Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.

Identifieur interne : 000228 ( PubMed/Checkpoint ); précédent : 000227; suivant : 000229

Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.

Auteurs : Joseph Ganem [États-Unis] ; Steven R. Bowman

Source :

RBID : pubmed:24180684

Abstract

Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.

DOI: 10.1186/1556-276X-8-455
PubMed: 24180684


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24180684

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.</title>
<author>
<name sortKey="Ganem, Joseph" sort="Ganem, Joseph" uniqKey="Ganem J" first="Joseph" last="Ganem">Joseph Ganem</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physics, Loyola University Maryland, 4501 N, Charles Street, Baltimore, MD 21210, USA. Ganem@loyola.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physics, Loyola University Maryland, 4501 N, Charles Street, Baltimore, MD 21210</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bowman, Steven R" sort="Bowman, Steven R" uniqKey="Bowman S" first="Steven R" last="Bowman">Steven R. Bowman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1186/1556-276X-8-455</idno>
<idno type="RBID">pubmed:24180684</idno>
<idno type="pmid">24180684</idno>
<idno type="wicri:Area/PubMed/Corpus">000232</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000232</idno>
<idno type="wicri:Area/PubMed/Curation">000232</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000232</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000232</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000232</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.</title>
<author>
<name sortKey="Ganem, Joseph" sort="Ganem, Joseph" uniqKey="Ganem J" first="Joseph" last="Ganem">Joseph Ganem</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Physics, Loyola University Maryland, 4501 N, Charles Street, Baltimore, MD 21210, USA. Ganem@loyola.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physics, Loyola University Maryland, 4501 N, Charles Street, Baltimore, MD 21210</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bowman, Steven R" sort="Bowman, Steven R" uniqKey="Bowman S" first="Steven R" last="Bowman">Steven R. Bowman</name>
</author>
</analytic>
<series>
<title level="j">Nanoscale research letters</title>
<idno type="ISSN">1931-7573</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">24180684</PMID>
<DateCreated>
<Year>2014</Year>
<Month>01</Month>
<Day>17</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">1931-7573</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>Nanoscale research letters</Title>
<ISOAbbreviation>Nanoscale Res Lett</ISOAbbreviation>
</Journal>
<ArticleTitle>Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.</ArticleTitle>
<Pagination>
<MedlinePgn>455</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1556-276X-8-455</ELocationID>
<Abstract>
<AbstractText>Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ganem</LastName>
<ForeName>Joseph</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Physics, Loyola University Maryland, 4501 N, Charles Street, Baltimore, MD 21210, USA. Ganem@loyola.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bowman</LastName>
<ForeName>Steven R</ForeName>
<Initials>SR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>11</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Nanoscale Res Lett</MedlineTA>
<NlmUniqueID>101279750</NlmUniqueID>
<ISSNLinking>1556-276X</ISSNLinking>
</MedlineJournalInfo>
<OtherID Source="NLM">PMC4228387</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>8</Month>
<Day>4</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>10</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>11</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">1556-276X-8-455</ArticleId>
<ArticleId IdType="doi">10.1186/1556-276X-8-455</ArticleId>
<ArticleId IdType="pubmed">24180684</ArticleId>
<ArticleId IdType="pmc">PMC4228387</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bowman, Steven R" sort="Bowman, Steven R" uniqKey="Bowman S" first="Steven R" last="Bowman">Steven R. Bowman</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Ganem, Joseph" sort="Ganem, Joseph" uniqKey="Ganem J" first="Joseph" last="Ganem">Joseph Ganem</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000228 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000228 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:24180684
   |texte=   Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:24180684" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024