Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lanthanides for membrane protein studies.

Identifieur interne : 000740 ( PubMed/Corpus ); précédent : 000739; suivant : 000741

Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lanthanides for membrane protein studies.

Auteurs : R S Prosser ; V B Volkov ; I V Shiyanovskaya

Source :

RBID : pubmed:9923713

English descriptors

Abstract

The addition of lanthanides (Tm3+, Yb3+, Er3+, or Eu3+) to a solution of long-chain phospholipids such as dimyristoylphosphatidylcholine (DMPC) and short-chain phospholipids such as dihexanoylphosphatidylcholine (DHPC) is known to result in a bilayer phase in which the average bilayer normal aligns parallel to an applied magnetic field. Lanthanide-doped bilayers have enormous potential for the study of membrane proteins by solid-state NMR, low-angle diffraction, and a variety of optical spectroscopic techniques. However, the addition of lanthanides poses certain challenges to the NMR spectroscopist: coexistence of an isotropic phase and hysteresis effects, direct binding of the paramagnetic ion to the peptide or protein of interest, and severe paramagnetic shifts and line broadening. Lower water concentrations and larger DMPC/DHPC ratios than those typically used in bicelles consistently yield a single oriented bilayer phase that is stable over a wide range of temperature (approximately 35-90 degrees C). Among the above choice of lanthanides, Yb3+ is found to give minimal paramagnetic shifts and line broadening at acceptably low concentrations necessary for alignment (i.e., Yb3+/DMPC mole ratios equal to or greater than 0.01). Finally, the addition of a phospholipid chelate, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine--diethylenetriaminepent aacetic acid, is observed to significantly reduce paramagnetic broadening and presumably prevent direct association of the peptide with the lanthanide ions.

PubMed: 9923713

Links to Exploration step

pubmed:9923713

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lanthanides for membrane protein studies.</title>
<author>
<name sortKey="Prosser, R S" sort="Prosser, R S" uniqKey="Prosser R" first="R S" last="Prosser">R S Prosser</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Kent State University, OH 44242, USA. sprosser@silica.kent.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Volkov, V B" sort="Volkov, V B" uniqKey="Volkov V" first="V B" last="Volkov">V B Volkov</name>
</author>
<author>
<name sortKey="Shiyanovskaya, I V" sort="Shiyanovskaya, I V" uniqKey="Shiyanovskaya I" first="I V" last="Shiyanovskaya">I V Shiyanovskaya</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1998">1998</date>
<idno type="RBID">pubmed:9923713</idno>
<idno type="pmid">9923713</idno>
<idno type="wicri:Area/PubMed/Corpus">000740</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000740</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lanthanides for membrane protein studies.</title>
<author>
<name sortKey="Prosser, R S" sort="Prosser, R S" uniqKey="Prosser R" first="R S" last="Prosser">R S Prosser</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, Kent State University, OH 44242, USA. sprosser@silica.kent.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Volkov, V B" sort="Volkov, V B" uniqKey="Volkov V" first="V B" last="Volkov">V B Volkov</name>
</author>
<author>
<name sortKey="Shiyanovskaya, I V" sort="Shiyanovskaya, I V" uniqKey="Shiyanovskaya I" first="I V" last="Shiyanovskaya">I V Shiyanovskaya</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry and cell biology = Biochimie et biologie cellulaire</title>
<idno type="ISSN">0829-8211</idno>
<imprint>
<date when="1998" type="published">1998</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chelating Agents (chemistry)</term>
<term>Chemistry, Physical</term>
<term>Dimyristoylphosphatidylcholine (chemistry)</term>
<term>Lipid Bilayers (chemistry)</term>
<term>Magnetic Resonance Spectroscopy (methods)</term>
<term>Membrane Lipids (chemistry)</term>
<term>Membrane Proteins (chemistry)</term>
<term>Metals, Rare Earth (chemistry)</term>
<term>Micelles</term>
<term>Models, Molecular</term>
<term>Pentetic Acid (chemistry)</term>
<term>Peptides (chemistry)</term>
<term>Phosphatidylethanolamines (chemistry)</term>
<term>Phosphatidylglycerols (chemistry)</term>
<term>Phospholipid Ethers (chemistry)</term>
<term>Phospholipids (chemistry)</term>
<term>Physicochemical Phenomena</term>
<term>Thulium (chemistry)</term>
<term>Ytterbium (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Chelating Agents</term>
<term>Dimyristoylphosphatidylcholine</term>
<term>Lipid Bilayers</term>
<term>Membrane Lipids</term>
<term>Membrane Proteins</term>
<term>Metals, Rare Earth</term>
<term>Pentetic Acid</term>
<term>Peptides</term>
<term>Phosphatidylethanolamines</term>
<term>Phosphatidylglycerols</term>
<term>Phospholipid Ethers</term>
<term>Phospholipids</term>
<term>Thulium</term>
<term>Ytterbium</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Magnetic Resonance Spectroscopy</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chemistry, Physical</term>
<term>Micelles</term>
<term>Models, Molecular</term>
<term>Physicochemical Phenomena</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The addition of lanthanides (Tm3+, Yb3+, Er3+, or Eu3+) to a solution of long-chain phospholipids such as dimyristoylphosphatidylcholine (DMPC) and short-chain phospholipids such as dihexanoylphosphatidylcholine (DHPC) is known to result in a bilayer phase in which the average bilayer normal aligns parallel to an applied magnetic field. Lanthanide-doped bilayers have enormous potential for the study of membrane proteins by solid-state NMR, low-angle diffraction, and a variety of optical spectroscopic techniques. However, the addition of lanthanides poses certain challenges to the NMR spectroscopist: coexistence of an isotropic phase and hysteresis effects, direct binding of the paramagnetic ion to the peptide or protein of interest, and severe paramagnetic shifts and line broadening. Lower water concentrations and larger DMPC/DHPC ratios than those typically used in bicelles consistently yield a single oriented bilayer phase that is stable over a wide range of temperature (approximately 35-90 degrees C). Among the above choice of lanthanides, Yb3+ is found to give minimal paramagnetic shifts and line broadening at acceptably low concentrations necessary for alignment (i.e., Yb3+/DMPC mole ratios equal to or greater than 0.01). Finally, the addition of a phospholipid chelate, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine--diethylenetriaminepent aacetic acid, is observed to significantly reduce paramagnetic broadening and presumably prevent direct association of the peptide with the lanthanide ions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">9923713</PMID>
<DateCreated>
<Year>1999</Year>
<Month>04</Month>
<Day>22</Day>
</DateCreated>
<DateCompleted>
<Year>1999</Year>
<Month>04</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0829-8211</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>76</Volume>
<Issue>2-3</Issue>
<PubDate>
<Year>1998</Year>
</PubDate>
</JournalIssue>
<Title>Biochemistry and cell biology = Biochimie et biologie cellulaire</Title>
<ISOAbbreviation>Biochem. Cell Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lanthanides for membrane protein studies.</ArticleTitle>
<Pagination>
<MedlinePgn>443-51</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The addition of lanthanides (Tm3+, Yb3+, Er3+, or Eu3+) to a solution of long-chain phospholipids such as dimyristoylphosphatidylcholine (DMPC) and short-chain phospholipids such as dihexanoylphosphatidylcholine (DHPC) is known to result in a bilayer phase in which the average bilayer normal aligns parallel to an applied magnetic field. Lanthanide-doped bilayers have enormous potential for the study of membrane proteins by solid-state NMR, low-angle diffraction, and a variety of optical spectroscopic techniques. However, the addition of lanthanides poses certain challenges to the NMR spectroscopist: coexistence of an isotropic phase and hysteresis effects, direct binding of the paramagnetic ion to the peptide or protein of interest, and severe paramagnetic shifts and line broadening. Lower water concentrations and larger DMPC/DHPC ratios than those typically used in bicelles consistently yield a single oriented bilayer phase that is stable over a wide range of temperature (approximately 35-90 degrees C). Among the above choice of lanthanides, Yb3+ is found to give minimal paramagnetic shifts and line broadening at acceptably low concentrations necessary for alignment (i.e., Yb3+/DMPC mole ratios equal to or greater than 0.01). Finally, the addition of a phospholipid chelate, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine--diethylenetriaminepent aacetic acid, is observed to significantly reduce paramagnetic broadening and presumably prevent direct association of the peptide with the lanthanide ions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Prosser</LastName>
<ForeName>R S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Kent State University, OH 44242, USA. sprosser@silica.kent.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Volkov</LastName>
<ForeName>V B</ForeName>
<Initials>VB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shiyanovskaya</LastName>
<ForeName>I V</ForeName>
<Initials>IV</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>CANADA</Country>
<MedlineTA>Biochem Cell Biol</MedlineTA>
<NlmUniqueID>8606068</NlmUniqueID>
<ISSNLinking>0829-8211</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C052298">1,2-dihexadecyl-sn-glycero-3-phosphocholine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002614">Chelating Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008051">Lipid Bilayers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008563">Membrane Lipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008674">Metals, Rare Earth</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008823">Micelles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010714">Phosphatidylethanolamines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010715">Phosphatidylglycerols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010742">Phospholipid Ethers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010743">Phospholipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>20255-95-2</RegistryNumber>
<NameOfSubstance UI="C018525">1,2-dimyristoylphosphatidylethanolamine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7A314HQM0I</RegistryNumber>
<NameOfSubstance UI="D004369">Pentetic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8RKC5ATI4P</RegistryNumber>
<NameOfSubstance UI="D013932">Thulium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BI71WT9P3R</RegistryNumber>
<NameOfSubstance UI="C002773">dimyristoylphosphatidylglycerol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>MNQ4O4WSI1</RegistryNumber>
<NameOfSubstance UI="D015018">Ytterbium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>U86ZGC74V5</RegistryNumber>
<NameOfSubstance UI="D004134">Dimyristoylphosphatidylcholine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002614">Chelating Agents</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002627">Chemistry, Physical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004134">Dimyristoylphosphatidylcholine</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008051">Lipid Bilayers</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009682">Magnetic Resonance Spectroscopy</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008563">Membrane Lipids</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008565">Membrane Proteins</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008674">Metals, Rare Earth</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008823">Micelles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008958">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004369">Pentetic Acid</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010455">Peptides</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010714">Phosphatidylethanolamines</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010715">Phosphatidylglycerols</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010742">Phospholipid Ethers</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010743">Phospholipids</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055605">Physicochemical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013932">Thulium</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015018">Ytterbium</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1999</Year>
<Month>1</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1999</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1999</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9923713</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000740 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000740 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:9923713
   |texte=   Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lanthanides for membrane protein studies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:9923713" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024