Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5- and TmDOTMA-.

Identifieur interne : 000509 ( PubMed/Corpus ); précédent : 000508; suivant : 000510

Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5- and TmDOTMA-.

Auteurs : Daniel Coman ; Hubert K. Trubel ; Fahmeed Hyder

Source :

RBID : pubmed:19957287

English descriptors

Abstract

Chemical shifts of complexes between paramagnetic lanthanide ions and macrocyclic chelates are sensitive to physiological variations (of temperature and/or pH). Here we demonstrate utility of a complex between thulium ion (Tm(3+)) and the macrocyclic chelate 1,4,7,10-tetramethyl 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (or DOTMA(4-)) for absolute temperature mapping in rat brain. The feasibility of TmDOTMA(-) is compared with that of another Tm(3+)-containing biosensor which is based on the macrocyclic chelate 1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetrakis(methylene phosphonate) (or DOTP(8-)). In general, the in vitro and in vivo results suggest that Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from these agents (but exclude water) can provide temperature maps with good accuracy. While TmDOTP(5-) emanates three major distinct proton resonances which are differentially sensitive to temperature and pH, TmDOTMA(-) has a dominant pH-insensitive proton resonance from a -CH(3) group to allow higher signal-to-noise ratio (SNR) temperature assessment. Temperature (and pH) sensitivities of these resonances are practically identical at low (4.0T) and high (11.7T) magnetic fields and at nominal repetition times only marginal SNR loss is expected at the lower field. Since these resonances have extremely short relaxation times, high-speed chemical shift imaging (CSI) is needed to detect them. Repeated in vivo CSI scans with BIRDS demonstrate excellent measurement stability. Overall, results with TmDOTP(5-) and TmDOTMA(-) suggest that BIRDS can be reliably applied, either at low or high magnetic fields, for functional studies in rodents.

DOI: 10.1002/nbm.1461
PubMed: 19957287

Links to Exploration step

pubmed:19957287

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5- and TmDOTMA-.</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation>
<nlm:affiliation>Magnetic Resonance Research Center, Yale University, New Haven, CT 06510, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Trubel, Hubert K" sort="Trubel, Hubert K" uniqKey="Trubel H" first="Hubert K" last="Trubel">Hubert K. Trubel</name>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="doi">10.1002/nbm.1461</idno>
<idno type="RBID">pubmed:19957287</idno>
<idno type="pmid">19957287</idno>
<idno type="wicri:Area/PubMed/Corpus">000509</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000509</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5- and TmDOTMA-.</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation>
<nlm:affiliation>Magnetic Resonance Research Center, Yale University, New Haven, CT 06510, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Trubel, Hubert K" sort="Trubel, Hubert K" uniqKey="Trubel H" first="Hubert K" last="Trubel">Hubert K. Trubel</name>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
</author>
</analytic>
<series>
<title level="j">NMR in biomedicine</title>
<idno type="eISSN">1099-1492</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Biosensing Techniques (methods)</term>
<term>Body Temperature (physiology)</term>
<term>Brain (physiology)</term>
<term>Brain Mapping</term>
<term>Calibration</term>
<term>Hydrogen-Ion Concentration</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Magnetics</term>
<term>Organometallic Compounds (metabolism)</term>
<term>Organophosphorus Compounds (metabolism)</term>
<term>Phantoms, Imaging</term>
<term>Quaternary Ammonium Compounds (metabolism)</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Organometallic Compounds</term>
<term>Organophosphorus Compounds</term>
<term>Quaternary Ammonium Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biosensing Techniques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Body Temperature</term>
<term>Brain</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Brain Mapping</term>
<term>Calibration</term>
<term>Hydrogen-Ion Concentration</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Magnetics</term>
<term>Phantoms, Imaging</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chemical shifts of complexes between paramagnetic lanthanide ions and macrocyclic chelates are sensitive to physiological variations (of temperature and/or pH). Here we demonstrate utility of a complex between thulium ion (Tm(3+)) and the macrocyclic chelate 1,4,7,10-tetramethyl 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (or DOTMA(4-)) for absolute temperature mapping in rat brain. The feasibility of TmDOTMA(-) is compared with that of another Tm(3+)-containing biosensor which is based on the macrocyclic chelate 1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetrakis(methylene phosphonate) (or DOTP(8-)). In general, the in vitro and in vivo results suggest that Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from these agents (but exclude water) can provide temperature maps with good accuracy. While TmDOTP(5-) emanates three major distinct proton resonances which are differentially sensitive to temperature and pH, TmDOTMA(-) has a dominant pH-insensitive proton resonance from a -CH(3) group to allow higher signal-to-noise ratio (SNR) temperature assessment. Temperature (and pH) sensitivities of these resonances are practically identical at low (4.0T) and high (11.7T) magnetic fields and at nominal repetition times only marginal SNR loss is expected at the lower field. Since these resonances have extremely short relaxation times, high-speed chemical shift imaging (CSI) is needed to detect them. Repeated in vivo CSI scans with BIRDS demonstrate excellent measurement stability. Overall, results with TmDOTP(5-) and TmDOTMA(-) suggest that BIRDS can be reliably applied, either at low or high magnetic fields, for functional studies in rodents.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">19957287</PMID>
<DateCreated>
<Year>2010</Year>
<Month>03</Month>
<Day>22</Day>
</DateCreated>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>12</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1099-1492</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>23</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2010</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>NMR in biomedicine</Title>
<ISOAbbreviation>NMR Biomed</ISOAbbreviation>
</Journal>
<ArticleTitle>Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5- and TmDOTMA-.</ArticleTitle>
<Pagination>
<MedlinePgn>277-85</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/nbm.1461</ELocationID>
<Abstract>
<AbstractText>Chemical shifts of complexes between paramagnetic lanthanide ions and macrocyclic chelates are sensitive to physiological variations (of temperature and/or pH). Here we demonstrate utility of a complex between thulium ion (Tm(3+)) and the macrocyclic chelate 1,4,7,10-tetramethyl 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (or DOTMA(4-)) for absolute temperature mapping in rat brain. The feasibility of TmDOTMA(-) is compared with that of another Tm(3+)-containing biosensor which is based on the macrocyclic chelate 1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetrakis(methylene phosphonate) (or DOTP(8-)). In general, the in vitro and in vivo results suggest that Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from these agents (but exclude water) can provide temperature maps with good accuracy. While TmDOTP(5-) emanates three major distinct proton resonances which are differentially sensitive to temperature and pH, TmDOTMA(-) has a dominant pH-insensitive proton resonance from a -CH(3) group to allow higher signal-to-noise ratio (SNR) temperature assessment. Temperature (and pH) sensitivities of these resonances are practically identical at low (4.0T) and high (11.7T) magnetic fields and at nominal repetition times only marginal SNR loss is expected at the lower field. Since these resonances have extremely short relaxation times, high-speed chemical shift imaging (CSI) is needed to detect them. Repeated in vivo CSI scans with BIRDS demonstrate excellent measurement stability. Overall, results with TmDOTP(5-) and TmDOTMA(-) suggest that BIRDS can be reliably applied, either at low or high magnetic fields, for functional studies in rodents.</AbstractText>
<CopyrightInformation>2009 John Wiley & Sons, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Coman</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Magnetic Resonance Research Center, Yale University, New Haven, CT 06510, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Trubel</LastName>
<ForeName>Hubert K</ForeName>
<Initials>HK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hyder</LastName>
<ForeName>Fahmeed</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 NS-52519</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 NS052519</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 NS052519-03</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 MH-067528</GrantID>
<Acronym>MH</Acronym>
<Agency>NIMH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 MH067528</GrantID>
<Acronym>MH</Acronym>
<Agency>NIMH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 MH067528-05</GrantID>
<Acronym>MH</Acronym>
<Agency>NIMH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>NMR Biomed</MedlineTA>
<NlmUniqueID>8915233</NlmUniqueID>
<ISSNLinking>0952-3480</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009942">Organometallic Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009943">Organophosphorus Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000644">Quaternary Ammonium Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C069929">thulium(III) 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetramethylenephosphonate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C550981">thulium(III) 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>104162-48-3</RegistryNumber>
<NameOfSubstance UI="C054005">N-(1-(2,3-dioleyloxy)propyl)-N,N,N-trimethylammonium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Hyperthermia. 2002 May-Jun;18(3):165-79</RefSource>
<PMID Version="1">12028635</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cancer Res. 2001 Sep 1;61(17):6524-31</RefSource>
<PMID Version="1">11522650</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 2003 Apr;94(4):1641-9</RefSource>
<PMID Version="1">12626478</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Neurosurg Psychiatry. 2003 May;74(5):614-9</RefSource>
<PMID Version="1">12700304</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2003 Apr;12(3):163-73</RefSource>
<PMID Version="1">12742737</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2003 Aug;9(8):1085-90</RefSource>
<PMID Version="1">12872167</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acc Chem Res. 2003 Oct;36(10):783-90</RefSource>
<PMID Version="1">14567712</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2004 Jun 11;1011(1):48-57</RefSource>
<PMID Version="1">15140643</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Intensive Care Med. 2004 Sep;30(9):1829-33</RefSource>
<PMID Version="1">15185071</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Phys. 1983 May-Jun;10(3):321-5</RefSource>
<PMID Version="1">6877179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 1984 Aug;16(2):169-77</RefSource>
<PMID Version="1">6476792</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Radiology. 1988 Mar;166(3):693-8</RefSource>
<PMID Version="1">3340763</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Radiology. 1989 Jun;171(3):853-7</RefSource>
<PMID Version="1">2717764</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NMR Biomed. 1992 Nov-Dec;5(6):351-9</RefSource>
<PMID Version="1">1489671</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1993 Dec;30(6):696-703</RefSource>
<PMID Version="1">8139451</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Physiol. 1994 Jul;267(1 Pt 1):C195-203</RefSource>
<PMID Version="1">8048479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1995 Sep;34(3):359-67</RefSource>
<PMID Version="1">7500875</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1995;106(1):7-18</RefSource>
<PMID Version="1">8542979</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1996 May;35(5):648-51</RefSource>
<PMID Version="1">8722814</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int Anesthesiol Clin. 1996 Summer;34(3):149-74</RefSource>
<PMID Version="1">8894753</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1996 Dec;36(6):955-9</RefSource>
<PMID Version="1">8946362</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stroke. 1998 Feb;29(2):529-34</RefSource>
<PMID Version="1">9472901</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Magn Reson. 1998 Jul;133(1):53-60</RefSource>
<PMID Version="1">9654468</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1998 Sep 15;18(18):7543-51</RefSource>
<PMID Version="1">9736672</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Pharmacol. 1999 Feb 1;57(3):309-12</RefSource>
<PMID Version="1">9890558</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Eng Med Biol Mag. 2004 Sep-Oct;23(5):57-64</RefSource>
<PMID Version="1">15565800</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2005 Feb;53(2):294-303</RefSource>
<PMID Version="1">15678553</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Hyperthermia. 2005 Sep;21(6):515-31</RefSource>
<PMID Version="1">16147437</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Chem Soc. 2005 Dec 21;127(50):17572-3</RefSource>
<PMID Version="1">16351064</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 2006 Jan;26(1):68-78</RefSource>
<PMID Version="1">15959461</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2006 Feb;55(2):309-15</RefSource>
<PMID Version="1">16402385</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Nucl Med. 2006 Mar;47(3):534-42</RefSource>
<PMID Version="1">16513624</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20546-51</RefSource>
<PMID Version="1">18079290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NMR Biomed. 2009 Feb;22(2):229-39</RefSource>
<PMID Version="1">19130468</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acc Chem Res. 2009 Jul 21;42(7):915-24</RefSource>
<PMID Version="1">19514717</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2000 Nov;44(5):799-802</RefSource>
<PMID Version="1">11064415</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Magn Reson. 2001 Jul;151(1):101-6</RefSource>
<PMID Version="1">11444943</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Oncol. 2002 Aug;13(8):1173-84</RefSource>
<PMID Version="1">12181239</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015374">Biosensing Techniques</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001831">Body Temperature</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001931">Brain Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002138">Calibration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006863">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009682">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008280">Magnetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009942">Organometallic Compounds</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009943">Organophosphorus Compounds</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019047">Phantoms, Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000644">Quaternary Ammonium Compounds</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D051381">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017207">Rats, Sprague-Dawley</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013997">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS158410</OtherID>
<OtherID Source="NLM">PMC2843767</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/nbm.1461</ArticleId>
<ArticleId IdType="pubmed">19957287</ArticleId>
<ArticleId IdType="pmc">PMC2843767</ArticleId>
<ArticleId IdType="mid">NIHMS158410</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000509 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000509 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19957287
   |texte=   Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5- and TmDOTMA-.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:19957287" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024