Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhanced thulium fiber laser lithotripsy using micro-pulse train modulation.

Identifieur interne : 000373 ( PubMed/Checkpoint ); précédent : 000372; suivant : 000374

Enhanced thulium fiber laser lithotripsy using micro-pulse train modulation.

Auteurs : Richard L. Blackmon [États-Unis] ; Pierce B. Irby ; Nathaniel M. Fried

Source :

RBID : pubmed:22463050

Descripteurs français

English descriptors

Abstract

The thulium fiber laser (TFL) is currently being studied as an alternative to the conventional holmium:YAG (Ho:YAG) laser for lithotripsy. The diode-pumped TFL may be electronically modulated to operate with variable parameters (e.g., pulse rate, pulse duration, and duty cycle) for studying the influence of pulse train mode on stone ablation rates. The TFL under study was operated at 1908 nm, 35-mJ pulse energy, and 500-μs pulse duration, in a train of 5 micro-pulses, with macro-pulse rates of 10 Hz, compared with conventional TFL operation at 10 to 50 Hz. TFL energy was delivered through 100-μm-core fibers in contact with human uric acid (UA) and calcium oxalate monohydrate (COM) stones. Mass removal rates, optical coherence tomography, and light microscopy were used to analyze the ablation craters. Stone retropulsion and fiber tip degradation studies also were conducted for these laser parameters. TFL operation in micro-pulse train (MPT) mode resulted in a factor of two increase in the ablation rate of 414 ± 94 μg/s and 122 ± 24 μg/s for the UA and COM stones, respectively, compared to 182 ± 69 μg/s and 60 ± 14 μg/s with standard pulse trains delivered at 50 Hz (P<0.05). Stone retropulsion remained minimal (<2 mm after 1200 pulses) for both pulse modes. Fiber burnback was significant for both pulse modes and was higher for COM stones than UA stones. TFL operation in MPT mode results in increased stone ablation rates which, with further optimization, may approach levels comparable to Ho:YAG laser lithotripsy in the clinic.

DOI: 10.1117/1.JBO.17.2.028002
PubMed: 22463050


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22463050

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enhanced thulium fiber laser lithotripsy using micro-pulse train modulation.</title>
<author>
<name sortKey="Blackmon, Richard L" sort="Blackmon, Richard L" uniqKey="Blackmon R" first="Richard L" last="Blackmon">Richard L. Blackmon</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of North Carolina at Charlotte, Department of Physics and Optical Science, 9201 University City Avenue, Charlotte, North Carolina 28223-0001, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of North Carolina at Charlotte, Department of Physics and Optical Science, 9201 University City Avenue, Charlotte, North Carolina 28223-0001</wicri:regionArea>
<wicri:noRegion>North Carolina 28223-0001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Irby, Pierce B" sort="Irby, Pierce B" uniqKey="Irby P" first="Pierce B" last="Irby">Pierce B. Irby</name>
</author>
<author>
<name sortKey="Fried, Nathaniel M" sort="Fried, Nathaniel M" uniqKey="Fried N" first="Nathaniel M" last="Fried">Nathaniel M. Fried</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="doi">10.1117/1.JBO.17.2.028002</idno>
<idno type="RBID">pubmed:22463050</idno>
<idno type="pmid">22463050</idno>
<idno type="wicri:Area/PubMed/Corpus">000376</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000376</idno>
<idno type="wicri:Area/PubMed/Curation">000376</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000376</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000376</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000376</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enhanced thulium fiber laser lithotripsy using micro-pulse train modulation.</title>
<author>
<name sortKey="Blackmon, Richard L" sort="Blackmon, Richard L" uniqKey="Blackmon R" first="Richard L" last="Blackmon">Richard L. Blackmon</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of North Carolina at Charlotte, Department of Physics and Optical Science, 9201 University City Avenue, Charlotte, North Carolina 28223-0001, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of North Carolina at Charlotte, Department of Physics and Optical Science, 9201 University City Avenue, Charlotte, North Carolina 28223-0001</wicri:regionArea>
<wicri:noRegion>North Carolina 28223-0001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Irby, Pierce B" sort="Irby, Pierce B" uniqKey="Irby P" first="Pierce B" last="Irby">Pierce B. Irby</name>
</author>
<author>
<name sortKey="Fried, Nathaniel M" sort="Fried, Nathaniel M" uniqKey="Fried N" first="Nathaniel M" last="Fried">Nathaniel M. Fried</name>
</author>
</analytic>
<series>
<title level="j">Journal of biomedical optics</title>
<idno type="eISSN">1560-2281</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Equipment Design</term>
<term>Equipment Failure Analysis</term>
<term>Fiber Optic Technology (instrumentation)</term>
<term>Humans</term>
<term>Lithotripsy, Laser (instrumentation)</term>
<term>Thulium</term>
<term>Treatment Outcome</term>
<term>Urinary Calculi (therapy)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de panne d'appareillage</term>
<term>Calculs urinaires ()</term>
<term>Conception d'appareillage</term>
<term>Humains</term>
<term>Lithotritie par laser (instrumentation)</term>
<term>Résultat thérapeutique</term>
<term>Technologie des fibres optiques (instrumentation)</term>
<term>Thulium</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Thulium</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Fiber Optic Technology</term>
<term>Lithotripsy, Laser</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Urinary Calculi</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Equipment Design</term>
<term>Equipment Failure Analysis</term>
<term>Humans</term>
<term>Treatment Outcome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de panne d'appareillage</term>
<term>Calculs urinaires</term>
<term>Conception d'appareillage</term>
<term>Humains</term>
<term>Lithotritie par laser</term>
<term>Résultat thérapeutique</term>
<term>Technologie des fibres optiques</term>
<term>Thulium</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The thulium fiber laser (TFL) is currently being studied as an alternative to the conventional holmium:YAG (Ho:YAG) laser for lithotripsy. The diode-pumped TFL may be electronically modulated to operate with variable parameters (e.g., pulse rate, pulse duration, and duty cycle) for studying the influence of pulse train mode on stone ablation rates. The TFL under study was operated at 1908 nm, 35-mJ pulse energy, and 500-μs pulse duration, in a train of 5 micro-pulses, with macro-pulse rates of 10 Hz, compared with conventional TFL operation at 10 to 50 Hz. TFL energy was delivered through 100-μm-core fibers in contact with human uric acid (UA) and calcium oxalate monohydrate (COM) stones. Mass removal rates, optical coherence tomography, and light microscopy were used to analyze the ablation craters. Stone retropulsion and fiber tip degradation studies also were conducted for these laser parameters. TFL operation in micro-pulse train (MPT) mode resulted in a factor of two increase in the ablation rate of 414 ± 94 μg/s and 122 ± 24 μg/s for the UA and COM stones, respectively, compared to 182 ± 69 μg/s and 60 ± 14 μg/s with standard pulse trains delivered at 50 Hz (P<0.05). Stone retropulsion remained minimal (<2 mm after 1200 pulses) for both pulse modes. Fiber burnback was significant for both pulse modes and was higher for COM stones than UA stones. TFL operation in MPT mode results in increased stone ablation rates which, with further optimization, may approach levels comparable to Ho:YAG laser lithotripsy in the clinic.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22463050</PMID>
<DateCreated>
<Year>2012</Year>
<Month>04</Month>
<Day>02</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>08</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1560-2281</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Journal of biomedical optics</Title>
<ISOAbbreviation>J Biomed Opt</ISOAbbreviation>
</Journal>
<ArticleTitle>Enhanced thulium fiber laser lithotripsy using micro-pulse train modulation.</ArticleTitle>
<Pagination>
<MedlinePgn>028002</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1117/1.JBO.17.2.028002</ELocationID>
<Abstract>
<AbstractText>The thulium fiber laser (TFL) is currently being studied as an alternative to the conventional holmium:YAG (Ho:YAG) laser for lithotripsy. The diode-pumped TFL may be electronically modulated to operate with variable parameters (e.g., pulse rate, pulse duration, and duty cycle) for studying the influence of pulse train mode on stone ablation rates. The TFL under study was operated at 1908 nm, 35-mJ pulse energy, and 500-μs pulse duration, in a train of 5 micro-pulses, with macro-pulse rates of 10 Hz, compared with conventional TFL operation at 10 to 50 Hz. TFL energy was delivered through 100-μm-core fibers in contact with human uric acid (UA) and calcium oxalate monohydrate (COM) stones. Mass removal rates, optical coherence tomography, and light microscopy were used to analyze the ablation craters. Stone retropulsion and fiber tip degradation studies also were conducted for these laser parameters. TFL operation in micro-pulse train (MPT) mode resulted in a factor of two increase in the ablation rate of 414 ± 94 μg/s and 122 ± 24 μg/s for the UA and COM stones, respectively, compared to 182 ± 69 μg/s and 60 ± 14 μg/s with standard pulse trains delivered at 50 Hz (P<0.05). Stone retropulsion remained minimal (<2 mm after 1200 pulses) for both pulse modes. Fiber burnback was significant for both pulse modes and was higher for COM stones than UA stones. TFL operation in MPT mode results in increased stone ablation rates which, with further optimization, may approach levels comparable to Ho:YAG laser lithotripsy in the clinic.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Blackmon</LastName>
<ForeName>Richard L</ForeName>
<Initials>RL</Initials>
<AffiliationInfo>
<Affiliation>University of North Carolina at Charlotte, Department of Physics and Optical Science, 9201 University City Avenue, Charlotte, North Carolina 28223-0001, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Irby</LastName>
<ForeName>Pierce B</ForeName>
<Initials>PB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fried</LastName>
<ForeName>Nathaniel M</ForeName>
<Initials>NM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biomed Opt</MedlineTA>
<NlmUniqueID>9605853</NlmUniqueID>
<ISSNLinking>1083-3668</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>8RKC5ATI4P</RegistryNumber>
<NameOfSubstance UI="D013932">Thulium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019544">Equipment Failure Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005336">Fiber Optic Technology</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017602">Lithotripsy, Laser</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D013932">Thulium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016896">Treatment Outcome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014545">Urinary Calculi</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000628">therapy</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1117/1.JBO.17.2.028002</ArticleId>
<ArticleId IdType="pubmed">22463050</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Fried, Nathaniel M" sort="Fried, Nathaniel M" uniqKey="Fried N" first="Nathaniel M" last="Fried">Nathaniel M. Fried</name>
<name sortKey="Irby, Pierce B" sort="Irby, Pierce B" uniqKey="Irby P" first="Pierce B" last="Irby">Pierce B. Irby</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Blackmon, Richard L" sort="Blackmon, Richard L" uniqKey="Blackmon R" first="Richard L" last="Blackmon">Richard L. Blackmon</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000373 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000373 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:22463050
   |texte=   Enhanced thulium fiber laser lithotripsy using micro-pulse train modulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:22463050" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024