Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Non-invasive temperature imaging with thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetic acid (TmDOTMA-).

Identifieur interne : 000647 ( PubMed/Corpus ); précédent : 000646; suivant : 000648

Non-invasive temperature imaging with thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetic acid (TmDOTMA-).

Auteurs : Sait Kubilay Pakin ; S K Hekmatyar ; Paige Hopewell ; Andriy Babsky ; Navin Bansal

Source :

RBID : pubmed:16404728

English descriptors

Abstract

Non-invasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes has attracted attention recently because the chemical shifts of these complexes are many times more sensitive to temperature than the water 1H signal. Among all the lanthanide complexes examined thus far, thulium tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (TmDOTMA-) appears to be the most suitable for MR thermometry. In this paper, the feasibility of imaging the methyl 1H signal from TmDOTMA- using a frequency-selective radiofrequency excitation pulse and chemical shift-selective (CHESS) water suppression is demonstrated. A temperature imaging method using a phase-sensitive spin-echo imaging sequence was validated in phantom experiments. A comparison of regional temperature changes measured with fiber-optic probes and the temperatures calculated from the phase shift near each probe showed that the accuracy of imaging the temperature with TmDOTMA- is at least 0.1-0.2 degrees C. The feasibility of imaging temperature changes in an intact rat at 0.5-0.6 mmol/kg dose in only a few minutes is demonstrated. Similar to commonly used MRI contrast agents, the lanthanide complex does not cross the blood-brain barrier. TmDOTMA- may prove useful for temperature imaging in many biomedical applications but further studies relating to acceptable dose and signal-to-noise ratio are necessary before clinical applications.

DOI: 10.1002/nbm.1010
PubMed: 16404728

Links to Exploration step

pubmed:16404728

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Non-invasive temperature imaging with thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetic acid (TmDOTMA-).</title>
<author>
<name sortKey="Pakin, Sait Kubilay" sort="Pakin, Sait Kubilay" uniqKey="Pakin S" first="Sait Kubilay" last="Pakin">Sait Kubilay Pakin</name>
<affiliation>
<nlm:affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hekmatyar, S K" sort="Hekmatyar, S K" uniqKey="Hekmatyar S" first="S K" last="Hekmatyar">S K Hekmatyar</name>
</author>
<author>
<name sortKey="Hopewell, Paige" sort="Hopewell, Paige" uniqKey="Hopewell P" first="Paige" last="Hopewell">Paige Hopewell</name>
</author>
<author>
<name sortKey="Babsky, Andriy" sort="Babsky, Andriy" uniqKey="Babsky A" first="Andriy" last="Babsky">Andriy Babsky</name>
</author>
<author>
<name sortKey="Bansal, Navin" sort="Bansal, Navin" uniqKey="Bansal N" first="Navin" last="Bansal">Navin Bansal</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="doi">10.1002/nbm.1010</idno>
<idno type="RBID">pubmed:16404728</idno>
<idno type="pmid">16404728</idno>
<idno type="wicri:Area/PubMed/Corpus">000647</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000647</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Non-invasive temperature imaging with thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetic acid (TmDOTMA-).</title>
<author>
<name sortKey="Pakin, Sait Kubilay" sort="Pakin, Sait Kubilay" uniqKey="Pakin S" first="Sait Kubilay" last="Pakin">Sait Kubilay Pakin</name>
<affiliation>
<nlm:affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hekmatyar, S K" sort="Hekmatyar, S K" uniqKey="Hekmatyar S" first="S K" last="Hekmatyar">S K Hekmatyar</name>
</author>
<author>
<name sortKey="Hopewell, Paige" sort="Hopewell, Paige" uniqKey="Hopewell P" first="Paige" last="Hopewell">Paige Hopewell</name>
</author>
<author>
<name sortKey="Babsky, Andriy" sort="Babsky, Andriy" uniqKey="Babsky A" first="Andriy" last="Babsky">Andriy Babsky</name>
</author>
<author>
<name sortKey="Bansal, Navin" sort="Bansal, Navin" uniqKey="Bansal N" first="Navin" last="Bansal">Navin Bansal</name>
</author>
</analytic>
<series>
<title level="j">NMR in biomedicine</title>
<idno type="ISSN">0952-3480</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Body Temperature Regulation (physiology)</term>
<term>Brain (physiology)</term>
<term>Feasibility Studies</term>
<term>Image Interpretation, Computer-Assisted (methods)</term>
<term>Magnetic Resonance Imaging (instrumentation)</term>
<term>Magnetic Resonance Imaging (methods)</term>
<term>Organometallic Compounds</term>
<term>Phantoms, Imaging</term>
<term>Rats</term>
<term>Rats, Inbred F344</term>
<term>Reproducibility of Results</term>
<term>Sensitivity and Specificity</term>
<term>Thermography (methods)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Organometallic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Magnetic Resonance Imaging</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Image Interpretation, Computer-Assisted</term>
<term>Magnetic Resonance Imaging</term>
<term>Thermography</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Body Temperature Regulation</term>
<term>Brain</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Feasibility Studies</term>
<term>Phantoms, Imaging</term>
<term>Rats</term>
<term>Rats, Inbred F344</term>
<term>Reproducibility of Results</term>
<term>Sensitivity and Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Non-invasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes has attracted attention recently because the chemical shifts of these complexes are many times more sensitive to temperature than the water 1H signal. Among all the lanthanide complexes examined thus far, thulium tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (TmDOTMA-) appears to be the most suitable for MR thermometry. In this paper, the feasibility of imaging the methyl 1H signal from TmDOTMA- using a frequency-selective radiofrequency excitation pulse and chemical shift-selective (CHESS) water suppression is demonstrated. A temperature imaging method using a phase-sensitive spin-echo imaging sequence was validated in phantom experiments. A comparison of regional temperature changes measured with fiber-optic probes and the temperatures calculated from the phase shift near each probe showed that the accuracy of imaging the temperature with TmDOTMA- is at least 0.1-0.2 degrees C. The feasibility of imaging temperature changes in an intact rat at 0.5-0.6 mmol/kg dose in only a few minutes is demonstrated. Similar to commonly used MRI contrast agents, the lanthanide complex does not cross the blood-brain barrier. TmDOTMA- may prove useful for temperature imaging in many biomedical applications but further studies relating to acceptable dose and signal-to-noise ratio are necessary before clinical applications.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">16404728</PMID>
<DateCreated>
<Year>2006</Year>
<Month>02</Month>
<Day>07</Day>
</DateCreated>
<DateCompleted>
<Year>2006</Year>
<Month>03</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>11</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0952-3480</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>19</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2006</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>NMR in biomedicine</Title>
<ISOAbbreviation>NMR Biomed</ISOAbbreviation>
</Journal>
<ArticleTitle>Non-invasive temperature imaging with thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetic acid (TmDOTMA-).</ArticleTitle>
<Pagination>
<MedlinePgn>116-24</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Non-invasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes has attracted attention recently because the chemical shifts of these complexes are many times more sensitive to temperature than the water 1H signal. Among all the lanthanide complexes examined thus far, thulium tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (TmDOTMA-) appears to be the most suitable for MR thermometry. In this paper, the feasibility of imaging the methyl 1H signal from TmDOTMA- using a frequency-selective radiofrequency excitation pulse and chemical shift-selective (CHESS) water suppression is demonstrated. A temperature imaging method using a phase-sensitive spin-echo imaging sequence was validated in phantom experiments. A comparison of regional temperature changes measured with fiber-optic probes and the temperatures calculated from the phase shift near each probe showed that the accuracy of imaging the temperature with TmDOTMA- is at least 0.1-0.2 degrees C. The feasibility of imaging temperature changes in an intact rat at 0.5-0.6 mmol/kg dose in only a few minutes is demonstrated. Similar to commonly used MRI contrast agents, the lanthanide complex does not cross the blood-brain barrier. TmDOTMA- may prove useful for temperature imaging in many biomedical applications but further studies relating to acceptable dose and signal-to-noise ratio are necessary before clinical applications.</AbstractText>
<CopyrightInformation>2006 John Wiley & Sons, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pakin</LastName>
<ForeName>Sait Kubilay</ForeName>
<Initials>SK</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hekmatyar</LastName>
<ForeName>S K</ForeName>
<Initials>SK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hopewell</LastName>
<ForeName>Paige</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Babsky</LastName>
<ForeName>Andriy</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bansal</LastName>
<ForeName>Navin</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CA84434</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA94040</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Studies</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D023361">Validation Studies</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>NMR Biomed</MedlineTA>
<NlmUniqueID>8915233</NlmUniqueID>
<ISSNLinking>0952-3480</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009942">Organometallic Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C463281">thulium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001833">Body Temperature Regulation</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005240">Feasibility Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007090">Image Interpretation, Computer-Assisted</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008279">Magnetic Resonance Imaging</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D009942">Organometallic Compounds</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019047">Phantoms, Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D051381">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011916">Rats, Inbred F344</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015203">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012680">Sensitivity and Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013817">Thermography</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>1</Month>
<Day>13</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/nbm.1010</ArticleId>
<ArticleId IdType="pubmed">16404728</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000647 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000647 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16404728
   |texte=   Non-invasive temperature imaging with thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetic acid (TmDOTMA-).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:16404728" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024