ333N27</RegistryNumber>
<NameOfSubstance UI="D012964">Sodium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001794">Blood Pressure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005110">Extracellular Space</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007424">Intracellular Fluid</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008099">Liver</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008279">Magnetic Resonance Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009682">Magnetic Resonance Spectroscopy</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008564">Membrane Potentials</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D009942">Organometallic Compounds</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D009943">Organophosphorus Compounds</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010758">Phosphorus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D051381">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017207">Rats, Sprague-Dawley</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012964">Sodium</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D013932">Thulium</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1993</Year>
<Month>6</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1993</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1993</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8504084</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000782 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000782 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:8504084
   |texte=   Thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonate) as a 23Na shift reagent for the in vivo rat liver.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:8504084" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024