Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: the case of NaYF4:Er3+/Tm3+ upconverting nanocrystals.

Identifieur interne : 000368 ( PubMed/Corpus ); précédent : 000367; suivant : 000369

Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: the case of NaYF4:Er3+/Tm3+ upconverting nanocrystals.

Auteurs : Emory M. Chan ; Daniel J. Gargas ; P James Schuck ; Delia J. Milliron

Source :

RBID : pubmed:22551408

English descriptors

Abstract

In lanthanide-doped materials, energy transfer (ET) between codopant ions can populate or depopulate excited states, giving rise to spectrally pure luminescence that is valuable for the multicolor imaging and simultaneous tracking of multiple biological species. Here, we use the case study of NaYF(4) nanocrystals codoped with Er(3+) and Tm(3+) to theoretically investigate the ET mechanisms that selectively enhance and suppress visible upconversion luminescence under near-infrared excitation. Using an experimentally validated population balance model and using a path-tracing algorithm to objectively identify transitions with the most significant contributions, we isolated a network of six pathways that combine to divert energy away from the green-emitting manifolds and concentrate it in the Tm(3+):(3)F(4) manifold, which then participates in energy transfer upconversion (ETU) to populate the red-emitting Er(3+):(4)F(9/2) manifold. We conclude that the strength of this ETU process is a function of the strong coupling of the Tm(3+):(3)F(4) manifold and its ground state, the near-optimum band alignment of Er(3+) and Tm(3+) manifolds, and the concentration of population in Tm(3+):(3)F(4). These factors, along with the ability to recycle energy not utilized for red emission, also contribute to the enhanced quantum yield of NaYF(4):Er(3+)/Tm(3+). We generalize a scheme for applying these energy concentration and recycling pathways to other combinations of lanthanide dopants. Ultimately, these ET pathways and others elucidated by our theoretical modeling will enable the programming of physical properties in lanthanide-doped materials for a variety of applications that demand strong and precisely defined optical transitions.

DOI: 10.1021/jp302401j
PubMed: 22551408

Links to Exploration step

pubmed:22551408

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: the case of NaYF4:Er3+/Tm3+ upconverting nanocrystals.</title>
<author>
<name sortKey="Chan, Emory M" sort="Chan, Emory M" uniqKey="Chan E" first="Emory M" last="Chan">Emory M. Chan</name>
<affiliation>
<nlm:affiliation>The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States. emchan@lbl.gov</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gargas, Daniel J" sort="Gargas, Daniel J" uniqKey="Gargas D" first="Daniel J" last="Gargas">Daniel J. Gargas</name>
</author>
<author>
<name sortKey="Schuck, P James" sort="Schuck, P James" uniqKey="Schuck P" first="P James" last="Schuck">P James Schuck</name>
</author>
<author>
<name sortKey="Milliron, Delia J" sort="Milliron, Delia J" uniqKey="Milliron D" first="Delia J" last="Milliron">Delia J. Milliron</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="doi">10.1021/jp302401j</idno>
<idno type="RBID">pubmed:22551408</idno>
<idno type="pmid">22551408</idno>
<idno type="wicri:Area/PubMed/Corpus">000368</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000368</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: the case of NaYF4:Er3+/Tm3+ upconverting nanocrystals.</title>
<author>
<name sortKey="Chan, Emory M" sort="Chan, Emory M" uniqKey="Chan E" first="Emory M" last="Chan">Emory M. Chan</name>
<affiliation>
<nlm:affiliation>The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States. emchan@lbl.gov</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gargas, Daniel J" sort="Gargas, Daniel J" uniqKey="Gargas D" first="Daniel J" last="Gargas">Daniel J. Gargas</name>
</author>
<author>
<name sortKey="Schuck, P James" sort="Schuck, P James" uniqKey="Schuck P" first="P James" last="Schuck">P James Schuck</name>
</author>
<author>
<name sortKey="Milliron, Delia J" sort="Milliron, Delia J" uniqKey="Milliron D" first="Delia J" last="Milliron">Delia J. Milliron</name>
</author>
</analytic>
<series>
<title level="j">The journal of physical chemistry. B</title>
<idno type="eISSN">1520-5207</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Energy Transfer</term>
<term>Erbium (chemistry)</term>
<term>Fluorides (chemistry)</term>
<term>Lanthanoid Series Elements (chemistry)</term>
<term>Nanoparticles (chemistry)</term>
<term>Thulium (chemistry)</term>
<term>Yttrium (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Erbium</term>
<term>Fluorides</term>
<term>Lanthanoid Series Elements</term>
<term>Thulium</term>
<term>Yttrium</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nanoparticles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Energy Transfer</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In lanthanide-doped materials, energy transfer (ET) between codopant ions can populate or depopulate excited states, giving rise to spectrally pure luminescence that is valuable for the multicolor imaging and simultaneous tracking of multiple biological species. Here, we use the case study of NaYF(4) nanocrystals codoped with Er(3+) and Tm(3+) to theoretically investigate the ET mechanisms that selectively enhance and suppress visible upconversion luminescence under near-infrared excitation. Using an experimentally validated population balance model and using a path-tracing algorithm to objectively identify transitions with the most significant contributions, we isolated a network of six pathways that combine to divert energy away from the green-emitting manifolds and concentrate it in the Tm(3+):(3)F(4) manifold, which then participates in energy transfer upconversion (ETU) to populate the red-emitting Er(3+):(4)F(9/2) manifold. We conclude that the strength of this ETU process is a function of the strong coupling of the Tm(3+):(3)F(4) manifold and its ground state, the near-optimum band alignment of Er(3+) and Tm(3+) manifolds, and the concentration of population in Tm(3+):(3)F(4). These factors, along with the ability to recycle energy not utilized for red emission, also contribute to the enhanced quantum yield of NaYF(4):Er(3+)/Tm(3+). We generalize a scheme for applying these energy concentration and recycling pathways to other combinations of lanthanide dopants. Ultimately, these ET pathways and others elucidated by our theoretical modeling will enable the programming of physical properties in lanthanide-doped materials for a variety of applications that demand strong and precisely defined optical transitions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22551408</PMID>
<DateCreated>
<Year>2012</Year>
<Month>09</Month>
<Day>06</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>01</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5207</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>116</Volume>
<Issue>35</Issue>
<PubDate>
<Year>2012</Year>
<Month>Sep</Month>
<Day>6</Day>
</PubDate>
</JournalIssue>
<Title>The journal of physical chemistry. B</Title>
<ISOAbbreviation>J Phys Chem B</ISOAbbreviation>
</Journal>
<ArticleTitle>Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: the case of NaYF4:Er3+/Tm3+ upconverting nanocrystals.</ArticleTitle>
<Pagination>
<MedlinePgn>10561-70</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/jp302401j</ELocationID>
<Abstract>
<AbstractText>In lanthanide-doped materials, energy transfer (ET) between codopant ions can populate or depopulate excited states, giving rise to spectrally pure luminescence that is valuable for the multicolor imaging and simultaneous tracking of multiple biological species. Here, we use the case study of NaYF(4) nanocrystals codoped with Er(3+) and Tm(3+) to theoretically investigate the ET mechanisms that selectively enhance and suppress visible upconversion luminescence under near-infrared excitation. Using an experimentally validated population balance model and using a path-tracing algorithm to objectively identify transitions with the most significant contributions, we isolated a network of six pathways that combine to divert energy away from the green-emitting manifolds and concentrate it in the Tm(3+):(3)F(4) manifold, which then participates in energy transfer upconversion (ETU) to populate the red-emitting Er(3+):(4)F(9/2) manifold. We conclude that the strength of this ETU process is a function of the strong coupling of the Tm(3+):(3)F(4) manifold and its ground state, the near-optimum band alignment of Er(3+) and Tm(3+) manifolds, and the concentration of population in Tm(3+):(3)F(4). These factors, along with the ability to recycle energy not utilized for red emission, also contribute to the enhanced quantum yield of NaYF(4):Er(3+)/Tm(3+). We generalize a scheme for applying these energy concentration and recycling pathways to other combinations of lanthanide dopants. Ultimately, these ET pathways and others elucidated by our theoretical modeling will enable the programming of physical properties in lanthanide-doped materials for a variety of applications that demand strong and precisely defined optical transitions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chan</LastName>
<ForeName>Emory M</ForeName>
<Initials>EM</Initials>
<AffiliationInfo>
<Affiliation>The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States. emchan@lbl.gov</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gargas</LastName>
<ForeName>Daniel J</ForeName>
<Initials>DJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schuck</LastName>
<ForeName>P James</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Milliron</LastName>
<ForeName>Delia J</ForeName>
<Initials>DJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>05</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Phys Chem B</MedlineTA>
<NlmUniqueID>101157530</NlmUniqueID>
<ISSNLinking>1520-5207</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D028581">Lanthanoid Series Elements</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C525362">sodium yttriumtetrafluoride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>58784XQC3Y</RegistryNumber>
<NameOfSubstance UI="D015019">Yttrium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>77B218D3YE</RegistryNumber>
<NameOfSubstance UI="D004871">Erbium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8RKC5ATI4P</RegistryNumber>
<NameOfSubstance UI="D013932">Thulium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Q80VPU408O</RegistryNumber>
<NameOfSubstance UI="D005459">Fluorides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004735">Energy Transfer</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004871">Erbium</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005459">Fluorides</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D028581">Lanthanoid Series Elements</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D053758">Nanoparticles</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013932">Thulium</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015019">Yttrium</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000737">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>5</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/jp302401j</ArticleId>
<ArticleId IdType="pubmed">22551408</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000368 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000368 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22551408
   |texte=   Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: the case of NaYF4:Er3+/Tm3+ upconverting nanocrystals.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22551408" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024