Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Distributed ultrafast fibre laser

Identifieur interne : 000080 ( Pmc/Curation ); précédent : 000079; suivant : 000081

Distributed ultrafast fibre laser

Auteurs : Xueming Liu [République populaire de Chine] ; Yudong Cui [République populaire de Chine] ; Dongdong Han [République populaire de Chine] ; Xiankun Yao [République populaire de Chine] ; Zhipei Sun [Finlande]

Source :

RBID : PMC:4358043

Abstract

A traditional ultrafast fibre laser has a constant cavity length that is independent of the pulse wavelength. The investigation of distributed ultrafast (DUF) lasers is conceptually and technically challenging and of great interest because the laser cavity length and fundamental cavity frequency are changeable based on the wavelength. Here, we propose and demonstrate a DUF fibre laser based on a linearly chirped fibre Bragg grating, where the total cavity length is linearly changeable as a function of the pulse wavelength. The spectral sidebands in DUF lasers are enhanced greatly, including the continuous-wave (CW) and pulse components. We observe that all sidebands of the pulse experience the same round-trip time although they have different round-trip distances and refractive indices. The pulse-shaping of the DUF laser is dominated by the dissipative processes in addition to the phase modulations, which makes our ultrafast laser simple and stable. This laser provides a simple, stable, low-cost, ultrafast-pulsed source with controllable and changeable cavity frequency.


Url:
DOI: 10.1038/srep09101
PubMed: 25765454
PubMed Central: 4358043

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4358043

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Distributed ultrafast fibre laser</title>
<author>
<name sortKey="Liu, Xueming" sort="Liu, Xueming" uniqKey="Liu X" first="Xueming" last="Liu">Xueming Liu</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences</institution>
, Xi'an 710119,
<country>China</country>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cui, Yudong" sort="Cui, Yudong" uniqKey="Cui Y" first="Yudong" last="Cui">Yudong Cui</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences</institution>
, Xi'an 710119,
<country>China</country>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Han, Dongdong" sort="Han, Dongdong" uniqKey="Han D" first="Dongdong" last="Han">Dongdong Han</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences</institution>
, Xi'an 710119,
<country>China</country>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Yao, Xiankun" sort="Yao, Xiankun" uniqKey="Yao X" first="Xiankun" last="Yao">Xiankun Yao</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences</institution>
, Xi'an 710119,
<country>China</country>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sun, Zhipei" sort="Sun, Zhipei" uniqKey="Sun Z" first="Zhipei" last="Sun">Zhipei Sun</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Department of Micro- and Nanosciences, Aalto University</institution>
, PO Box 13500, FI-00076 Aalto,
<country>Finland</country>
</nlm:aff>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25765454</idno>
<idno type="pmc">4358043</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358043</idno>
<idno type="RBID">PMC:4358043</idno>
<idno type="doi">10.1038/srep09101</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000080</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000080</idno>
<idno type="wicri:Area/Pmc/Curation">000080</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000080</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Distributed ultrafast fibre laser</title>
<author>
<name sortKey="Liu, Xueming" sort="Liu, Xueming" uniqKey="Liu X" first="Xueming" last="Liu">Xueming Liu</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences</institution>
, Xi'an 710119,
<country>China</country>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cui, Yudong" sort="Cui, Yudong" uniqKey="Cui Y" first="Yudong" last="Cui">Yudong Cui</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences</institution>
, Xi'an 710119,
<country>China</country>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Han, Dongdong" sort="Han, Dongdong" uniqKey="Han D" first="Dongdong" last="Han">Dongdong Han</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences</institution>
, Xi'an 710119,
<country>China</country>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Yao, Xiankun" sort="Yao, Xiankun" uniqKey="Yao X" first="Xiankun" last="Yao">Xiankun Yao</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences</institution>
, Xi'an 710119,
<country>China</country>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sun, Zhipei" sort="Sun, Zhipei" uniqKey="Sun Z" first="Zhipei" last="Sun">Zhipei Sun</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Department of Micro- and Nanosciences, Aalto University</institution>
, PO Box 13500, FI-00076 Aalto,
<country>Finland</country>
</nlm:aff>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific Reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>A traditional ultrafast fibre laser has a constant cavity length that is independent of the pulse wavelength. The investigation of distributed ultrafast (DUF) lasers is conceptually and technically challenging and of great interest because the laser cavity length and fundamental cavity frequency are changeable based on the wavelength. Here, we propose and demonstrate a DUF fibre laser based on a linearly chirped fibre Bragg grating, where the total cavity length is linearly changeable as a function of the pulse wavelength. The spectral sidebands in DUF lasers are enhanced greatly, including the continuous-wave (CW) and pulse components. We observe that all sidebands of the pulse experience the same round-trip time although they have different round-trip distances and refractive indices. The pulse-shaping of the DUF laser is dominated by the dissipative processes in addition to the phase modulations, which makes our ultrafast laser simple and stable. This laser provides a simple, stable, low-cost, ultrafast-pulsed source with controllable and changeable cavity frequency.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Fermann, M E" uniqKey="Fermann M">M. E. Fermann</name>
</author>
<author>
<name sortKey="Hartl, I" uniqKey="Hartl I">I. Hartl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barbieri, S" uniqKey="Barbieri S">S. Barbieri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oktem, B" uniqKey="Oktem B">B. Oktem</name>
</author>
<author>
<name sortKey="Ulgudur, C" uniqKey="Ulgudur C">C. Ulgudur</name>
</author>
<author>
<name sortKey="Ilday, F" uniqKey="Ilday F">F. Ilday</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grelu, P" uniqKey="Grelu P">P. Grelu</name>
</author>
<author>
<name sortKey="Akhmediev, N" uniqKey="Akhmediev N">N. Akhmediev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brida, D" uniqKey="Brida D">D. Brida</name>
</author>
<author>
<name sortKey="Krauss, G" uniqKey="Krauss G">G. Krauss</name>
</author>
<author>
<name sortKey="Sell, A" uniqKey="Sell A">A. Sell</name>
</author>
<author>
<name sortKey="Leitenstorfer, A" uniqKey="Leitenstorfer A">A. Leitenstorfer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agrawal, G P" uniqKey="Agrawal G">G. P. Agrawal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loh, W H" uniqKey="Loh W">W. H. Loh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, X M" uniqKey="Liu X">X. M. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peccianti, M" uniqKey="Peccianti M">M. Peccianti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cui, Y D" uniqKey="Cui Y">Y. D. Cui</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eigenwillig, C M" uniqKey="Eigenwillig C">C. M. Eigenwillig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsatourian, V" uniqKey="Tsatourian V">V. Tsatourian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsas, V J" uniqKey="Matsas V">V. J. Matsas</name>
</author>
<author>
<name sortKey="Newson, T P" uniqKey="Newson T">T. P. Newson</name>
</author>
<author>
<name sortKey="Richardson, D J" uniqKey="Richardson D">D. J. Richardson</name>
</author>
<author>
<name sortKey="Payne, D N" uniqKey="Payne D">D. N. Payne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yun, L" uniqKey="Yun L">L. Yun</name>
</author>
<author>
<name sortKey="Liu, X M" uniqKey="Liu X">X. M. Liu</name>
</author>
<author>
<name sortKey="Mao, D" uniqKey="Mao D">D. Mao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doran, N J" uniqKey="Doran N">N. J. Doran</name>
</author>
<author>
<name sortKey="Wood, D" uniqKey="Wood D">D. Wood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Z Y" uniqKey="Zhang Z">Z. Y. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keller, U" uniqKey="Keller U">U. Keller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez, A" uniqKey="Martinez A">A. Martinez</name>
</author>
<author>
<name sortKey="Sun, Z" uniqKey="Sun Z">Z. Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sobon, G" uniqKey="Sobon G">G. Sobon</name>
</author>
<author>
<name sortKey="Sotor, J" uniqKey="Sotor J">J. Sotor</name>
</author>
<author>
<name sortKey="Abramski, K M" uniqKey="Abramski K">K. M. Abramski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, D" uniqKey="Han D">D. Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Set, S Y" uniqKey="Set S">S. Y. Set</name>
</author>
<author>
<name sortKey="Yaguchi, H" uniqKey="Yaguchi H">H. Yaguchi</name>
</author>
<author>
<name sortKey="Tanaka, Y" uniqKey="Tanaka Y">Y. Tanaka</name>
</author>
<author>
<name sortKey="Jablonski, M" uniqKey="Jablonski M">M. Jablonski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nozaki, Y" uniqKey="Nozaki Y">Y. Nozaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kurashima, Y" uniqKey="Kurashima Y">Y. Kurashima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sato, K" uniqKey="Sato K">K. Sato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fermann, M E" uniqKey="Fermann M">M. E. Fermann</name>
</author>
<author>
<name sortKey="Hartl, I" uniqKey="Hartl I">I. Hartl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turitsyn, S K" uniqKey="Turitsyn S">S. K. Turitsyn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fotiadi, A A" uniqKey="Fotiadi A">A. A. Fotiadi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yl Jarkko, K H" uniqKey="Yl Jarkko K">K. H. Ylä-Jarkko</name>
</author>
<author>
<name sortKey="Grudinin, A B" uniqKey="Grudinin A">A. B. Grudinin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ball, G A" uniqKey="Ball G">G. A. Ball</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, D Y" uniqKey="Tang D">D. Y. Tang</name>
</author>
<author>
<name sortKey="Zhao, L M" uniqKey="Zhao L">L. M. Zhao</name>
</author>
<author>
<name sortKey="Zhao, B" uniqKey="Zhao B">B. Zhao</name>
</author>
<author>
<name sortKey="Liu, A Q" uniqKey="Liu A">A. Q. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hofer, M" uniqKey="Hofer M">M. Hofer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fermann, M E" uniqKey="Fermann M">M. E. Fermann</name>
</author>
<author>
<name sortKey="Sugden, K" uniqKey="Sugden K">K. Sugden</name>
</author>
<author>
<name sortKey="Bennion, I" uniqKey="Bennion I">I. Bennion</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gumenyuk, R" uniqKey="Gumenyuk R">R. Gumenyuk</name>
</author>
<author>
<name sortKey="Vartiainen, I" uniqKey="Vartiainen I">I. Vartiainen</name>
</author>
<author>
<name sortKey="Tuovinen, H" uniqKey="Tuovinen H">H. Tuovinen</name>
</author>
<author>
<name sortKey="Okhotnikov, O G" uniqKey="Okhotnikov O">O. G. Okhotnikov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orta, B" uniqKey="Orta B">B. Ortaς</name>
</author>
<author>
<name sortKey="Schreiber, T" uniqKey="Schreiber T">T. Schreiber</name>
</author>
<author>
<name sortKey="Limpert, J" uniqKey="Limpert J">J. Limpert</name>
</author>
<author>
<name sortKey="T Nnermann, A" uniqKey="T Nnermann A">A. TŘnnermann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katz, O" uniqKey="Katz O">O. Katz</name>
</author>
<author>
<name sortKey="Sintov, Y" uniqKey="Sintov Y">Y. Sintov</name>
</author>
<author>
<name sortKey="Nafcha, Y" uniqKey="Nafcha Y">Y. Nafcha</name>
</author>
<author>
<name sortKey="Glick, Y" uniqKey="Glick Y">Y. Glick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fermann, M E" uniqKey="Fermann M">M. E. Fermann</name>
</author>
<author>
<name sortKey="Galvanauskas, A" uniqKey="Galvanauskas A">A. Galvanauskas</name>
</author>
<author>
<name sortKey="Sucha, G" uniqKey="Sucha G">G. Sucha</name>
</author>
<author>
<name sortKey="Harter, D" uniqKey="Harter D">D. Harter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gumenyuk, R" uniqKey="Gumenyuk R">R. Gumenyuk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dennis, M L" uniqKey="Dennis M">M. L. Dennis</name>
</author>
<author>
<name sortKey="Duling Iii, I N" uniqKey="Duling Iii I">I. N. Duling III</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kelly, S M J" uniqKey="Kelly S">S. M. J. Kelly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gordon, J P" uniqKey="Gordon J">J. P. Gordon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Von Der Linde, D" uniqKey="Von Der Linde D">D. Von der Linde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeng, C" uniqKey="Zeng C">C. Zeng</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Yun, L" uniqKey="Yun L">L. Yun</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mao, D" uniqKey="Mao D">D. Mao</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dudley, J M" uniqKey="Dudley J">J. M. Dudley</name>
</author>
<author>
<name sortKey="Finot, C" uniqKey="Finot C">C. Finot</name>
</author>
<author>
<name sortKey="Richardson, D J" uniqKey="Richardson D">D. J. Richardson</name>
</author>
<author>
<name sortKey="Millot, G" uniqKey="Millot G">G. Millot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, X M" uniqKey="Liu X">X. M. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Renninger, W H" uniqKey="Renninger W">W. H. Renninger</name>
</author>
<author>
<name sortKey="Wise, F W" uniqKey="Wise F">F. W. Wise</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nelson, L E" uniqKey="Nelson L">L. E. Nelson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haus, H A" uniqKey="Haus H">H. A. Haus</name>
</author>
<author>
<name sortKey="Fujimoto, J G" uniqKey="Fujimoto J">J. G. Fujimoto</name>
</author>
<author>
<name sortKey="Ippen, E P" uniqKey="Ippen E">E. P. Ippen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wise, F" uniqKey="Wise F">F. Wise</name>
</author>
<author>
<name sortKey="Chong, A" uniqKey="Chong A">A. Chong</name>
</author>
<author>
<name sortKey="Renninger, W" uniqKey="Renninger W">W. Renninger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agrawal, G P" uniqKey="Agrawal G">G. P. Agrawal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agrawal, G P" uniqKey="Agrawal G">G. P. Agrawal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, X M" uniqKey="Liu X">X. M. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garmire, E" uniqKey="Garmire E">E. Garmire</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Sci Rep</journal-id>
<journal-title-group>
<journal-title>Scientific Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-2322</issn>
<publisher>
<publisher-name>Nature Publishing Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25765454</article-id>
<article-id pub-id-type="pmc">4358043</article-id>
<article-id pub-id-type="pii">srep09101</article-id>
<article-id pub-id-type="doi">10.1038/srep09101</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Distributed ultrafast fibre laser</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Xueming</given-names>
</name>
<xref ref-type="corresp" rid="c1">a</xref>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cui</surname>
<given-names>Yudong</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Han</surname>
<given-names>Dongdong</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yao</surname>
<given-names>Xiankun</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sun</surname>
<given-names>Zhipei</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<aff id="a1">
<label>1</label>
<institution>State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences</institution>
, Xi'an 710119,
<country>China</country>
</aff>
<aff id="a2">
<label>2</label>
<institution>Department of Micro- and Nanosciences, Aalto University</institution>
, PO Box 13500, FI-00076 Aalto,
<country>Finland</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="c1">
<label>a</label>
<email>liuxueming72@yahoo.com</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>13</day>
<month>03</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>5</volume>
<elocation-id>9101</elocation-id>
<history>
<date date-type="received">
<day>30</day>
<month>11</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>18</day>
<month>02</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2015, Macmillan Publishers Limited. All rights reserved</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>Macmillan Publishers Limited. All rights reserved</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<pmc-comment>author-paid</pmc-comment>
<license-p>This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<p>A traditional ultrafast fibre laser has a constant cavity length that is independent of the pulse wavelength. The investigation of distributed ultrafast (DUF) lasers is conceptually and technically challenging and of great interest because the laser cavity length and fundamental cavity frequency are changeable based on the wavelength. Here, we propose and demonstrate a DUF fibre laser based on a linearly chirped fibre Bragg grating, where the total cavity length is linearly changeable as a function of the pulse wavelength. The spectral sidebands in DUF lasers are enhanced greatly, including the continuous-wave (CW) and pulse components. We observe that all sidebands of the pulse experience the same round-trip time although they have different round-trip distances and refractive indices. The pulse-shaping of the DUF laser is dominated by the dissipative processes in addition to the phase modulations, which makes our ultrafast laser simple and stable. This laser provides a simple, stable, low-cost, ultrafast-pulsed source with controllable and changeable cavity frequency.</p>
</abstract>
</article-meta>
</front>
<floats-group>
<fig id="f1">
<label>Figure 1</label>
<caption>
<title>Set-up of DUF fibre laser.</title>
<p>(a) Cavity setup of the PML fibre laser incorporating a linearly chirped fibre Bragg grating (LCFBG). Inset: Reflection spectra of LCFBG. The LCFBG is spliced in a linear cavity containing a single-walled carbon nanotube (SWNT) saturable absorber (SA) to mode-lock ultrafast laser, a polarisation controller (PC) to act on the pulse polarisation and adjust the central wavelength, a gain fibre (EDF), a wavelength-division multiplexer (WDM) to couple the pump source (LD), and a high-reflecting dielectric mirror. A polarisation independent isolator (PI-ISO) forces the unidirectional output of the laser. The total length of linear cavity is ~17.7 m with ~7-m-long EDF and ~15-mm-long LCFBG. (b) Schematic diagram of the LCFBG-based fibre laser. The LCFBG reflects the different wavelengths with respect to its position. Round-trip distance for a pulse with a shorter wavelength is less than that for a pulse with a longer wavelength. (c) The operation of ultrafast fibre laser with the central wavelength of
<italic>λ</italic>
<sub>2</sub>
and the spectral bandwidth of Δ
<italic>λ</italic>
. The blue area of the LCFBG reflects the spectra from
<italic>λ</italic>
<sub>2</sub>
− Δ
<italic>λ</italic>
/2 to
<italic>λ</italic>
<sub>2</sub>
+ Δ
<italic>λ</italic>
/2. The different spectral components of the pulses propagate through the different distances in a round trip.</p>
</caption>
<graphic xlink:href="srep09101-f1"></graphic>
</fig>
<fig id="f2">
<label>Figure 2</label>
<caption>
<title>Experimental optical spectra and fundamental radio frequency (RF) spectra of the laser operating on four typical wavelengths.</title>
<p>(a,b) The four typical laser outputs at the pump power
<italic>P</italic>
≈ 13 mW, achieved through the appropriate adjustment of the polarisation controller, for
<italic>λ</italic>
<sub>1</sub>
(black),
<italic>λ</italic>
<sub>2</sub>
(red),
<italic>λ</italic>
<sub>3</sub>
(blue), and
<italic>λ</italic>
<sub>4</sub>
(dark yellow). The in-line polarisation controller with low insertion loss can adjust the pulse wavelength by means of the polarisation dependent loss. (a) Optical spectra of the laser at four different wavelengths
<italic>λ</italic>
<sub>1–4</sub>
. The central wavelengths of
<italic>λ</italic>
<sub>1–4</sub>
are 1556.36, 1558.25, 1561.45, and 1564.25 nm, respectively. (b) Fundamental RF spectra with the resolution of 1 Hz and the span of 100 Hz for the corresponding
<italic>λ</italic>
<sub>1–4</sub>
. The fundamental repetition rates of
<italic>λ</italic>
<sub>1–4</sub>
are 5.733487, 5.733062, 5.732286, and 5.731641 MHz, respectively.</p>
</caption>
<graphic xlink:href="srep09101-f2"></graphic>
</fig>
<fig id="f3">
<label>Figure 3</label>
<caption>
<title>Fundamental cavity frequency and relative cavity length of laser operating on different wavelengths.</title>
<p>(a) Fundamental cavity frequency
<italic>F</italic>
and (b) relative difference of cavity length, Δ
<italic>L</italic>
, with respect to the central wavelength
<italic>λ</italic>
. The square symbols are the experimental data, showing the relationship of
<italic>F</italic>
versus
<italic>λ</italic>
of pulses. The circle symbols are calculated from the experimental data. In the calculation, Δ
<italic>L</italic>
is the difference of the total cavity length of any wavelength to a reference wavelength (1556.36 nm). Δ
<italic>L</italic>
is as large as ~11 mm when
<italic>λ</italic>
is from ~1556.36 to ~1564.25 nm. The solid lines are fit from the experimental data (square and circle symbols). The fit lines in (a, b) are expressed by
<italic>F</italic>
= 6.09874 − 2.34677 × 10
<sup>−4</sup>
·
<italic>λ</italic>
and Δ
<italic>L</italic>
= −2173.605 + 1.39657·
<italic>λ</italic>
, respectively.</p>
</caption>
<graphic xlink:href="srep09101-f3"></graphic>
</fig>
<fig id="f4">
<label>Figure 4</label>
<caption>
<title>Typical laser characteristics.</title>
<p>(a–d) The optical spectra, autocorrelation traces, RF spectra, and oscilloscope traces, respectively, of lasers at the central wavelength
<italic>λ</italic>
≈ 1560 nm. (a) Optical spectra of the experimental observations at the pump power
<italic>P</italic>
= 10.6, 13.8, and 16.9 mW (from bottom to top), respectively. (b) Autocorrelation traces of the experimental data (circle symbols) and sech
<sup>2</sup>
–shaped fit (solid curves). The FWHM spectral width and the pulse durations (Δ
<italic>τ</italic>
) are approximately 0.64 nm and 4.7 ps, 0.70 nm and 4.3 ps, and 0.71 nm and 4.1 ps at
<italic>P</italic>
≈ 10.6, 13.8, and 16.9 mW, respectively. (c) Fundamental RF spectrum with the resolution of 1 Hz and the span of 100 Hz. Inset: oscilloscope traces with the separation of 174.44 ns, corresponding to 5.732638 MHz of the fundamental harmonic frequency that is independent of the pump power. (d) Wideband RF spectrum up to 1 GHz. No spectrum modulation is observed over 1 GHz in (d), indicating no Q-switching instabilities.</p>
</caption>
<graphic xlink:href="srep09101-f4"></graphic>
</fig>
<fig id="f5">
<label>Figure 5</label>
<caption>
<title>Numerical simulations.</title>
<p>To match the experimental results, the pump strength
<italic>E
<sub>s</sub>
</italic>
is assumed to be 135 pJ in the calculation. The pulse has 0.695 nm of the FWHM spectral width, 4.99 ps of the pulse duration, and 0.5 nJ of pulse energy. The numerical result is in good agreement with the experimental observation in
<xref ref-type="fig" rid="f4">Fig. 4</xref>
(at the case of the pump power
<italic>P</italic>
= 10.6 mW). (a) Optical spectrum, (b) pulse profile, and (c) instantaneous frequency of the pulses.</p>
</caption>
<graphic xlink:href="srep09101-f5"></graphic>
</fig>
<fig id="f6">
<label>Figure 6</label>
<caption>
<title>Strongly enhanced sidebands.</title>
<p>The laser output at the pump power
<italic>P</italic>
≈ 17 mW with the appropriate setting of polarisation controller. (a) Optical spectrum and (b) the corresponding autocorrelation trace of laser. The central wavelength of the pulse is ~1563.4 nm. The two strongest sidebands at the wavelengths of ~1562.1 and ~1564.7 nm are over 17 and 13 dB larger than the central wavelength, respectively. The laser pulse has 0.68 nm of the FWHM spectral width, 4.1 ps of the pulse duration, and 5.731817 MHz of fundamental cavity frequency (Fig. 6(b) inset). (c, e) The two strongest sidebands are separated from the pulse spectrum by a programmable optical filter with the bandwidth of 0.3 nm. Optical spectrum (c) and autocorrelation trace (d) of the strongest sideband at ~1562.1 nm. Optical spectrum (e) and autocorrelation trace (f) of the second strongest sideband at ~1564.7 nm. Inset: Fundamental RF spectrum with the resolution of 1 Hz and the span of 100 Hz for the pulse (Fig. 6(b)), the strongest sideband (Fig. 6(d)), and the second strongest sideband (Fig. 6(f)). The two strongest sidebands have different wavelengths with the difference of 2.6 nm, but they have the same round-trip time of 174.46475 ns (i.e., reciprocal of 5.731817 MHz of fundamental harmonic frequency).</p>
</caption>
<graphic xlink:href="srep09101-f6"></graphic>
</fig>
<fig id="f7">
<label>Figure 7</label>
<caption>
<title>Autocorrelation traces of interaction of the first-order sidebands.</title>
<p>The red solid curve and circular symbols are the theoretical and experimental results, respectively. The period of curve,
<italic>ν</italic>
, is approximately 3.1 ps.
<italic>ν</italic>
is equal to the reciprocal of the wavelength difference (i.e., 2.6 nm) of the first-order sidebands. Note that 2.6 nm of the wavelength difference corresponds to 320 GHz of the frequency difference.</p>
</caption>
<graphic xlink:href="srep09101-f7"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000080 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000080 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:4358043
   |texte=   Distributed ultrafast fibre laser
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:25765454" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024