Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes.

Identifieur interne : 000654 ( PubMed/Corpus ); précédent : 000653; suivant : 000655

Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes.

Auteurs : S K Hekmatyar ; R M Kerkhoff ; S K Pakin ; P. Hopewell ; N. Bansal

Source :

RBID : pubmed:16147440

English descriptors

Abstract

MR thermometry techniques based on the strong water 1H signal provide high spatial and temporal resolution and have shown promise for applications such as laser surgery and RF ablation. However, these techniques have low temperature sensitivity for hyperthermia applications and are greatly influenced by local motion and susceptibility variations. 1H NMR signals from paramagnetic lanthanide complexes of Pr3+, Yb3+ and Tm3+ show up to 300-fold stronger temperature dependence compared to the water 1H signal. In addition, 1H chemical shifts of many of these complexes are insensitive to other factors such as the concentration of the paramagnetic complex, pH, [Ca2+], and the presence of plasma macro-molecules and ions. Applications of lanthanide complexes for temperature measurement in intact animals and the feasibility of mapping temperatures in phantoms have been demonstrated. Among all the lanthanide complexes examined so far, thulium 1, 4, 7, 10-tetramethyl-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (TmDOTMA-) appears to be the most attractive for in vivo MR thermometry. The 1H signal from the methyl groups on this complex is relatively intense because of 12 equivalent protons and provides high temperature sensitivity because of the large paramagnetic shifts induced by thulium. The possibility of imaging TmDOTMA2--in intact animals at physiologically safe concentrations has recently been demonstrated. Overall, MR thermometry methods based on hyperfine-shifted MR signals from paramagnetic lanthanide complexes appear promising for animal applications, but further studies relating to acceptable dose and signal-to-noise ratio are necessary before clinical use.

DOI: 10.1080/02656730500133801
PubMed: 16147440

Links to Exploration step

pubmed:16147440

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes.</title>
<author>
<name sortKey="Hekmatyar, S K" sort="Hekmatyar, S K" uniqKey="Hekmatyar S" first="S K" last="Hekmatyar">S K Hekmatyar</name>
<affiliation>
<nlm:affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kerkhoff, R M" sort="Kerkhoff, R M" uniqKey="Kerkhoff R" first="R M" last="Kerkhoff">R M Kerkhoff</name>
</author>
<author>
<name sortKey="Pakin, S K" sort="Pakin, S K" uniqKey="Pakin S" first="S K" last="Pakin">S K Pakin</name>
</author>
<author>
<name sortKey="Hopewell, P" sort="Hopewell, P" uniqKey="Hopewell P" first="P" last="Hopewell">P. Hopewell</name>
</author>
<author>
<name sortKey="Bansal, N" sort="Bansal, N" uniqKey="Bansal N" first="N" last="Bansal">N. Bansal</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="doi">10.1080/02656730500133801</idno>
<idno type="RBID">pubmed:16147440</idno>
<idno type="pmid">16147440</idno>
<idno type="wicri:Area/PubMed/Corpus">000654</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000654</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes.</title>
<author>
<name sortKey="Hekmatyar, S K" sort="Hekmatyar, S K" uniqKey="Hekmatyar S" first="S K" last="Hekmatyar">S K Hekmatyar</name>
<affiliation>
<nlm:affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kerkhoff, R M" sort="Kerkhoff, R M" uniqKey="Kerkhoff R" first="R M" last="Kerkhoff">R M Kerkhoff</name>
</author>
<author>
<name sortKey="Pakin, S K" sort="Pakin, S K" uniqKey="Pakin S" first="S K" last="Pakin">S K Pakin</name>
</author>
<author>
<name sortKey="Hopewell, P" sort="Hopewell, P" uniqKey="Hopewell P" first="P" last="Hopewell">P. Hopewell</name>
</author>
<author>
<name sortKey="Bansal, N" sort="Bansal, N" uniqKey="Bansal N" first="N" last="Bansal">N. Bansal</name>
</author>
</analytic>
<series>
<title level="j">International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group</title>
<idno type="ISSN">0265-6736</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Hyperthermia, Induced</term>
<term>Lanthanoid Series Elements (chemistry)</term>
<term>Magnetic Resonance Spectroscopy (methods)</term>
<term>Magnetics</term>
<term>Molecular Structure</term>
<term>Organometallic Compounds (chemistry)</term>
<term>Temperature</term>
<term>Thermography (methods)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Lanthanoid Series Elements</term>
<term>Organometallic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Magnetic Resonance Spectroscopy</term>
<term>Thermography</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Hyperthermia, Induced</term>
<term>Magnetics</term>
<term>Molecular Structure</term>
<term>Temperature</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">MR thermometry techniques based on the strong water 1H signal provide high spatial and temporal resolution and have shown promise for applications such as laser surgery and RF ablation. However, these techniques have low temperature sensitivity for hyperthermia applications and are greatly influenced by local motion and susceptibility variations. 1H NMR signals from paramagnetic lanthanide complexes of Pr3+, Yb3+ and Tm3+ show up to 300-fold stronger temperature dependence compared to the water 1H signal. In addition, 1H chemical shifts of many of these complexes are insensitive to other factors such as the concentration of the paramagnetic complex, pH, [Ca2+], and the presence of plasma macro-molecules and ions. Applications of lanthanide complexes for temperature measurement in intact animals and the feasibility of mapping temperatures in phantoms have been demonstrated. Among all the lanthanide complexes examined so far, thulium 1, 4, 7, 10-tetramethyl-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (TmDOTMA-) appears to be the most attractive for in vivo MR thermometry. The 1H signal from the methyl groups on this complex is relatively intense because of 12 equivalent protons and provides high temperature sensitivity because of the large paramagnetic shifts induced by thulium. The possibility of imaging TmDOTMA2--in intact animals at physiologically safe concentrations has recently been demonstrated. Overall, MR thermometry methods based on hyperfine-shifted MR signals from paramagnetic lanthanide complexes appear promising for animal applications, but further studies relating to acceptable dose and signal-to-noise ratio are necessary before clinical use.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">16147440</PMID>
<DateCreated>
<Year>2005</Year>
<Month>09</Month>
<Day>08</Day>
</DateCreated>
<DateCompleted>
<Year>2005</Year>
<Month>12</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2007</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0265-6736</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>21</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2005</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group</Title>
<ISOAbbreviation>Int J Hyperthermia</ISOAbbreviation>
</Journal>
<ArticleTitle>Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes.</ArticleTitle>
<Pagination>
<MedlinePgn>561-74</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>MR thermometry techniques based on the strong water 1H signal provide high spatial and temporal resolution and have shown promise for applications such as laser surgery and RF ablation. However, these techniques have low temperature sensitivity for hyperthermia applications and are greatly influenced by local motion and susceptibility variations. 1H NMR signals from paramagnetic lanthanide complexes of Pr3+, Yb3+ and Tm3+ show up to 300-fold stronger temperature dependence compared to the water 1H signal. In addition, 1H chemical shifts of many of these complexes are insensitive to other factors such as the concentration of the paramagnetic complex, pH, [Ca2+], and the presence of plasma macro-molecules and ions. Applications of lanthanide complexes for temperature measurement in intact animals and the feasibility of mapping temperatures in phantoms have been demonstrated. Among all the lanthanide complexes examined so far, thulium 1, 4, 7, 10-tetramethyl-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (TmDOTMA-) appears to be the most attractive for in vivo MR thermometry. The 1H signal from the methyl groups on this complex is relatively intense because of 12 equivalent protons and provides high temperature sensitivity because of the large paramagnetic shifts induced by thulium. The possibility of imaging TmDOTMA2--in intact animals at physiologically safe concentrations has recently been demonstrated. Overall, MR thermometry methods based on hyperfine-shifted MR signals from paramagnetic lanthanide complexes appear promising for animal applications, but further studies relating to acceptable dose and signal-to-noise ratio are necessary before clinical use.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hekmatyar</LastName>
<ForeName>S K</ForeName>
<Initials>SK</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kerkhoff</LastName>
<ForeName>R M</ForeName>
<Initials>RM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pakin</LastName>
<ForeName>S K</ForeName>
<Initials>SK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hopewell</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bansal</LastName>
<ForeName>N</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CA84434</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA94040</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Int J Hyperthermia</MedlineTA>
<NlmUniqueID>8508395</NlmUniqueID>
<ISSNLinking>0265-6736</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D028581">Lanthanoid Series Elements</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009942">Organometallic Compounds</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006979">Hyperthermia, Induced</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D028581">Lanthanoid Series Elements</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D009682">Magnetic Resonance Spectroscopy</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008280">Magnetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015394">Molecular Structure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009942">Organometallic Compounds</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D013696">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013817">Thermography</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">G7327G7563333369</ArticleId>
<ArticleId IdType="doi">10.1080/02656730500133801</ArticleId>
<ArticleId IdType="pubmed">16147440</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000654 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000654 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16147440
   |texte=   Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:16147440" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024