Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000394 ( Pmc/Corpus ); précédent : 0003939; suivant : 0003950 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning</title>
<author>
<name sortKey="Balachandran, Prasanna V" sort="Balachandran, Prasanna V" uniqKey="Balachandran P" first="Prasanna V." last="Balachandran">Prasanna V. Balachandran</name>
</author>
<author>
<name sortKey="Broderick, Scott R" sort="Broderick, Scott R" uniqKey="Broderick S" first="Scott R." last="Broderick">Scott R. Broderick</name>
</author>
<author>
<name sortKey="Rajan, Krishna" sort="Rajan, Krishna" uniqKey="Rajan K" first="Krishna" last="Rajan">Krishna Rajan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24959095</idno>
<idno type="pmc">4042451</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4042451</idno>
<idno type="RBID">PMC:4042451</idno>
<idno type="doi">10.1098/rspa.2010.0543</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">000394</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000394</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning</title>
<author>
<name sortKey="Balachandran, Prasanna V" sort="Balachandran, Prasanna V" uniqKey="Balachandran P" first="Prasanna V." last="Balachandran">Prasanna V. Balachandran</name>
</author>
<author>
<name sortKey="Broderick, Scott R" sort="Broderick, Scott R" uniqKey="Broderick S" first="Scott R." last="Broderick">Scott R. Broderick</name>
</author>
<author>
<name sortKey="Rajan, Krishna" sort="Rajan, Krishna" uniqKey="Rajan K" first="Krishna" last="Rajan">Krishna Rajan</name>
</author>
</analytic>
<series>
<title level="j">Proceedings. Mathematical, Physical, and Engineering Sciences / The Royal Society</title>
<idno type="ISSN">1364-5021</idno>
<idno type="eISSN">1471-2946</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>This paper develops a statistical learning approach to identify potentially new high-temperature ferroelectric piezoelectric perovskite compounds. Unlike most computational studies on crystal chemistry, where the starting point is some form of electronic structure calculation, we use a data-driven approach to initiate our search. This is accomplished by identifying patterns of behaviour between discrete scalar descriptors associated with crystal and electronic structure and the reported Curie temperature (
<italic>T</italic>
<sub>C</sub>
) of known compounds; extracting design rules that govern critical structure–property relationships; and discovering in a quantitative fashion the exact role of these materials descriptors. Our approach applies linear manifold methods for data dimensionality reduction to discover the dominant descriptors governing structure–property correlations (the ‘genes’) and Shannon entropy metrics coupled to recursive partitioning methods to quantitatively assess the specific combination of descriptors that govern the link between crystal chemistry and
<italic>T</italic>
<sub>C</sub>
(their ‘sequencing’). We use this information to develop predictive models that can suggest new structure/chemistries and/or properties. In this manner, BiTmO
<sub>3</sub>
–PbTiO
<sub>3</sub>
and BiLuO
<sub>3</sub>
–PbTiO
<sub>3</sub>
are predicted to have a
<italic>T</italic>
<sub>C</sub>
of 730
<sup>°</sup>
C and 705
<sup>°</sup>
C, respectively. A quantitative structure–property relationship model similar to those used in biology and drug discovery not only predicts our new chemistries but also validates published reports.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Abrahams, S C" uniqKey="Abrahams S">S. C. Abrahams</name>
</author>
<author>
<name sortKey="Kurtz, S K" uniqKey="Kurtz S">S. K. Kurtz</name>
</author>
<author>
<name sortKey="Jamieson, P B" uniqKey="Jamieson P">P. B. Jamieson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahart, M" uniqKey="Ahart M">M. Ahart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allred, A L" uniqKey="Allred A">A. L. Allred</name>
</author>
<author>
<name sortKey="Rochow, E G" uniqKey="Rochow E">E. G. Rochow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baettig, P" uniqKey="Baettig P">P. Baettig</name>
</author>
<author>
<name sortKey="Schelle, C F" uniqKey="Schelle C">C. F. Schelle</name>
</author>
<author>
<name sortKey="Lesar, R" uniqKey="Lesar R">R. LeSar</name>
</author>
<author>
<name sortKey="Waghmare, U V" uniqKey="Waghmare U">U. V. Waghmare</name>
</author>
<author>
<name sortKey="Spaldin, N" uniqKey="Spaldin N">N. Spaldin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Belik, A A" uniqKey="Belik A">A. A. Belik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Belik, A A" uniqKey="Belik A">A. A. Belik</name>
</author>
<author>
<name sortKey="Wuernisha, T" uniqKey="Wuernisha T">T. Wuernisha</name>
</author>
<author>
<name sortKey="Kamiyama, T" uniqKey="Kamiyama T">T. Kamiyama</name>
</author>
<author>
<name sortKey="Mori, K" uniqKey="Mori K">K. Mori</name>
</author>
<author>
<name sortKey="Maie, M" uniqKey="Maie M">M. Maie</name>
</author>
<author>
<name sortKey="Nagai, T" uniqKey="Nagai T">T. Nagai</name>
</author>
<author>
<name sortKey="Matsui, Y T" uniqKey="Matsui Y">Y. T. Matsui</name>
</author>
<author>
<name sortKey="Takayama Muromachi, E" uniqKey="Takayama Muromachi E">E. Takayama-Muromachi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brese, N E" uniqKey="Brese N">N. E. Brese</name>
</author>
<author>
<name sortKey="O Eeffe, M" uniqKey="O Eeffe M">M. O’Keeffe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Broderick, S R" uniqKey="Broderick S">S. R. Broderick</name>
</author>
<author>
<name sortKey="Nowers, J R" uniqKey="Nowers J">J. R. Nowers</name>
</author>
<author>
<name sortKey="Narasimhan, B" uniqKey="Narasimhan B">B. Narasimhan</name>
</author>
<author>
<name sortKey="Rajan, K" uniqKey="Rajan K">K. Rajan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, I D" uniqKey="Brown I">I. D. Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
<author>
<name sortKey="Hu, P" uniqKey="Hu P">P. Hu</name>
</author>
<author>
<name sortKey="Sun, X" uniqKey="Sun X">X. Sun</name>
</author>
<author>
<name sortKey="Sun, C" uniqKey="Sun C">C. Sun</name>
</author>
<author>
<name sortKey="Xing, X" uniqKey="Xing X">X. Xing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
<author>
<name sortKey="Tan, X" uniqKey="Tan X">X. Tan</name>
</author>
<author>
<name sortKey="Jo, X" uniqKey="Jo X">X. Jo</name>
</author>
<author>
<name sortKey="Rodel, J" uniqKey="Rodel J">J. Rödel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clementi, E" uniqKey="Clementi E">E. Clementi</name>
</author>
<author>
<name sortKey="Raimondi, D L" uniqKey="Raimondi D">D. L. Raimondi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cohen, R E" uniqKey="Cohen R">R. E. Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cohen, R E" uniqKey="Cohen R">R. E. Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Curtarolo, S" uniqKey="Curtarolo S">S. Curtarolo</name>
</author>
<author>
<name sortKey="Morgan, D" uniqKey="Morgan D">D. Morgan</name>
</author>
<author>
<name sortKey="Persson, K" uniqKey="Persson K">K. Persson</name>
</author>
<author>
<name sortKey="Rodgers, J" uniqKey="Rodgers J">J. Rodgers</name>
</author>
<author>
<name sortKey="Ceder, G" uniqKey="Ceder G">G. Ceder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Damjanovic, D" uniqKey="Damjanovic D">D. Damjanovic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drache, M" uniqKey="Drache M">M. Drache</name>
</author>
<author>
<name sortKey="Roussel, P" uniqKey="Roussel P">P. Roussel</name>
</author>
<author>
<name sortKey="Wignacourt, J P" uniqKey="Wignacourt J">J.-P. Wignacourt</name>
</author>
<author>
<name sortKey="Conflant, P" uniqKey="Conflant P">P. Conflant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drache, M" uniqKey="Drache M">M. Drache</name>
</author>
<author>
<name sortKey="Roussel, P" uniqKey="Roussel P">P. Roussel</name>
</author>
<author>
<name sortKey="Conflant, P" uniqKey="Conflant P">P. Conflant</name>
</author>
<author>
<name sortKey="Wignacourt, J P" uniqKey="Wignacourt J">J-P. Wignacourt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duan, R" uniqKey="Duan R">R. Duan</name>
</author>
<author>
<name sortKey="Speyer, R F" uniqKey="Speyer R">R. F. Speyer</name>
</author>
<author>
<name sortKey="Alberta, E" uniqKey="Alberta E">E. Alberta</name>
</author>
<author>
<name sortKey="Shrout, T R" uniqKey="Shrout T">T. R. Shrout</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dudiy, S V" uniqKey="Dudiy S">S. V. Dudiy</name>
</author>
<author>
<name sortKey="Zunger, A" uniqKey="Zunger A">A. Zunger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eitel, R E" uniqKey="Eitel R">R. E. Eitel</name>
</author>
<author>
<name sortKey="Randall, C A" uniqKey="Randall C">C. A. Randall</name>
</author>
<author>
<name sortKey="Shrout, T R" uniqKey="Shrout T">T. R. Shrout</name>
</author>
<author>
<name sortKey="Rehrig, P W" uniqKey="Rehrig P">P. W. Rehrig</name>
</author>
<author>
<name sortKey="Hackenberger, W" uniqKey="Hackenberger W">W. Hackenberger</name>
</author>
<author>
<name sortKey="Park, S E" uniqKey="Park S">S. E. Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emsley, J" uniqKey="Emsley J">J. Emsley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ericksson, L" uniqKey="Ericksson L">L. Ericksson</name>
</author>
<author>
<name sortKey="Johansson, E" uniqKey="Johansson E">E. Johansson</name>
</author>
<author>
<name sortKey="Kettaneh Wold, N" uniqKey="Kettaneh Wold N">N. Kettaneh-Wold</name>
</author>
<author>
<name sortKey="Wold, S" uniqKey="Wold S">S. Wold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, G" uniqKey="Feng G">G. Feng</name>
</author>
<author>
<name sortKey="Rongzi, H" uniqKey="Rongzi H">H. Rongzi</name>
</author>
<author>
<name sortKey="Jiaji, L" uniqKey="Jiaji L">L. Jiaji</name>
</author>
<author>
<name sortKey="Zhen, L" uniqKey="Zhen L">L. Zhen</name>
</author>
<author>
<name sortKey="Lihong, C" uniqKey="Lihong C">C. Lihong</name>
</author>
<author>
<name sortKey="Changsheng, T" uniqKey="Changsheng T">T. Changsheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fischer, C C" uniqKey="Fischer C">C. C. Fischer</name>
</author>
<author>
<name sortKey="Tibbetts, K J" uniqKey="Tibbetts K">K. J. Tibbetts</name>
</author>
<author>
<name sortKey="Morgan, D" uniqKey="Morgan D">D. Morgan</name>
</author>
<author>
<name sortKey="Ceder, G" uniqKey="Ceder G">G. Ceder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Froese Fischer, C" uniqKey="Froese Fischer C">C. Froese-Fischer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gadzuric, S" uniqKey="Gadzuric S">S. Gadzuric</name>
</author>
<author>
<name sortKey="Suh, C" uniqKey="Suh C">C. Suh</name>
</author>
<author>
<name sortKey="Gaune Escard, M" uniqKey="Gaune Escard M">M. Gaune-Escard</name>
</author>
<author>
<name sortKey="Rajan, K" uniqKey="Rajan K">K. Rajan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="George, L" uniqKey="George L">L. George</name>
</author>
<author>
<name sortKey="Hrubiak, R" uniqKey="Hrubiak R">R. Hrubiak</name>
</author>
<author>
<name sortKey="Rajan, K" uniqKey="Rajan K">K. Rajan</name>
</author>
<author>
<name sortKey="Saxena, S" uniqKey="Saxena S">S. Saxena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goudochnikov, P" uniqKey="Goudochnikov P">P. Goudochnikov</name>
</author>
<author>
<name sortKey="Bell, A J" uniqKey="Bell A">A. J. Bell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goujon, C" uniqKey="Goujon C">C. Goujon</name>
</author>
<author>
<name sortKey="Darie, C" uniqKey="Darie C">C. Darie</name>
</author>
<author>
<name sortKey="Bacia, M" uniqKey="Bacia M">M. Bacia</name>
</author>
<author>
<name sortKey="Klein, H" uniqKey="Klein H">H. Klein</name>
</author>
<author>
<name sortKey="Ortega, L" uniqKey="Ortega L">L. Ortega</name>
</author>
<author>
<name sortKey="Bordet, P" uniqKey="Bordet P">P. Bordet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grinberg, I" uniqKey="Grinberg I">I. Grinberg</name>
</author>
<author>
<name sortKey="Rappe, A M" uniqKey="Rappe A">A. M. Rappe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grinberg, I" uniqKey="Grinberg I">I. Grinberg</name>
</author>
<author>
<name sortKey="Rappe, A M" uniqKey="Rappe A">A. M. Rappe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grinberg, I" uniqKey="Grinberg I">I. Grinberg</name>
</author>
<author>
<name sortKey="Suchomel, M R" uniqKey="Suchomel M">M. R. Suchomel</name>
</author>
<author>
<name sortKey="Davies, P M" uniqKey="Davies P">P. M. Davies</name>
</author>
<author>
<name sortKey="Rappe, A M" uniqKey="Rappe A">A. M. Rappe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hall, M" uniqKey="Hall M">M. Hall</name>
</author>
<author>
<name sortKey="Frank, E" uniqKey="Frank E">E. Frank</name>
</author>
<author>
<name sortKey="Holmes, G" uniqKey="Holmes G">G. Holmes</name>
</author>
<author>
<name sortKey="Pfahringer, B" uniqKey="Pfahringer B">B. Pfahringer</name>
</author>
<author>
<name sortKey="Reutemann, P" uniqKey="Reutemann P">P. Reutemann</name>
</author>
<author>
<name sortKey="Witten, I H" uniqKey="Witten I">I. H. Witten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, J" uniqKey="Han J">J. Han</name>
</author>
<author>
<name sortKey="Kamber, M" uniqKey="Kamber M">M. Kamber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hawkins, D M" uniqKey="Hawkins D">D. M. Hawkins</name>
</author>
<author>
<name sortKey="Young, S S" uniqKey="Young S">S. S. Young</name>
</author>
<author>
<name sortKey="Ruskino, A" uniqKey="Ruskino A">A. Ruskino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hotop, H" uniqKey="Hotop H">H. Hotop</name>
</author>
<author>
<name sortKey="Lineberger, W C" uniqKey="Lineberger W">W. C. Lineberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Igarashi, K" uniqKey="Igarashi K">K. Igarashi</name>
</author>
<author>
<name sortKey="Koumoto, K" uniqKey="Koumoto K">K. Koumoto</name>
</author>
<author>
<name sortKey="Yanagida, H" uniqKey="Yanagida H">H. Yanagida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="I Iguez, J" uniqKey="I Iguez J">J. Íñiguez</name>
</author>
<author>
<name sortKey="Vanderbilt, D" uniqKey="Vanderbilt D">D. Vanderbilt</name>
</author>
<author>
<name sortKey="Bellaiche, L" uniqKey="Bellaiche L">L. Bellaiche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ishiwata, S" uniqKey="Ishiwata S">S. Ishiwata</name>
</author>
<author>
<name sortKey="Azuma, M" uniqKey="Azuma M">M. Azuma</name>
</author>
<author>
<name sortKey="Takano, M" uniqKey="Takano M">M. Takano</name>
</author>
<author>
<name sortKey="Nishibori, E" uniqKey="Nishibori E">E. Nishibori</name>
</author>
<author>
<name sortKey="Takata, M" uniqKey="Takata M">M. Takata</name>
</author>
<author>
<name sortKey="Kato, K" uniqKey="Kato K">K. Kato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Izenman, A J" uniqKey="Izenman A">A. J. Izenman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="J Hannesson, G H" uniqKey="J Hannesson G">G. H. Jóhannesson</name>
</author>
<author>
<name sortKey="Bligaard, T" uniqKey="Bligaard T">T. Bligaard</name>
</author>
<author>
<name sortKey="Ruban, A V" uniqKey="Ruban A">A. V. Ruban</name>
</author>
<author>
<name sortKey="Skriver, H L" uniqKey="Skriver H">H. L. Skriver</name>
</author>
<author>
<name sortKey="Jacobsen, K W" uniqKey="Jacobsen K">K. W. Jacobsen</name>
</author>
<author>
<name sortKey="N Rskov, J K" uniqKey="N Rskov J">J. K. Nørskov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karnani, M" uniqKey="Karnani M">M. Karnani</name>
</author>
<author>
<name sortKey="P Kkonen, K" uniqKey="P Kkonen K">K. Pääkkönen</name>
</author>
<author>
<name sortKey="Annila, A" uniqKey="Annila A">A. Annila</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mackay, A L" uniqKey="Mackay A">A. L. Mackay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mackay, A L" uniqKey="Mackay A">A. L. Mackay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mackay, A L" uniqKey="Mackay A">A. L. Mackay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mackay, A L" uniqKey="Mackay A">A. L. Mackay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mackay, A L" uniqKey="Mackay A">A. L. Mackay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Makov, G" uniqKey="Makov G">G. Makov</name>
</author>
<author>
<name sortKey="Gattinoni, C" uniqKey="Gattinoni C">C. Gattinoni</name>
</author>
<author>
<name sortKey="De, Vita A" uniqKey="De V">Vita A. De</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsui, T" uniqKey="Matsui T">T. Matsui</name>
</author>
<author>
<name sortKey="Nomura, S" uniqKey="Nomura S">S. Nomura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizoguchi, H" uniqKey="Mizoguchi H">H. Mizoguchi</name>
</author>
<author>
<name sortKey="Woodward, P M" uniqKey="Woodward P">P. M. Woodward</name>
</author>
<author>
<name sortKey="Byeon, S H" uniqKey="Byeon S">S-H. Byeon</name>
</author>
<author>
<name sortKey="Parise, J B" uniqKey="Parise J">J. B. Parise</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mohn, C E" uniqKey="Mohn C">C. E. Mohn</name>
</author>
<author>
<name sortKey="Kob, W" uniqKey="Kob W">W. Kob</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Montanari, E" uniqKey="Montanari E">E. Montanari</name>
</author>
<author>
<name sortKey="Righi, L" uniqKey="Righi L">L. Righi</name>
</author>
<author>
<name sortKey="Claestani, G" uniqKey="Claestani G">G. Claestani</name>
</author>
<author>
<name sortKey="Migliori, A" uniqKey="Migliori A">A. Migliori</name>
</author>
<author>
<name sortKey="Gilioli, E" uniqKey="Gilioli E">E. Gilioli</name>
</author>
<author>
<name sortKey="Bolzoni, F" uniqKey="Bolzoni F">F. Bolzoni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oganov, A R" uniqKey="Oganov A">A. R. Oganov</name>
</author>
<author>
<name sortKey="Valle, M" uniqKey="Valle M">M. Valle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oka, K" uniqKey="Oka K">K. Oka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pauling, L" uniqKey="Pauling L">L. Pauling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pearson, R G" uniqKey="Pearson R">R. G. Pearson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pettersson, F" uniqKey="Pettersson F">F. Pettersson</name>
</author>
<author>
<name sortKey="Suh, C" uniqKey="Suh C">C. Suh</name>
</author>
<author>
<name sortKey="Saxen, H" uniqKey="Saxen H">H. Saxén</name>
</author>
<author>
<name sortKey="Rajan, K" uniqKey="Rajan K">K. Rajan</name>
</author>
<author>
<name sortKey="Chakraborti, N" uniqKey="Chakraborti N">N. Chakraborti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Plenio, M B" uniqKey="Plenio M">M. B. Plenio</name>
</author>
<author>
<name sortKey="Vitelli, V" uniqKey="Vitelli V">V. Vitelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rajagopalan, A" uniqKey="Rajagopalan A">A. Rajagopalan</name>
</author>
<author>
<name sortKey="Rajan, K" uniqKey="Rajan K">K. Rajan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rajan, K" uniqKey="Rajan K">K. Rajan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rajan, K" uniqKey="Rajan K">K. Rajan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ravez, J" uniqKey="Ravez J">J. Ravez</name>
</author>
<author>
<name sortKey="Pouchard, M" uniqKey="Pouchard M">M. Pouchard</name>
</author>
<author>
<name sortKey="Hagenmuller, P" uniqKey="Hagenmuller P">P. Hagenmuller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ringner, M" uniqKey="Ringner M">M. Ringnér</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodel, J" uniqKey="Rodel J">J. Rödel</name>
</author>
<author>
<name sortKey="Klaus, W K" uniqKey="Klaus W">W. K. Klaus</name>
</author>
<author>
<name sortKey="Seifert, T P" uniqKey="Seifert T">T. P. Seifert</name>
</author>
<author>
<name sortKey="Anton, E M" uniqKey="Anton E">E.-M. Anton</name>
</author>
<author>
<name sortKey="Granzow, T" uniqKey="Granzow T">T. Granzow</name>
</author>
<author>
<name sortKey="Damjanovic, D" uniqKey="Damjanovic D">D. Damjanovic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saghi Szab, G" uniqKey="Saghi Szab G">G. Sághi-Szabó</name>
</author>
<author>
<name sortKey="Cohen, R E" uniqKey="Cohen R">R. E. Cohen</name>
</author>
<author>
<name sortKey="Krakauer, H" uniqKey="Krakauer H">H. Krakauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saxena, S K" uniqKey="Saxena S">S. K. Saxena</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shannon, R D" uniqKey="Shannon R">R. D. Shannon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shannon, R D" uniqKey="Shannon R">R. D. Shannon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shell, M S" uniqKey="Shell M">M. S. Shell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Singh, K" uniqKey="Singh K">K. Singh</name>
</author>
<author>
<name sortKey="Bopardikar, D K" uniqKey="Bopardikar D">D. K. Bopardikar</name>
</author>
<author>
<name sortKey="Atkare, D V" uniqKey="Atkare D">D. V. Atkare</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Skriver, H L" uniqKey="Skriver H">H. L. Skriver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Slater, J C" uniqKey="Slater J">J. C. Slater</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sluiter, M H F" uniqKey="Sluiter M">M. H. F. Sluiter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stein, D M" uniqKey="Stein D">D. M. Stein</name>
</author>
<author>
<name sortKey="Suchomel, M R" uniqKey="Suchomel M">M. R. Suchomel</name>
</author>
<author>
<name sortKey="Davies, P K" uniqKey="Davies P">P. K. Davies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stringer, C J" uniqKey="Stringer C">C. J. Stringer</name>
</author>
<author>
<name sortKey="Shrout, T R" uniqKey="Shrout T">T. R. Shrout</name>
</author>
<author>
<name sortKey="Randall, C A" uniqKey="Randall C">C. A. Randall</name>
</author>
<author>
<name sortKey="Reaney, I M" uniqKey="Reaney I">I. M. Reaney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suchomel, M R" uniqKey="Suchomel M">M. R. Suchomel</name>
</author>
<author>
<name sortKey="Davies, P K" uniqKey="Davies P">P. K. Davies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suchomel, M R" uniqKey="Suchomel M">M. R. Suchomel</name>
</author>
<author>
<name sortKey="Davies, P K" uniqKey="Davies P">P. K. Davies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suh, C" uniqKey="Suh C">C. Suh</name>
</author>
<author>
<name sortKey="Rajan, K" uniqKey="Rajan K">K. Rajan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suh, C" uniqKey="Suh C">C. Suh</name>
</author>
<author>
<name sortKey="Rajan, K" uniqKey="Rajan K">K. Rajan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thomas, N W" uniqKey="Thomas N">N. W. Thomas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Witten, I H" uniqKey="Witten I">I. H. Witten</name>
</author>
<author>
<name sortKey="Frank, E" uniqKey="Frank E">E. Frank</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woodley, S M" uniqKey="Woodley S">S. M. Woodley</name>
</author>
<author>
<name sortKey="Sokol, A A" uniqKey="Sokol A">A. A. Sokol</name>
</author>
<author>
<name sortKey="Catlow, C R A" uniqKey="Catlow C">C. R. A. Catlow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woodward, D I" uniqKey="Woodward D">D. I. Woodward</name>
</author>
<author>
<name sortKey="Reaney, I M" uniqKey="Reaney I">I. M. Reaney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yan, H" uniqKey="Yan H">H. Yan</name>
</author>
<author>
<name sortKey="Ning, H" uniqKey="Ning H">H. Ning</name>
</author>
<author>
<name sortKey="Kan, Y" uniqKey="Kan Y">Y. Kan</name>
</author>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P. Wang</name>
</author>
<author>
<name sortKey="Reece, M J" uniqKey="Reece M">M. J. Reece</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, S" uniqKey="Zhang S">S. Zhang</name>
</author>
<author>
<name sortKey="Randall, C A" uniqKey="Randall C">C. A. Randall</name>
</author>
<author>
<name sortKey="Shrout, T R" uniqKey="Shrout T">T. R. Shrout</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Li, N" uniqKey="Li N">N. Li</name>
</author>
<author>
<name sortKey="Li, K" uniqKey="Li K">K. Li</name>
</author>
<author>
<name sortKey="Xue, D" uniqKey="Xue D">D. Xue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zenasni, H" uniqKey="Zenasni H">H. Zenasni</name>
</author>
<author>
<name sortKey="Aourag, H" uniqKey="Aourag H">H. Aourag</name>
</author>
<author>
<name sortKey="Broderick, S R" uniqKey="Broderick S">S. R. Broderick</name>
</author>
<author>
<name sortKey="Rajan, K" uniqKey="Rajan K">K. Rajan</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Proc Math Phys Eng Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Proc. Math. Phys. Eng. Sci</journal-id>
<journal-id journal-id-type="publisher-id">RSPA</journal-id>
<journal-id journal-id-type="hwp">royprsa</journal-id>
<journal-title-group>
<journal-title>Proceedings. Mathematical, Physical, and Engineering Sciences / The Royal Society</journal-title>
</journal-title-group>
<issn pub-type="ppub">1364-5021</issn>
<issn pub-type="epub">1471-2946</issn>
<publisher>
<publisher-name>The Royal Society Publishing</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24959095</article-id>
<article-id pub-id-type="pmc">4042451</article-id>
<article-id pub-id-type="doi">10.1098/rspa.2010.0543</article-id>
<article-id pub-id-type="publisher-id">rspa20100543</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Articles</subject>
</subj-group>
<subj-group subj-group-type="hwp-journal-coll">
<subject>1002</subject>
<subject>56</subject>
<subject>117</subject>
<subject>45</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning</article-title>
<alt-title alt-title-type="short">Identifying the ‘inorganic gene’ for high-temperature piezoelectric perovskites through statistical learning</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Balachandran</surname>
<given-names>Prasanna V.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Broderick</surname>
<given-names>Scott R.</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rajan</surname>
<given-names>Krishna</given-names>
</name>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
</contrib-group>
<aff>
<addr-line>Department of Materials Science and Engineering and Institute for Combinatorial Discovery</addr-line>
,
<institution>Iowa State University</institution>
,
<addr-line>Ames, IA 50011, USA</addr-line>
</aff>
<author-notes>
<corresp id="cor1">
<label>*</label>
Author for correspondence (
<email>krajan@iastate.edu</email>
).</corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>8</day>
<month>8</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="epub">
<day>2</day>
<month>3</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>2</day>
<month>3</month>
<year>2011</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>467</volume>
<issue>2132</issue>
<fpage>2271</fpage>
<lpage>2290</lpage>
<history>
<date date-type="received">
<day>21</day>
<month>10</month>
<year>2010</year>
</date>
<date date-type="accepted">
<day>17</day>
<month>1</month>
<year>2011</year>
</date>
</history>
<permissions>
<copyright-statement>This journal is © 2011 The Royal Society</copyright-statement>
<copyright-year>2011</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/3.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:type="simple" xlink:href="rspa20100543.pdf"></self-uri>
<abstract>
<p>This paper develops a statistical learning approach to identify potentially new high-temperature ferroelectric piezoelectric perovskite compounds. Unlike most computational studies on crystal chemistry, where the starting point is some form of electronic structure calculation, we use a data-driven approach to initiate our search. This is accomplished by identifying patterns of behaviour between discrete scalar descriptors associated with crystal and electronic structure and the reported Curie temperature (
<italic>T</italic>
<sub>C</sub>
) of known compounds; extracting design rules that govern critical structure–property relationships; and discovering in a quantitative fashion the exact role of these materials descriptors. Our approach applies linear manifold methods for data dimensionality reduction to discover the dominant descriptors governing structure–property correlations (the ‘genes’) and Shannon entropy metrics coupled to recursive partitioning methods to quantitatively assess the specific combination of descriptors that govern the link between crystal chemistry and
<italic>T</italic>
<sub>C</sub>
(their ‘sequencing’). We use this information to develop predictive models that can suggest new structure/chemistries and/or properties. In this manner, BiTmO
<sub>3</sub>
–PbTiO
<sub>3</sub>
and BiLuO
<sub>3</sub>
–PbTiO
<sub>3</sub>
are predicted to have a
<italic>T</italic>
<sub>C</sub>
of 730
<sup>°</sup>
C and 705
<sup>°</sup>
C, respectively. A quantitative structure–property relationship model similar to those used in biology and drug discovery not only predicts our new chemistries but also validates published reports.</p>
</abstract>
<kwd-group>
<kwd>inorganic gene</kwd>
<kwd>high-temperature piezoelectrics</kwd>
<kwd>statistical learning</kwd>
<kwd>information theory</kwd>
<kwd>data-driven modelling</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="s1">
<label>1.</label>
<title>Introduction</title>
<p>Through many seminal papers, Alan McKay has expounded on the idea of a framework for ‘Generalized Crystallography’ (Mackay
<xref rid="RSPA20100543C44" ref-type="bibr">1966</xref>
,
<xref rid="RSPA20100543C45" ref-type="bibr">1974</xref>
,
<xref rid="RSPA20100543C46" ref-type="bibr">1977</xref>
,
<xref rid="RSPA20100543C47" ref-type="bibr">1986</xref>
). He has proposed that ‘the crystal is a structure, the description of which is much smaller than the structure itself’ and that this description of structure serves as a ‘carrier of information’ about the structure on larger length scales (
<xref rid="RSPA20100543C48" ref-type="bibr">MacKay 2002</xref>
). He went on to suggest that these components of description of structure can help develop a ‘biological approach to inorganic systems’ and proposed the construction of an ‘inorganic gene’. This paradigm serves as motivation underlying the present study by exploring how fundamental pieces of information, treated as discrete bits of data, can collectively characterize the stability and properties of a given crystal chemistry. We show how the use of statistical learning tools including fundamental concepts borrowed from information theory can be used to characterize a crystal structure in terms of fundamental descriptors of information (i.e. the ‘genes’) and how these pieces of information interact or are ‘sequenced’ to guide the characteristics of that crystal structure and in fact help to guide the development of new crystal chemistries and targeted physical properties.</p>
<p>The challenge in defining the ‘gene’ in inorganic crystal chemistry is to characterize the appropriate combination of discrete characteristics associated with crystal chemistry that collectively define a particular property or set of properties of the material. Normally, structure–property relationships are guided by defined functional relationships (e.g. electronic structure calculations to define energy landscapes associated with crystal chemistry). However, we propose an approach to establish such a structure–property relationship where we do not assume any specific formulation linking structure with property (
<xref rid="RSPA20100543C42" ref-type="bibr">Jóhannesson
<italic>et al.</italic>
2002</xref>
;
<xref rid="RSPA20100543C15" ref-type="bibr">Curtarolo
<italic>et al.</italic>
2003</xref>
;
<xref rid="RSPA20100543C83" ref-type="bibr">Woodley
<italic>et al</italic>
. 2004</xref>
;
<xref rid="RSPA20100543C20" ref-type="bibr">Dudiy & Zunger 2006</xref>
;
<xref rid="RSPA20100543C25" ref-type="bibr">Fischer
<italic>et al.</italic>
2006</xref>
;
<xref rid="RSPA20100543C74" ref-type="bibr">Sluiter 2007</xref>
;
<xref rid="RSPA20100543C52" ref-type="bibr">Mohn & Kob 2009</xref>
;
<xref rid="RSPA20100543C54" ref-type="bibr">Oganov & Valle 2009</xref>
). Rather, we take a data-driven approach where we seek to establish structure–property relationships by identifying patterns of behaviour between known discrete scalar descriptors associated with crystal and electronic structure and observed properties of the material. From this, we extract design rules that allow us to systematically identify critical structure–property relationships, resulting in identifying in a quantitative fashion the exact role of specific combination of materials descriptors (i.e. genes) that govern a given property. This is the foundation of the concept of the quantitative structure–activity (or property) relationship (QSAR/QSPR) widely used in the field of organic chemistry and drug discovery. The mathematical underpinning of developing a QSPR-type relationship is statistical learning (a term encompassing a broad range of tools derived from statistics, data mining and machine learning). In our group, we have applied this approach to explore a variety of questions associated with crystal chemistry (Suh & Rajan
<xref rid="RSPA20100543C79" ref-type="bibr">2005</xref>
,
<xref rid="RSPA20100543C80" ref-type="bibr">2009</xref>
;
<xref rid="RSPA20100543C27" ref-type="bibr">Gadzuric
<italic>et al.</italic>
2006</xref>
;
<xref rid="RSPA20100543C60" ref-type="bibr">Rajagopalan & Rajan 2007</xref>
;
<xref rid="RSPA20100543C28" ref-type="bibr">George
<italic>et al</italic>
. 2009</xref>
;
<xref rid="RSPA20100543C8" ref-type="bibr">Broderick
<italic>et al.</italic>
2010</xref>
;
<xref rid="RSPA20100543C62" ref-type="bibr">Rajan 2010</xref>
,
<xref rid="RSPA20100543C88" ref-type="bibr">Zenasni
<italic>et al.</italic>
2010</xref>
), and in this paper, we demonstrate that by using the QSPR concept, we can identify through the tools of statistical inference, how discrete bits of information that define a robust QSPR relationship can be sequenced to help identify new materials with new and targeted properties. The specific objective of the present study is identifying, through the sole use of statistical learning methods, new high-temperature piezoelectric ferroelectrics. However, this paper also serves as a generic template for an information science-based materials discovery and design strategy, in the spirit of Mackay’s proposition of an inorganic gene.</p>
</sec>
<sec id="s2">
<label>2.</label>
<title>Background</title>
<sec id="s2a">
<label>(a)</label>
<title>Materials chemistry of high-temperature piezoelectrics</title>
<p>Historically, the design of materials chemistry for high-temperature piezoelectric behaviour has been guided by an apparent linear relationship between Goldschmidt’s tolerance factor (
<italic>t</italic>
) and Curie temperature (
<italic>T</italic>
<sub>C</sub>
) at the morphotropic phase boundary (MPB) composition of the PbTiO
<sub>3</sub>
(PT)-based end-member solid solutions (
<xref rid="RSPA20100543C21" ref-type="bibr">Eitel
<italic>et al</italic>
. 2001</xref>
;
<xref rid="RSPA20100543C19" ref-type="bibr">Duan
<italic>et al</italic>
. 2004</xref>
). However, the use of the tolerance factor as a ‘figure of merit’ has had limited impact in developing or identifying new materials via experiment (
<xref rid="RSPA20100543C21" ref-type="bibr">Eitel
<italic>et al</italic>
. 2001</xref>
;
<xref rid="RSPA20100543C19" ref-type="bibr">Duan
<italic>et al</italic>
. 2004</xref>
) or computation (
<xref rid="RSPA20100543C4" ref-type="bibr">Baettig
<italic>et al</italic>
. 2005</xref>
), owing to the fact that it captures only a very limited set of variables (i.e. ionic radii) describing a given perovskite crystal chemistry (
<xref rid="RSPA20100543C81" ref-type="bibr">Thomas 1997</xref>
). The motivation of our work is to find alternative computational based methods that can help to refine the chemical search space and identify potentially new and promising piezoelectric materials for high-temperature applications.</p>
<p>The chemical search space of known and predicted perovskite-based ferroelectric compounds in BiMeO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solution is mapped in
<xref ref-type="fig" rid="RSPA20100543F1">figure 1</xref>
, where Me is a single cation with charge 3+ or a combination of two different cations (Me
<sub>1/2</sub>
Me
<sub>1/2</sub>
, Me
<sub>2/3</sub>
Me
<sub>1/3</sub>
and Me
<sub>3/4</sub>
Me
<sub>1/4</sub>
) with an average charge 3+, occupying the octahedral site of the perovskite lattice (
<xref rid="RSPA20100543C21" ref-type="bibr">Eitel
<italic>et al</italic>
. 2001</xref>
;
<xref rid="RSPA20100543C33" ref-type="bibr">Grinberg
<italic>et al</italic>
. 2005</xref>
;
<xref rid="RSPA20100543C78" ref-type="bibr">Suchomel & Davies 2005</xref>
;
<xref rid="RSPA20100543C75" ref-type="bibr">Stein
<italic>et al</italic>
. 2006</xref>
;
<xref rid="RSPA20100543C32" ref-type="bibr">Grinberg & Rappe 2007</xref>
). The solid solutions were classified based on the chemical origin of ferroelectric instability caused by Me cations. The distinction between strong (filled red circles) and weak (filled green squares) ferroelectric activity was made based on the degree of off-centring tendency of Me cations in MeO
<sub>6</sub>
octahedra. Clearly, the search space is sparse in the high-temperature region, and our goal is to explore the vast combinatorial search space and identify new high-temperature piezoelectric chemistries. In this work, we have focused primarily on identifying a new Me
<sup>3+</sup>
cation that satisfies the following conditions:
<list list-type="simple">
<list-item>
<p>— it must show weak ferroelectric activity;</p>
</list-item>
<list-item>
<p>— BiMeO
<sub>3</sub>
must have a stable perovskite structure at ambient or non-ambient (high-pressure/-temperature) conditions; and</p>
</list-item>
<list-item>
<p>— the resulting BiMeO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solution should have a high
<italic>T</italic>
<sub>C</sub>
.</p>
</list-item>
</list>
</p>
<fig id="RSPA20100543F1" position="float">
<label>Figure 1.</label>
<caption>
<p>In this figure, we map the Curie temperature (
<italic>T</italic>
<sub>C</sub>
) of known and predicted perovskite-based ferroelectric compounds in the chemical space of BiMeO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solution, where Me is a single cation with charge 3+ (e.g. Al, Sc, In, etc.) or a combination of two different cations Me
<sub>1/2</sub>
Me
<sub>1/2</sub>
(e.g. ZnTi, ZnZr, ZnSn, etc.), Me
<sub>2/3</sub>
Me
<sub>1/3</sub>
(e.g. ZnNb, MgNb) and Me
<sub>3/4</sub>
Me
<sub>1/4</sub>
(e.g. ZnW, MgW, ScGa) with an average charge 3+ and that occupies the octahedral site of the perovskite lattice (
<xref rid="RSPA20100543C21" ref-type="bibr">Eitel
<italic>et al</italic>
. 2001</xref>
;
<xref rid="RSPA20100543C33" ref-type="bibr">Grinberg
<italic>et al</italic>
. 2005</xref>
;
<xref rid="RSPA20100543C78" ref-type="bibr">Suchomel & Davies 2005</xref>
;
<xref rid="RSPA20100543C75" ref-type="bibr">Stein
<italic>et al</italic>
. 2006</xref>
;
<xref rid="RSPA20100543C32" ref-type="bibr">Grinberg & Rappe 2007</xref>
). The target design space represents the high-temperature regime that is of interest to us, and, as it can be clearly seen, the chemical search space is sparse in this region with as many as only three compounds being identified. For reference,
<italic>T</italic>
<sub>C</sub>
of PbZrO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solution is also indicated in this figure. Our objective is to systematically explore the complex chemical search space and identify potentially new piezoelectric materials that have high
<italic>T</italic>
<sub>C</sub>
. In this article, we report our computational work, where we have focused particularly on identifying a suitable Me
<sup>3+</sup>
cation (which is weakly ferroelectrically active and occupies the octahedral site of the perovskite lattice) that can significantly enhance the
<italic>T</italic>
<sub>C</sub>
of BiMeO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solution. The distinction between strong and weak ferroelectric activity was made based on the degree of off-centring tendency of Me cations in MeO
<sub>6</sub>
octahedra. Filled circles, Me cations that show strong ferroelectric activity; filled squares, Me cations that show weak ferroelectric activity; filled triangles, Me cations that show strong and weak ferroelectric activity. (Online version in colour.)</p>
</caption>
<graphic xlink:href="rspa20100543-g1"></graphic>
</fig>
<p>We explore a data-driven methodology that involves applying statistical learning tools to analyse correlations between numerous scalar descriptors of electronic and crystal structure parameters of known perovskite piezoelectric compounds and using that information in turn to develop predictive models that can suggest new structure/chemistries and/or properties based purely on the formalism of statistical learning methods. This methodology is quite different from the approach that is widely reported by many groups where large numbers of high-throughput electronic structure computations are conducted to seek compound chemistries with energy minima (where data mining-related techniques are embedded in the computation to help the efficiency of the calculations); and then potentially new stable compounds are identified by identifying those that have energy minima but not reported in known experimental databases (
<xref rid="RSPA20100543C42" ref-type="bibr">Jóhannesson
<italic>et al.</italic>
2002</xref>
;
<xref rid="RSPA20100543C15" ref-type="bibr">Curtarolo
<italic>et al.</italic>
2003</xref>
;
<xref rid="RSPA20100543C83" ref-type="bibr">Woodley
<italic>et al</italic>
. 2004</xref>
;
<xref rid="RSPA20100543C20" ref-type="bibr">Dudiy & Zunger 2006</xref>
;
<xref rid="RSPA20100543C25" ref-type="bibr">Fischer
<italic>et al.</italic>
2006</xref>
;
<xref rid="RSPA20100543C74" ref-type="bibr">Sluiter 2007</xref>
;
<xref rid="RSPA20100543C52" ref-type="bibr">Mohn & Kob 2009</xref>
;
<xref rid="RSPA20100543C54" ref-type="bibr">Oganov & Valle 2009</xref>
).</p>
<p>Our approach requires the need to carefully establish a dataset of descriptors on which we directly apply statistical learning tools. The number of parameters needed to predict even relatively simple structures can be large if one has to capture both geometrical and bonding characteristics of that crystal chemistry. One of the arguments we are trying to put forward in this paper is that although the potential number of variables can in fact be large, data dimensionality reduction and information theoretic techniques can help reduce it to a manageable number. This paper describes a data mining strategy from which effective classification and predictive models can be developed using high-dimensional information.</p>
<fig id="RSPA20100543F2" position="float">
<label>Figure 2.</label>
<caption>
<p>(
<italic>a</italic>
) A network of corner-sharing BO
<sub>6</sub>
octahedra with a large A-site cation occupying the interstitial position is shown. (
<italic>b</italic>
) The simplified unit-cell representation of cubic perovskite without showing coordination. (
<italic>c</italic>
) The geometry of the building units, AO
<sub>12</sub>
cuboctahedra and BO
<sub>6</sub>
octahedra, with 12-coordinated A-site and 6-coordinated B-site, respectively. The description of the crystal structure in the form of structural building units presents a number of diverse choices to develop new descriptors based on the site chemistry and coordination. (Online version in colour.)</p>
</caption>
<graphic xlink:href="rspa20100543-g2"></graphic>
</fig>
</sec>
<sec id="s2b">
<label>(b)</label>
<title>Defining the chemical search space</title>
<p>The search for new high-temperature piezoelectric materials by chemical modification of PbTiO
<sub>3</sub>
perovskite at both Pb and Ti sites has been an area of considerable interest in the last decade (
<xref rid="RSPA20100543C66" ref-type="bibr">Sághi-Szabó
<italic>et al</italic>
. 1998</xref>
;
<xref rid="RSPA20100543C21" ref-type="bibr">Eitel
<italic>et al</italic>
. 2001</xref>
). While there are many crystal structures that may be suitable for high-temperature piezoelectric application, such as perovskites, langasites (
<xref rid="RSPA20100543C16" ref-type="bibr">Damjanovic 1998</xref>
) and perovskite-like layered structures (
<xref rid="RSPA20100543C85" ref-type="bibr">Yan
<italic>et al</italic>
. 2009</xref>
), we are interested in perovskites because they have the best combination of high temperature and piezoelectric properties compared with other structures, and many perovskites are also ferroelectrics, which can be used as piezoelectric materials when poled (
<xref rid="RSPA20100543C14" ref-type="bibr">Cohen 2008</xref>
;
<xref rid="RSPA20100543C65" ref-type="bibr">Rödel
<italic>et al</italic>
. 2009</xref>
). The crystal structure of an ideal perovskite crystal is shown in
<xref ref-type="fig" rid="RSPA20100543F2">figure 2</xref>
. Following the discovery of the crucial role of Bi in enhancing the ferroelectric properties in PbTiO
<sub>3</sub>
(
<xref rid="RSPA20100543C39" ref-type="bibr">Íñiguez
<italic>et al</italic>
. 2003</xref>
), numerous experimental and theoretical studies focusing on BiMeO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solutions were carried out (where Me represents a single cation with charge 3+ or a combination of cations with an average charge 3+) with the further objective of identifying a potential Me cation that can maximize both Curie temperature and ferroelectric properties of the solid solution (Suchomel & Davies
<xref rid="RSPA20100543C77" ref-type="bibr">2004</xref>
,
<xref rid="RSPA20100543C78" ref-type="bibr">2005</xref>
;
<xref rid="RSPA20100543C33" ref-type="bibr">Grinberg
<italic>et al</italic>
. 2005</xref>
;
<xref rid="RSPA20100543C75" ref-type="bibr">Stein
<italic>et al</italic>
. 2006</xref>
;
<xref rid="RSPA20100543C76" ref-type="bibr">Stringer
<italic>et al</italic>
. 2006</xref>
; Chen
<italic>et al</italic>
.
<xref rid="RSPA20100543C10" ref-type="bibr">2007</xref>
,
<xref rid="RSPA20100543C11" ref-type="bibr">2009</xref>
;
<xref rid="RSPA20100543C32" ref-type="bibr">Grinberg & Rappe 2007</xref>
). The key findings from the earlier studies are summarized below:
<list list-type="simple">
<list-item>
<p>— Enhancement of ferroelectric properties and Curie temperature owing to the presence of strongly ferroelectrically active Me cations (e.g. Ti
<sup>4+</sup>
, Zn
<sup>2+</sup>
, Fe
<sup>3+</sup>
, etc.). These strongly ferroelectrically active Me cations cause hybridization of Me–O bonds in MeO
<sub>6</sub>
octahedra, leading to distortions resulting in significant ionic displacement from the ideal position (Cohen
<xref rid="RSPA20100543C13" ref-type="bibr">1992</xref>
,
<xref rid="RSPA20100543C14" ref-type="bibr">2008</xref>
;
<xref rid="RSPA20100543C65" ref-type="bibr">Rödel
<italic>et al</italic>
. 2009</xref>
). The ionic displacements were responsible for enhanced polarization and ferroelectric properties. Some examples of compounds with strongly ferroelectrically active Me cations are BiFeO
<sub>3</sub>
–PbTiO
<sub>3</sub>
and Bi(ZnTi)O
<sub>3</sub>
–PbTiO
<sub>3</sub>
.</p>
</list-item>
<list-item>
<p>— On the other hand, it was found that the presence of weakly ferroelectrically active Me cations (e.g. Sc
<sup>3+</sup>
, Mg
<sup>2+</sup>
and Yb
<sup>3+</sup>
) can also enhance the high-temperature ferroelectric properties. In this case, the Me cations do not lead to hybridization of Me–O bonds, whereas the steric effect causes the Pb/Bi cation to avoid the larger Me/Ti cation owing to the larger wave-function overlap (therefore stronger Pauli repulsion) and move towards the smaller cation. The stronger repulsion leads to increased Pb/Bi cation displacement, which in turn results in enhanced ferroelectric behaviour (
<xref rid="RSPA20100543C33" ref-type="bibr">Grinberg
<italic>et al</italic>
. 2005</xref>
). Some examples of compounds with weakly ferroelectrically active Me cations are BiScO
<sub>3</sub>
–PbTiO
<sub>3</sub>
and BiYbO
<sub>3</sub>
–PbTiO
<sub>3</sub>
.</p>
</list-item>
</list>
</p>
<p>Our chemical search space is defined in electronic supplementary material, figure S1, and we have focused particularly on identifying a suitable BiMeO
<sub>3</sub>
perovskite end member, where Me is a single cation that is weakly ferroelectrically active with a formal charge 3+ and that can form a solid solution with PbTiO
<sub>3</sub>
at ambient conditions.</p>
</sec>
</sec>
<sec id="s3">
<label>3.</label>
<title>Statistical learning computational strategy</title>
<sec id="s3a">
<label>(a)</label>
<title>Introduction to tolerance factor–T
<sub>
<italic>C</italic>
</sub>
model</title>
<p>
<xref rid="RSPA20100543C21" ref-type="bibr">Eitel
<italic>et al</italic>
. (2001)</xref>
first discovered the existence of an apparent linear relationship between tolerance factor of ABO
<sub>3</sub>
end-member compositions and Curie temperature at MPB for a large number of ABO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solutions, although there was some significant scatter (
<xref ref-type="fig" rid="RSPA20100543F3">figure 3</xref>
).
<xref rid="RSPA20100543C33" ref-type="bibr">Grinberg
<italic>et al</italic>
. (2005)</xref>
later addressed this scatter by identifying that the data fall into two clusters, and they showed that both clusters exhibited a linear dependence of Curie temperature on the end-member tolerance factor but had different slopes. The physical reasons behind the two slopes were correlated to the differences in the ferroelectric activity of various B-site cations of the ABO
<sub>3</sub>
end-member compositions. While both models can be applied to quantitatively predict the
<italic>T</italic>
<sub>C</sub>
, neither predicts the perovskite phase stability of the ABO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solution. This is a major shortcoming because only those ABO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solutions that form a pure perovskite phase at ambient conditions are technologically useful (
<xref rid="RSPA20100543C33" ref-type="bibr">Grinberg
<italic>et al</italic>
. 2005</xref>
).</p>
<fig id="RSPA20100543F3" position="float">
<label>Figure 3.</label>
<caption>
<p>The univariate tolerance factor–
<italic>T</italic>
<sub>C</sub>
model of
<xref rid="RSPA20100543C21" ref-type="bibr">Eitel
<italic>et al</italic>
. (2001)</xref>
is shown here. The shortcomings of the univariate tolerance factor–
<italic>T</italic>
<sub>C</sub>
model are clearly noticeable as the data show significant scatter owing to the presence of two clusters of compounds with different physics. This indicates that the tolerance factor is only a necessary condition and not sufficient for modelling
<italic>T</italic>
<sub>C</sub>
. We have addressed the shortcomings of the tolerance factor–
<italic>T</italic>
<sub>C</sub>
model by developing a multivariate model that considers six key crystal chemical descriptors instead of only the tolerance factor. Notation for chemical compounds and parameters are described in the electronic supplementary material. (Online version in colour.)</p>
</caption>
<graphic xlink:href="rspa20100543-g3"></graphic>
</fig>
<p>We have collectively addressed the above-mentioned shortcomings of the tolerance factor–
<italic>T</italic>
<sub>C</sub>
model in a couple of ways. Firstly, by considering additional crystal chemical descriptors, a reasonably accurate multivariate model was developed (described in §4
<italic>b</italic>
) using linear manifold methods for quantitatively predicting the
<italic>T</italic>
<sub>C</sub>
at MPB of ABO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solutions. To reduce the scatter, instead of including all ferroelectric ABO
<sub>3</sub>
–PbTiO
<sub>3</sub>
chemistries that contain both strongly and weakly ferroelectrically active cations, we have typically considered end members that belong to Pb(B
<sub>1</sub>
B
<sub>2</sub>
)O
<sub>3</sub>
and BiMeO
<sub>3</sub>
perovskites, where B
<sub>1</sub>
, B
<sub>2</sub>
and Me are cations that occupy the octahedral site of the perovskite lattice and Me cation is weakly ferroelectrically active. By clearly defining our chemical search space in this manner, we focus on the relevant physics that best describes our objective.</p>
<p>Secondly, in order to determine the perovskite phase stability of the ABO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solution, we have developed an independent classification model based on information theory concepts (e.g. Shannon entropy) that tracks which combination of parameters influences the perovskite structural stability by partitioning a high-dimensional dataset. As noted by
<xref rid="RSPA20100543C43" ref-type="bibr">Karnani
<italic>et al</italic>
. (2009)</xref>
, natural data structures, such as genomes, books, file systems and data servers, are repositories of information that share common characteristics. Also, they display skewed distributions and hierarchical organization, which certainly applies to crystallographic data. The physical representation of information allows us to understand that these ubiquitous characteristics are consequences of the second law. Thus, by combining the linear manifold methods with the information theory concepts, we can identify new high-temperature piezoelectric materials.</p>
</sec>
<sec id="s3b">
<label>(b)</label>
<title>Informatics-based computational strategy</title>
<p>Our computational logic for designing new high-temperature piezoelectric chemistries is summarized in the form of a flow chart in the electronic supplementary material, figure S2. The logic involves three steps. (i) Identification of a relevant descriptor set that fully describes the high-temperature behaviour of ABO
<sub>3</sub>
perovskites. Thirty attributes were screened using principal component analysis (PCA) and a reduced set of six key attributes was identified that showed high correlation with the transition temperature. (ii) Development of a robust multivariate model using partial least squares (PLS) that predicts
<italic>T</italic>
<sub>C</sub>
at MPB of ABO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solutions. By applying the PLS model, new candidate chemistries were identified that are suitable for high-temperature applications. (iii) Screening for the piezoelectric behaviour in the new candidate chemistries by testing the perovskite structural stability of ABO
<sub>3</sub>
end members. For this purpose, new classification models were developed using a recursive partitioning strategy. The outcome of this analysis is important for determining whether it is possible to synthesize a pure perovskite phase in the ABO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solution. Only those ABO
<sub>3</sub>
end members that were classified to have a stable perovskite structure-type by recursive partitioning were chosen and identified as potential high-temperature piezoelectric materials. The mathematics of PCA, PLS and recursive partitioning in the context of our specific datasets is summarized in the electronic supplementary material.</p>
<p>Before elaborating on the data mining methods, we need to address the obvious concern that at first glance the statistical learning methods do not in themselves explicitly solve the energy minimization problem that the physics-based calculations do. However, this concern is addressed collectively in a couple of ways. The first is that we are searching for a high-dimensional correlation between attributes of compounds that already exist and hence are by definition stable. In fact, a corollary to this point is that mathematically we are using convex optimization methods that help to ensure we have a global minimum (
<xref rid="RSPA20100543C41" ref-type="bibr">Izenman 2008</xref>
). Second, we test the validity of our models with respect to the target materials properties (i.e. Curie temperature in this case) by using well-established and robust methods for being able to reproduce the known data, to give us the statistical confidence of the models we develop.</p>
<table-wrap id="RSPA20100543TB1" position="float">
<label>Table 1.</label>
<caption>
<p>Enumeration of 30 descriptors used in the principal component analysis (PCA) for identifying the relevant inorganic gene is given in this table. The underlying rationale behind choosing these different attributes associated with crystal geometry, bonding, thermodynamics and electronic structure was to fully describe the crystal chemistry of perovskite-based compounds that is relevant for modelling the ferroelectric behaviour, and the search was motivated by the past experimental and theoretical work of
<xref rid="RSPA20100543C1" ref-type="bibr">Abrahams
<italic>et al</italic>
. (1968)</xref>
,
<xref rid="RSPA20100543C38" ref-type="bibr">Igarashi
<italic>et al</italic>
. (1987)</xref>
,
<xref rid="RSPA20100543C71" ref-type="bibr">Singh
<italic>et al</italic>
. (1988)</xref>
,
<xref rid="RSPA20100543C63" ref-type="bibr">Ravez
<italic>et al</italic>
. (1997)</xref>
,
<xref rid="RSPA20100543C29" ref-type="bibr">Goudochnikov & Bell (2007)</xref>
and
<xref rid="RSPA20100543C32" ref-type="bibr">Grinberg & Rappe (2007)</xref>
.</p>
</caption>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="left" span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">abbreviation</th>
<th rowspan="1" colspan="1">description</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">
<italic>r</italic>
<sub>A</sub>
(Å)</td>
<td rowspan="1" colspan="1">
<xref rid="RSPA20100543C69" ref-type="bibr">Shannon’s (1976)</xref>
ionic radii of A-site (12-coordination)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>r</italic>
<sub>B</sub>
(Å)</td>
<td rowspan="1" colspan="1">Shannon’s ionic radii of B-site (6-coordination)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>t</italic>
</td>
<td rowspan="1" colspan="1">tolerance factor calculated using ionic radii</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>d</italic>
<sub>A–O</sub>
(Å)</td>
<td rowspan="1" colspan="1">ideal A–O bond distance (
<xref rid="RSPA20100543C7" ref-type="bibr">Brese & O’Keeffe 1991</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>d</italic>
<sub>B–O</sub>
(Å)</td>
<td rowspan="1" colspan="1">ideal B–O bond distance</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>t</italic>
<sub>BV</sub>
</td>
<td rowspan="1" colspan="1">tolerance factor calculated using
<italic>d</italic>
<sub>A–O</sub>
and
<italic>d</italic>
<sub>B–O</sub>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>A</italic>
<sub>EA</sub>
(kJ mol
<sup>−1</sup>
)</td>
<td rowspan="1" colspan="1">A-site electron affinity (
<xref rid="RSPA20100543C37" ref-type="bibr">Hotop & Lineberger 1985</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>A</italic>
<sub>EFF–S</sub>
</td>
<td rowspan="1" colspan="1">A-site effective nuclear charge—Slater scale (
<xref rid="RSPA20100543C73" ref-type="bibr">Slater 1930</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>A</italic>
<sub>EFF–C</sub>
</td>
<td rowspan="1" colspan="1">A-site effective nuclear charge—Clementi scale (
<xref rid="RSPA20100543C12" ref-type="bibr">Clementi & Raimondi 1963</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>A</italic>
<sub>EFF–F</sub>
</td>
<td rowspan="1" colspan="1">A-site effective nuclear charge—Froese-Fisher scale (
<xref rid="RSPA20100543C26" ref-type="bibr">Froese-Fischer 1972</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>B</italic>
<sub>EFF–S</sub>
</td>
<td rowspan="1" colspan="1">B-site effective nuclear charge—Slater scale</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>B</italic>
<sub>EFF–C</sub>
</td>
<td rowspan="1" colspan="1">B-site effective nuclear charge—Clementi scale</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>B</italic>
<sub>EFF–F</sub>
</td>
<td rowspan="1" colspan="1">B-site effective nuclear charge—Froese-Fisher scale</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>A</italic>
<sub>WS</sub>
(Å)</td>
<td rowspan="1" colspan="1">A-site Wigner–Seitz cell radius (
<xref rid="RSPA20100543C72" ref-type="bibr">Skriver 2004</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>B</italic>
<sub>WS</sub>
(Å)</td>
<td rowspan="1" colspan="1">B-site Wigner–Seitz cell radius</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>A</italic>
<sub>EN–P</sub>
</td>
<td rowspan="1" colspan="1">A-site electronegativity—Pauling scale (
<xref rid="RSPA20100543C56" ref-type="bibr">Pauling 1960</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>A</italic>
<sub>EN–AR</sub>
</td>
<td rowspan="1" colspan="1">A-site electronegativity—Allred–Rochow scale (
<xref rid="RSPA20100543C3" ref-type="bibr">Allred & Rochow 1958</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>A</italic>
<sub>EN</sub>
(eV)</td>
<td rowspan="1" colspan="1">A-site electronegativity—absolute scale (
<xref rid="RSPA20100543C57" ref-type="bibr">Pearson 1988</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>B</italic>
<sub>EN–P</sub>
</td>
<td rowspan="1" colspan="1">B-site electronegativity—Pauling scale</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>B</italic>
<sub>EN–AR</sub>
</td>
<td rowspan="1" colspan="1">B-site electronegativity—Allred–Rochow scale</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>B</italic>
<sub>EN</sub>
(eV)</td>
<td rowspan="1" colspan="1">B-site electronegativity—absolute scale</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>D</italic>
<sub>A</sub>
(Å)</td>
<td rowspan="1" colspan="1">ionic displacement (
<xref rid="RSPA20100543C32" ref-type="bibr">Grinberg & Rappe 2007</xref>
) of A-site</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>D</italic>
<sub>B</sub>
(Å)</td>
<td rowspan="1" colspan="1">ionic displacement of B-site</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="rspa20100543-i1.jpg"></inline-graphic>
</inline-formula>
(J mol
<sup>−1</sup>
)</td>
<td rowspan="1" colspan="1">enthalpy of formation (
<xref rid="RSPA20100543C67" ref-type="bibr">Saxena 1993</xref>
) of A oxide</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="rspa20100543-i2.jpg"></inline-graphic>
</inline-formula>
(J mol
<sup>−1</sup>
)</td>
<td rowspan="1" colspan="1">enthalpy of formation of B oxide</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<inline-formula>
<inline-graphic xlink:href="rspa20100543-i3.jpg"></inline-graphic>
</inline-formula>
(J mol
<sup>−1</sup>
)</td>
<td rowspan="1" colspan="1">enthalpy of formation of ABO
<sub>3</sub>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>a</italic>
(Å)</td>
<td rowspan="1" colspan="1">lattice constant (
<xref rid="RSPA20100543C50" ref-type="bibr">Matsui & Nomura 1981</xref>
)</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>b</italic>
(Å)</td>
<td rowspan="1" colspan="1">lattice constant</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>c</italic>
(Å)</td>
<td rowspan="1" colspan="1">lattice constant</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>V</italic>
/
<italic>Z</italic>
<sup>3</sup>
)</td>
<td rowspan="1" colspan="1">volume of unit cell/coordination number</td>
</tr>
<tr>
<td rowspan="1" colspan="1">
<italic>T</italic>
<sub>t</sub>
(K)</td>
<td rowspan="1" colspan="1">transition temperature</td>
</tr>
</tbody>
</table>
</table-wrap>
</sec>
</sec>
<sec id="s4">
<label>4.</label>
<title>Results and discussion</title>
<sec id="s4a">
<label>(a)</label>
<title>Identifying the relevant descriptor set: the inorganic genes</title>
<p>As noted above, the tolerance factor as the sole figure of merit to design new high-temperature piezoelectric perovskite compounds appears to be insufficient. To look beyond the tolerance factor to predict new high-temperature piezoelectric materials, we have surveyed over 30 different attributes (
<xref ref-type="table" rid="RSPA20100543TB1">table 1</xref>
) associated with crystal geometry, bonding, thermodynamics and electronic structure of 22 simple ABO
<sub>3</sub>
perovskite chemistries with known transition temperatures (
<xref rid="RSPA20100543C69" ref-type="bibr">Shannon 1976</xref>
;
<xref rid="RSPA20100543C50" ref-type="bibr">Matsui & Nomura 1981</xref>
;
<xref rid="RSPA20100543C67" ref-type="bibr">Saxena 1993</xref>
;
<xref rid="RSPA20100543C22" ref-type="bibr">Emsley 1998</xref>
;
<xref rid="RSPA20100543C9" ref-type="bibr">Brown 2002</xref>
;
<xref rid="RSPA20100543C79" ref-type="bibr">Suh & Rajan 2005</xref>
;
<xref rid="RSPA20100543C29" ref-type="bibr">Goudochnikov & Bell 2007</xref>
;
<xref rid="RSPA20100543C32" ref-type="bibr">Grinberg & Rappe 2007</xref>
;
<xref rid="RSPA20100543C49" ref-type="bibr">Makov
<italic>et al</italic>
. 2009</xref>
;
<xref rid="RSPA20100543C58" ref-type="bibr">Pettersson
<italic>et al</italic>
. 2009</xref>
;
<xref rid="RSPA20100543C62" ref-type="bibr">Rajan 2010</xref>
). The transition temperature of an ABO
<sub>3</sub>
compound is defined as the temperature when the crystal structure of ABO
<sub>3</sub>
changes from low symmetry to the highest possible symmetry. While not all of the ABO
<sub>3</sub>
compounds assessed are ferroelectric, the objective of this work is unaffected, since the final goal is to suggest new perovskite-based end members forming solid solutions with PT. Alloying an ABO
<sub>3</sub>
perovskite compound with PbTiO
<sub>3</sub>
has the potential to lead to a high piezoelectric characteristic in the resulting ABO
<sub>3</sub>
–PbTiO
<sub>3</sub>
ceramic (
<xref rid="RSPA20100543C31" ref-type="bibr">Grinberg & Rappe 2004</xref>
).</p>
<p>To identify the complex relationships between physical properties and crystal chemistry and geometry from the existing knowledge base, PCA is employed (
<xref rid="RSPA20100543C23" ref-type="bibr">Ericksson
<italic>et al</italic>
. 2001</xref>
;
<xref rid="RSPA20100543C61" ref-type="bibr">Rajan 2005</xref>
;
<xref rid="RSPA20100543C64" ref-type="bibr">Ringnér 2008</xref>
). The input
<italic>X</italic>
={
<italic>x</italic>
<sub>1</sub>
,
<italic>x</italic>
<sub>2</sub>
,
<italic>x</italic>
<sub>3</sub>
,…,
<italic>x</italic>
<sub>
<italic>n</italic>
</sub>
}∈Re
<sup>
<italic>n</italic>
×
<italic>d</italic>
</sup>
(where
<italic>n</italic>
=22 and
<italic>d</italic>
=30 denote the number of ABO
<sub>3</sub>
compounds and the number of physical attributes quantifying each ABO
<sub>3</sub>
compound, respectively) is initially preprocessed by mean-centring and standardization. PCA reduces the dimensionality of the data by identifying new latent variables (called principal components, PCs) that capture the largest amount of variation in the data. Each PC is a linear combination of the weighted contribution of each attribute. By comparing the magnitude and direction of the weighted contribution from each attribute, the correlation structure in the high-dimensional data is discovered).</p>
<fig id="RSPA20100543F4" position="float">
<label>Figure 4.</label>
<caption>
<p>Loadings plot between PC1 and PC2 showing the interactions of 30 descriptors captured by PCA. Based on the angle
<italic>θ</italic>
, the degree of correlation between the target variable and other attributes is established. Two zones are marked in the figure that show a strong correlation with the target variable (
<italic>T</italic>
<sub>t</sub>
): the red zone (with stripes) signifies attributes that show positive correlation with
<italic>T</italic>
<sub>t</sub>
and the green zone (no stripes) signifies variables that show negative correlation with
<italic>T</italic>
<sub>t</sub>
. The abbreviations of the attributes are provided in
<xref ref-type="table" rid="RSPA20100543TB1">table 1</xref>
. (Online version in colour.)</p>
</caption>
<graphic xlink:href="rspa20100543-g4"></graphic>
</fig>
<p>
<xref ref-type="fig" rid="RSPA20100543F4">Figure 4</xref>
(referred to as a loading plot) shows the uncovered correlations between the physical attributes for the first two PCs. The transition temperature (
<italic>T</italic>
<sub>t</sub>
) is the target variable against which all correlations are computed. As we are using linear manifold methods, we have employed Euclidean geometrical mapping to help interpret these plots. The degree of correlation between any attribute and
<italic>T</italic>
<sub>t</sub>
is determined by the cosine of the angle (
<italic>θ</italic>
) between the attribute and
<italic>T</italic>
<sub>t</sub>
(angle between attribute origin–
<italic>T</italic>
<sub>t</sub>
) within the loading plot. If
<italic>θ</italic>
=0
<sup>°</sup>
, the attribute and
<italic>T</italic>
<sub>t</sub>
are highly positively correlated, if
<italic>θ</italic>
=180
<sup>°</sup>
, then they are highly negatively correlated and if
<italic>θ</italic>
=90
<sup>°</sup>
, there is no correlation between the attribute and
<italic>T</italic>
<sub>t</sub>
. In
<xref ref-type="fig" rid="RSPA20100543F4">figure 4</xref>
, two zones that show the strongest correlation of the attributes with
<italic>T</italic>
<sub>t</sub>
are explicitly marked, with the assumption that the first two PCs capture such a high percentage of the data’s information that the other PCs do not need to be explicitly considered. The attributes
<italic>r</italic>
<sub>
<italic>B</italic>
</sub>
(ionic radii of B-site),
<italic>d</italic>
<sub>B–O</sub>
(ideal B–O bond distance based on the bond-valence model), Δ
<italic>H</italic>
<sub>fBO</sub>
(enthalpy of formation of BO oxide) and b (lattice constant) correlate positively with
<italic>T</italic>
<sub>t</sub>
, while
<italic>r</italic>
<sub>
<italic>A</italic>
</sub>
(ionic radii of A-site),
<italic>d</italic>
<sub>A–O</sub>
(ideal A–O bond distance based on the bond-valence model),
<italic>t</italic>
(tolerance factor calculated using ionic radii),
<italic>t</italic>
<sub>BV</sub>
(tolerance factor calculated using the bond-valence method),
<italic>B</italic>
<sub>EN</sub>
(B-site electronegativity—absolute scale),
<italic>B</italic>
<sub>Eff</sub>
(B-site effective nuclear charge) and
<italic>V</italic>
/
<italic>Z</italic>
(volume of unit cell/coordination number) correlate negatively with
<italic>T</italic>
<sub>t</sub>
. Our PCA model reproduces the well-known inverse linear relationship between tolerance factor (
<italic>t</italic>
) and
<italic>T</italic>
<sub>t</sub>
. Based on the removal of redundancy and consideration of available data, we have determined that six attributes (
<italic>r</italic>
<sub>A</sub>
,
<italic>t</italic>
,
<italic>B</italic>
<sub>EN</sub>
,
<italic>d</italic>
<sub>A–O</sub>
,
<italic>r</italic>
<sub>B</sub>
and
<italic>d</italic>
<sub>B–O</sub>
) are appropriate for describing
<italic>T</italic>
<sub>t</sub>
. By identifying these attributes, we can more fully describe the high-temperature behaviour than possible by only considering the tolerance factor (
<italic>t</italic>
), and the selection of only the highly correlated attributes ensures the robustness of the model.</p>
</sec>
<sec id="s4b">
<label>(b)</label>
<title>Identifying new high-temperature perovskites: developing a ‘QSPR’</title>
<p>To test for high-
<italic>T</italic>
<sub>C</sub>
piezoelectric materials, we have applied PLS regression (
<xref rid="RSPA20100543C23" ref-type="bibr">Ericksson
<italic>et al</italic>
. 2001</xref>
) to predict
<italic>T</italic>
<sub>C</sub>
at the MPB of the end-member PbTiO
<sub>3</sub>
solid solution. PLS is particularly suitable for handling sparse data with strongly correlated attributes. The piezoelectric materials database for predicting
<italic>T</italic>
<sub>C</sub>
as a function of six attributes (
<italic>r</italic>
<sub>A</sub>
,
<italic>t</italic>
,
<italic>B</italic>
<sub>EN</sub>
,
<italic>d</italic>
<sub>A–O</sub>
,
<italic>r</italic>
<sub>B</sub>
and
<italic>d</italic>
<sub>B–O</sub>
) is taken from the published work of
<xref rid="RSPA20100543C21" ref-type="bibr">Eitel
<italic>et al.</italic>
(2001)</xref>
and
<xref rid="RSPA20100543C33" ref-type="bibr">Grinberg
<italic>et al.</italic>
(2005)</xref>
. This new QSPR formulated using PLS is given by
<disp-formula id="RSPA20100543UM1">
<graphic xlink:href="rspa20100543-e1.jpg" position="float"></graphic>
</disp-formula>
Fifteen compounds were used for training the model and an independent set of five compounds (not used during the training) was used for testing (
<xref ref-type="fig" rid="RSPA20100543F5">figure 5</xref>
). Our QSPR model takes into account the physics of mismatch of bond lengths (
<italic>t</italic>
), ionic size (
<italic>r</italic>
<sub>A</sub>
and
<italic>r</italic>
<sub>B</sub>
), bond lengths (
<italic>d</italic>
<sub>A–O</sub>
and
<italic>d</italic>
<sub>B–O</sub>
) and chemical bonding at the B-site (
<italic>B</italic>
<sub>EN</sub>
), thereby accounting for a far greater diversity of attributes in comparison to the previous model where only mismatch of bond lengths was considered. Some of the descriptors captured in our QSPR model are also in the original description of the tolerance factor. However, only two (
<italic>r</italic>
<sub>B</sub>
and
<italic>r</italic>
<sub>A</sub>
) of the six descriptors are explicitly used in the tolerance factor formulation,
<disp-formula id="RSPA20100543UM2">
<graphic xlink:href="rspa20100543-e2.jpg" position="float"></graphic>
</disp-formula>
while the other four descriptors are not explicitly used. For end members that had more than one cation in the octahedral site, such as Pb(B
<sub>1</sub>
B
<sub>2</sub>
)O
<sub>3</sub>
, we considered the arithmetic mean value of B
<sub>1</sub>
and B
<sub>2</sub>
. It should be noted, although not elaborated in this paper, that the classification of Me ions into weakly and strongly ferroelectric active species can be accomplished by exploring more descriptors such as polarizability, ionic valence and ionic size.</p>
<fig id="RSPA20100543F5" position="float">
<label>Figure 5.</label>
<caption>
<p>Multivariate predicted model (abscissa) in comparison with the measured
<italic>T</italic>
<sub>C</sub>
as reported in the literature (
<xref rid="RSPA20100543C21" ref-type="bibr">Eitel
<italic>et al</italic>
. 2001</xref>
;
<xref rid="RSPA20100543C33" ref-type="bibr">Grinberg
<italic>et al</italic>
. 2005</xref>
) is shown for the PbTiO
<sub>3</sub>
end members. The model was developed by using 15 chemistries and tested for five chemistries. The new figure of merit is
<italic>T</italic>
<sub>C</sub>
=−(789.912×
<italic>t</italic>
)−(153.932×
<italic>r</italic>
<sub>A</sub>
)+(1013.981×
<italic>r</italic>
<sub>B</sub>
)+(796.5864×
<italic>d</italic>
<sub>B–O</sub>
)−(138.9×
<italic>d</italic>
<sub>A–O</sub>
)−(55.6076×
<italic>B</italic>
<sub>EN</sub>
)−526.537. Based on the new figure of merit, the
<italic>T</italic>
<sub>C</sub>
of new piezoelectric chemistries BiTmO
<sub>3</sub>
–PT and BiLuO
<sub>3</sub>
–PT were predicted to be 730
<sup>°</sup>
C and 705
<sup>°</sup>
C, respectively (labelled red in the figure). It should be noted that the
<italic>T</italic>
<sub>C</sub>
of BiTmO
<sub>3</sub>
–PT and BiLuO
<sub>3</sub>
–PT plotted in the figure is only the predicted value and needs to be experimentally validated. Notation for chemical compounds and parameters are described in the electronic supplementary material. Filled circles, training set; filled triangles, test set; plus symbols, new predictions. (Online version in colour.)</p>
</caption>
<graphic xlink:href="rspa20100543-g5"></graphic>
</fig>
<p>The additional diversity of the QSPR model has a clear advantage as compared with the model based solely on tolerance factor. For many compounds, the QSPR model is in reasonable agreement with the tolerance factor model. However, in some cases, the mismatch of bond length is not sufficient for modelling the physics of the system. For the systems predicted here, BiLuO
<sub>3</sub>
–PbTiO
<sub>3</sub>
is predicted to have a higher
<italic>T</italic>
<sub>C</sub>
than any systems included in the training dataset; however, this result is not found when using the tolerance factor model. Therefore, we conclude that our developed QSPR is highly robust in predicting the
<italic>T</italic>
<sub>C</sub>
of unknown compounds (
<xref ref-type="fig" rid="RSPA20100543F5">figure 5</xref>
) and has a more broad significance when applied to new materials. Based on this QSPR model, a search of all the elements in the periodic table that best satisfy the correlation criterion involving the combination of attributes was performed. The search has resulted in generating four new ABO
<sub>3</sub>
chemistries (BiTmO
<sub>3</sub>
, BiLuO
<sub>3</sub>
, BiHoO
<sub>3</sub>
and BiErO
<sub>3</sub>
) as potential high-
<italic>T</italic>
<sub>C</sub>
materials. Having identified the new chemistries, we then tested them for their crystal structure-type.</p>
</sec>
<sec id="s4c">
<label>(c)</label>
<title>Screening for piezoelectric behaviour: ‘sequencing the gene’</title>
<p>To test for the perovskite structural stability, a new classification model was developed using a recursive partitioning strategy (
<xref rid="RSPA20100543C82" ref-type="bibr">Witten & Frank 2000</xref>
;
<xref rid="RSPA20100543C34" ref-type="bibr">Hall
<italic>et al</italic>
. 2009</xref>
) on a large database (taken from the work of
<xref rid="RSPA20100543C87" ref-type="bibr">Zhang
<italic>et al</italic>
. 2007</xref>
and references therein) of 355 ABO
<sub>3</sub>
stoichiometric compounds (227 perovskites and 128 non-perovskites) to track which combination of parameters influences the perovskite structural stability by partitioning a high-dimensional dataset. The outcome of this analysis is important for determining whether it is feasible to synthesize a pure perovskite phase in the BiBO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solution (where B=Tm, Lu, Ho, Er). Our hypothesis is, if BiTmO
<sub>3</sub>
, BiLuO
<sub>3</sub>
, BiHoO
<sub>3</sub>
and BiErO
<sub>3</sub>
compounds are predicted to have a stable perovskite structure-type at ambient or non-ambient (high pressure/temperature) condition, then we propose that it is possible to experimentally obtain a pure perovskite phase in BiBO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solution (where B=Tm, Lu, Ho, Er). Here, we explain the relevance of this hypothesis using a few examples based on experimental observations.</p>
<p>It is well known that obtaining a pure Bi-based perovskite is difficult under conventional processing methods at ambient conditions. For example, a pure perovskite phase in BiScO
<sub>3</sub>
is synthesized only at 6 GPa pressure and 1140
<sup>°</sup>
C temperature (Belik
<italic>et al</italic>
.
<xref rid="RSPA20100543C5" ref-type="bibr">2006
<italic>a</italic>
</xref>
,
<xref rid="RSPA20100543C6" ref-type="bibr">
<italic>b</italic>
</xref>
) and in BiMnO
<sub>3</sub>
a pure perovskite phase is obtained only at pressures greater than 4 GPa and 750
<sup>°</sup>
C temperature (
<xref rid="RSPA20100543C53" ref-type="bibr">Montanari
<italic>et al</italic>
. 2005</xref>
). However, solid solutions of BiScO
<sub>3</sub>
–PbTiO
<sub>3</sub>
(
<xref rid="RSPA20100543C86" ref-type="bibr">Zhang
<italic>et al</italic>
. 2003</xref>
) and BiMnO
<sub>3</sub>
–PbTiO
<sub>3</sub>
(
<xref rid="RSPA20100543C84" ref-type="bibr">Woodward & Reaney 2004</xref>
) have been experimentally synthesized and are shown to have a pure perovskite phase. Even in the case of very low tolerance factor end members such as BiYbO
<sub>3</sub>
(tolerance factor=0.857), there are experimental reports that confirm the limited solubility of BiYbO
<sub>3</sub>
in PbTiO
<sub>3</sub>
.
<xref rid="RSPA20100543C24" ref-type="bibr">Feng
<italic>et al</italic>
. (2009)</xref>
using conventional ceramic processing methods synthesized a solid solution of 0.05BiYbO
<sub>3</sub>
–0.95PbTiO
<sub>3</sub>
with the highest perovskite phase purity of 97.83 per cent. Obtaining a pure perovskite phase in BiYbO
<sub>3</sub>
when synthesized at ambient conditions is extremely difficult (
<xref rid="RSPA20100543C17" ref-type="bibr">Drache
<italic>et al</italic>
. 2004</xref>
), and we note that there is no experimental or theoretical study on structural phase transitions in BiYbO
<sub>3</sub>
at high-pressure/-temperature conditions. In this work, we have identified for the first time the existence of a stable perovskite structure-type in BiYbO
<sub>3</sub>
via a recursive partitioning strategy at high-pressure/-temperature conditions, and this structural stability at high-pressure/-temperature conditions explains the limited solubility of BiYbO
<sub>3</sub>
in PbTiO
<sub>3</sub>
at ambient conditions. Alloying BiYbO
<sub>3</sub>
with PbTiO
<sub>3</sub>
, which has a large
<italic>c</italic>
/
<italic>a</italic>
ratio, can help stabilize a perovskite phase by applying chemical pressure (
<xref rid="RSPA20100543C2" ref-type="bibr">Ahart
<italic>et al</italic>
. 2008</xref>
).</p>
<p>In this work, we apply our classification model to qualitatively determine the feasibility of synthesizing a pure perovskite phase in the BiBO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solution (where B=Tm, Lu, Ho, Er). In order to capture the physics of perovskite stability at high-pressure/-temperature conditions, we have included ABO
<sub>3</sub>
perovskite compounds such as BiScO
<sub>3</sub>
(Belik
<italic>et al</italic>
.
<xref rid="RSPA20100543C5" ref-type="bibr">2006
<italic>a</italic>
</xref>
,
<xref rid="RSPA20100543C6" ref-type="bibr">
<italic>b</italic>
</xref>
), BiMnO
<sub>3</sub>
(
<xref rid="RSPA20100543C53" ref-type="bibr">Montanari
<italic>et al</italic>
. 2005</xref>
), BiAlO
<sub>3</sub>
(Belik
<italic>et al</italic>
.
<xref rid="RSPA20100543C5" ref-type="bibr">2006
<italic>a</italic>
</xref>
,
<xref rid="RSPA20100543C6" ref-type="bibr">
<italic>b</italic>
</xref>
), NaSbO
<sub>3</sub>
(
<xref rid="RSPA20100543C51" ref-type="bibr">Mizoguchi
<italic>et al</italic>
. 2004</xref>
) and YInO
<sub>3</sub>
(
<xref rid="RSPA20100543C68" ref-type="bibr">Shannon 1967</xref>
) that are experimentally known to have a stable perovskite structure-type only at extreme pressure/temperature conditions. Therefore, the design rules that we extract from our classification model are applicable to identify new perovskites at both ambient and high-pressure/-temperature conditions. Using the Shannon entropy as a selection criterion, a hierarchical set of design rules was formulated to develop classification schemes that hitherto have been approached by empirical observation (
<xref rid="RSPA20100543C59" ref-type="bibr">Plenio & Vitelli 2001</xref>
;
<xref rid="RSPA20100543C70" ref-type="bibr">Shell 2008</xref>
;
<xref rid="RSPA20100543C43" ref-type="bibr">Karnani
<italic>et al</italic>
. 2009</xref>
).</p>
<p>The expected information required to classify an ABO
<sub>3</sub>
compound solely based on its proportion in the database
<italic>D</italic>
is given by the Shannon entropy
<italic>H</italic>
(
<italic>D</italic>
), which is defined as
<disp-formula id="RSPA20100543UM3">
<graphic xlink:href="rspa20100543-e3.jpg" position="float"></graphic>
</disp-formula>
where
<italic>p</italic>
<sub>
<italic>i</italic>
</sub>
is the probability that an arbitrary tuple in ‘
<italic>D</italic>
’ belongs to perovskite crystal structure or not. A log function of base 2 is used, because the information is encoded in bits and
<italic>m</italic>
is an integer with distinct values defining
<italic>m</italic>
distinct classes (
<xref rid="RSPA20100543C35" ref-type="bibr">Han & Kamber 2006</xref>
). We formulated our recursive partitioning as a binary classification problem. Further details on the construction and interpretation of the dendrogram are provided in the electronic supplementary material.</p>
<p>The aim of the classification is to track precisely which and how variables contribute to perovskite structural stability. The output from a recursive partitioning analysis is a dendrogram (or a tree diagram) with branches grown on each node (attribute) to classify whether a particular ABO
<sub>3</sub>
compound forms a perovskite crystal structure. The advantage of the recursive partitioning method is that it can efficiently model nonlinear relationships in any arbitrary form even when the attributes show strong interactions (
<xref rid="RSPA20100543C36" ref-type="bibr">Hawkins
<italic>et al</italic>
. 1997</xref>
). Our recursive partitioning model classified 336 out of 355 compounds accurately (95% accuracy), and the model was validated by a standard 10-fold cross-validation technique used in statistics.</p>
<p>The dendrogram model used for predicting new perovskites is shown in
<xref ref-type="fig" rid="RSPA20100543F6">figure 6</xref>
. According to the dendrogram,
<italic>d</italic>
<sub>A–O</sub>
(ideal A–O bond length calculated based on the bond-valence method) is the most significant attribute impacting the phase stability of perovskite compounds, followed by the tolerance factor. The leaf nodes that are labelled ‘yes’ and ‘no’ indicate compounds that may have a stable perovskite structure-type or not a perovskite, respectively. From the dendrogram, design rules were extracted for predicting new potentially stable perovskite compounds. Of the 227 perovskite compounds, 184 obeyed the following rule: if
<italic>d</italic>
<sub>A–O</sub>
>2.453 and
<italic>t</italic>
<sub>IR</sub>
≤1.090863 and
<italic>r</italic>
<sub>A</sub>
/
<italic>r</italic>
<sub>B</sub>
>1.509872 and
<italic>B</italic>
<sub>EN</sub>
<italic>O</italic>
<sub>EN</sub>
>1.42 and
<italic>r</italic>
<sub>A</sub>
/
<italic>r</italic>
<sub>B</sub>
≤2.5625, then the ABO
<sub>3</sub>
compound is a perovskite, where
<italic>d</italic>
<sub>A–O</sub>
is the ideal bond length based on the bond-valence model,
<italic>t</italic>
<sub>IR</sub>
is the tolerance factor calculated using ionic radii,
<italic>r</italic>
<sub>A</sub>
/
<italic>r</italic>
<sub>B</sub>
is the ionic radii ratio of A-site to B-site and
<italic>B</italic>
<sub>EN</sub>
<italic>O</italic>
<sub>EN</sub>
is the electronegativity difference (Pauling scale) between B-cation and O-anion. A total of 11 design rules were formulated for testing the perovskite structural stability.</p>
<fig id="RSPA20100543F6" position="float">
<label>Figure 6.</label>
<caption>
<p>The dendrogram (or tree diagram) classification model developed based on the recursive partitioning method for identifying new potentially stable perovskite compounds is shown. We used the Shannon entropy as a selection criterion to identify key descriptors, and a hierarchical set of design rules were formulated to develop classification schemes that have been approached by empirical observation. The leaf nodes that are labelled ‘yes’ or ‘no’ indicate compounds that may have a stable perovskite structure-type or not a perovskite, respectively. From the dendrogram, 11 design rules were formulated for testing the perovskite structural stability. By applying the dendrogram to the four candidate high-temperature materials BiErO
<sub>3</sub>
, BiHoO
<sub>3</sub>
, BiTmO
<sub>3</sub>
and BiLuO
<sub>3</sub>
, only two compounds, BiTmO
<sub>3</sub>
and BiLuO
<sub>3</sub>
, were identified as having the stable perovskite crystal structure at high-pressure/-temperature conditions. As a result, BiTmO
<sub>3</sub>
–PbTiO
<sub>3</sub>
and BiLuO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solutions were identified as new perovskite compounds with a significantly high
<italic>T</italic>
<sub>C</sub>
while having piezoelectric behaviour. The dendrogram application of other Bi-based systems BiMEO
<sub>3</sub>
, where ME=Cr, Co, Ga and Ni, also identifies them as having the perovskite crystal structure in agreement with the literature (
<xref rid="RSPA20100543C40" ref-type="bibr">Ishiwata
<italic>et al.</italic>
2002</xref>
;
<xref rid="RSPA20100543C4" ref-type="bibr">Baettig
<italic>et al.</italic>
2005</xref>
;
<xref rid="RSPA20100543C30" ref-type="bibr">Goujon
<italic>et al.</italic>
2008</xref>
;
<xref rid="RSPA20100543C55" ref-type="bibr">Oka
<italic>et al.</italic>
2010</xref>
). In the dendrogram,
<italic>d</italic>
<sub>A–O</sub>
is the ideal A–O bond length calculated based on the bond-valence method,
<italic>t</italic>
<sub>IR</sub>
is the tolerance factor from ionic radii data,
<italic>r</italic>
<sub>A</sub>
is ionic radii (Shannon’s scale) of the A-site cation with coordination number 12,
<italic>r</italic>
<sub>B</sub>
is the ionic radii (Shannon’s scale) of the B-site cation with coordination number 6,
<italic>B</italic>
<sub>EN</sub>
<italic>O</italic>
<sub>EN</sub>
is the electronegativity difference (Pauling’s scale) between B-site and O-site, A-ionicity is the product of
<italic>r</italic>
<sub>A</sub>
/
<italic>r</italic>
<sub>O</sub>
and
<italic>A</italic>
<sub>EN</sub>
<italic>O</italic>
<sub>EN</sub>
, B-ionicity is the product of
<italic>r</italic>
<sub>B</sub>
/
<italic>r</italic>
<sub>O</sub>
and
<italic>B</italic>
<sub>EN</sub>
<italic>O</italic>
<sub>EN</sub>
and GII is the global stability index (
<xref rid="RSPA20100543C87" ref-type="bibr">Zhang
<italic>et al</italic>
. 2007</xref>
). (Online version in colour.)</p>
</caption>
<graphic xlink:href="rspa20100543-g6"></graphic>
</fig>
<p>By applying the dendrogram to the four candidate ABO
<sub>3</sub>
compounds, only two compounds, BiTmO
<sub>3</sub>
and BiLuO
<sub>3</sub>
, were identified as having a stable perovskite crystal structure at high-pressure/-temperature conditions. Experimental synthesis of BiTmO
<sub>3</sub>
and BiLuO
<sub>3</sub>
compounds at ambient pressure has been attempted in the past but was unsuccessful in synthesizing a pure perovskite phase (
<xref rid="RSPA20100543C18" ref-type="bibr">Drache
<italic>et al</italic>
. 2005</xref>
); however, there are no data available on synthesizing BiTmO
<sub>3</sub>
and BiLuO
<sub>3</sub>
compounds at high-pressure/-temperature conditions. Therefore, we predict for the first time the existence of a stable perovskite phase in BiTmO
<sub>3</sub>
and BiLuO
<sub>3</sub>
compounds at high-pressure/-temperature conditions. This result indicates that Tm
<sup>3+</sup>
(thulium) is the largest cation (with an ionic radius of 0.88 Å in sixfold coordination) that can occupy the octahedral site of a BiMeO
<sub>3</sub>
perovskite lattice without impacting its phase stability. The dendrogram also predicts the existence of a stable perovskite phase in BiYbO
<sub>3</sub>
at high-pressure/-temperature conditions. BiYbO
<sub>3</sub>
–PbTiO
<sub>3</sub>
is known as a potential high-temperature piezoelectric material (
<xref rid="RSPA20100543C21" ref-type="bibr">Eitel
<italic>et al</italic>
. 2001</xref>
;
<xref rid="RSPA20100543C24" ref-type="bibr">Feng
<italic>et al</italic>
. 2009</xref>
), and there are experimental reports that confirm the limited solubility of BiYbO
<sub>3</sub>
in PbTiO
<sub>3</sub>
, thereby forming a solid solution (
<xref rid="RSPA20100543C24" ref-type="bibr">Feng
<italic>et al</italic>
. 2009</xref>
). Thus, we conclude that it is possible to experimentally obtain a pure perovskite phase in BiLuO
<sub>3</sub>
–PbTiO
<sub>3</sub>
and BiTmO
<sub>3</sub>
–PbTiO
<sub>3</sub>
solid solutions. Based on the QSPR and the recursive partitioning model, two new perovskite end members were identified (BiTmO
<sub>3</sub>
–PbTiO
<sub>3</sub>
and BiLuO
<sub>3</sub>
–PbTiO
<sub>3</sub>
) and predicted to have a high
<italic>T</italic>
<sub>C</sub>
of 730
<sup>°</sup>
C and 705
<sup>°</sup>
C at the MPB, respectively, while having piezoelectric behaviour.</p>
<p>The focus of this report has been solely on identifying new BiMeO
<sub>3</sub>
–PbTiO
<sub>3</sub>
materials chemistries with higher Curie temperatures, where Me is a weakly ferroelectrically active cation with a formal charge 3+. We fully realize that other electronic structure parameters such as polarizability and other microstructural parameters play a critical role in defining a useful high-temperature piezoelectric material. This involves exploring a larger and more diverse chemical space that includes more than one Me cation that is strongly ferroelectrically active, which is presently being done, as well as experimental verification of our results, which will be reported in upcoming publications.</p>
</sec>
</sec>
<sec id="s5">
<label>5.</label>
<title>Summary</title>
<p>We have identified two new perovskite-based piezoelectric crystal chemistries, BiTmO
<sub>3</sub>
–PbTiO
<sub>3</sub>
and BiLuO
<sub>3</sub>
–PbTiO
<sub>3</sub>
, with significantly higher Curie temperature using a highly efficient and robust computational strategy based on statistical learning and information theory concepts. The data mining strategy we have developed also permits us to identify key physical attributes that appear to govern the properties of a given crystal chemistry (e.g. piezoelectrics with a high Curie temperature), providing a mechanistic-based discovery process and not just a heuristic strategy. Finally, this paper helps to establish the efficacy of informatics as an approach to refine the chemical search space for materials discovery and to hence serve as a broader template for materials design in other applications.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="SD1">
<caption>
<title>Identifying the “Inorganic Gene” for High Temperature Piezoelectric Perovskites through Statistical Learning</title>
</caption>
<media mimetype="application" mime-subtype="doc" xlink:href="rspa20100543supp1.doc" xlink:type="simple" id="d35e2636" position="anchor"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<title>Acknowledgements</title>
<p>The authors acknowledge support from the Air Force Office of Scientific Research, grant nos FA9550-06-10501 and FA9550-08-1-0316; the National Science Foundation: NSF-IMI programme grant no. DMR-08-33853, NSF-ARI Program: CMMI 09-389018; NSF-CDI Type II program: grant no. PHY 09-41576 and NSF-AF grant no. CCF09-17202, DARPA N/MEMS Science & Technology Fundamentals program, grant no. HR0011-06-0049, Dr D. L. Polla, Program Manager, and Army Research Office grant no. W911NF-10-0397. KR would also like to acknowledge support from Iowa State University through the Wilkinson Professorship in Interdisciplinary Engineering.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="RSPA20100543C1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abrahams</surname>
<given-names>S. C.</given-names>
</name>
<name>
<surname>Kurtz</surname>
<given-names>S. K.</given-names>
</name>
<name>
<surname>Jamieson</surname>
<given-names>P. B.</given-names>
</name>
</person-group>
<year>1968</year>
<article-title>Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectrics</article-title>
<source>Phys. Rev</source>
<volume>172</volume>
<fpage>551</fpage>
<lpage>553</lpage>
<pub-id pub-id-type="doi">10.1103/PhysRev.172.551</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1103/PhysRev.172.551">doi:10.1103/PhysRev.172.551</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahart</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<year>2008</year>
<article-title>Origin of morphotropic phase boundaries in ferroelectrics</article-title>
<source>Nature</source>
<volume>451</volume>
<fpage>545</fpage>
<lpage>548</lpage>
<pub-id pub-id-type="doi">10.1038/nature06459</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/nature06459">doi:10.1038/nature06459</ext-link>
)
<pub-id pub-id-type="pmid">18235495</pub-id>
</mixed-citation>
</ref>
<ref id="RSPA20100543C3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Allred</surname>
<given-names>A. L.</given-names>
</name>
<name>
<surname>Rochow</surname>
<given-names>E. G.</given-names>
</name>
</person-group>
<year>1958</year>
<article-title>A scale of electronegativity based on electrostatic force</article-title>
<source>J. Inorg. Nucl. Chem</source>
<volume>5</volume>
<fpage>264</fpage>
<lpage>268</lpage>
<pub-id pub-id-type="doi">10.1016/0022-1902(58)80003-2</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/0022-1902(58)80003-2">doi:10.1016/0022-1902(58)80003-2</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baettig</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Schelle</surname>
<given-names>C. F.</given-names>
</name>
<name>
<surname>LeSar</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Waghmare</surname>
<given-names>U. V.</given-names>
</name>
<name>
<surname>Spaldin</surname>
<given-names>N.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Theoretical prediction of new high-performance lead-free piezoelectrics</article-title>
<source>Chem. Mater</source>
<volume>17</volume>
<fpage>1376</fpage>
<lpage>1380</lpage>
<pub-id pub-id-type="doi">10.1021/cm0480418</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1021/cm0480418">doi:10.1021/cm0480418</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Belik</surname>
<given-names>A. A.</given-names>
</name>
<etal></etal>
</person-group>
<year>2006</year>
<italic>a</italic>
<article-title>BiScO
<sub>3</sub>
:centrosymmetric BiMnO
<sub>3</sub>
-type oxide</article-title>
<source>J. Am. Chem. Soc</source>
<volume>128</volume>
<fpage>706</fpage>
<lpage>707</lpage>
<pub-id pub-id-type="doi">10.1021/ja057574u</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1021/ja057574u">doi:10.1021/ja057574u</ext-link>
)
<pub-id pub-id-type="pmid">16417345</pub-id>
</mixed-citation>
</ref>
<ref id="RSPA20100543C6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Belik</surname>
<given-names>A. A.</given-names>
</name>
<name>
<surname>Wuernisha</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kamiyama</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Mori</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Maie</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nagai</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Matsui</surname>
<given-names>Y. T.</given-names>
</name>
<name>
<surname>Takayama-Muromachi</surname>
<given-names>E.</given-names>
</name>
</person-group>
<year>2006</year>
<italic>b</italic>
<article-title>High-pressure synthesis, crystal structures, and properties of perovskite-like BiAlO
<sub>3</sub>
and pyroxene-like BiGaO
<sub>3</sub>
</article-title>
<source>Chem. Mater</source>
<volume>18</volume>
<fpage>133</fpage>
<lpage>139</lpage>
<pub-id pub-id-type="doi">10.1021/cm052020b</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1021/cm052020b">doi:10.1021/cm052020b</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brese</surname>
<given-names>N. E.</given-names>
</name>
<name>
<surname>O’Keeffe</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>1991</year>
<article-title>Bond-valence parameters for solids</article-title>
<source>Acta Cryst. B</source>
<volume>47</volume>
<fpage>192</fpage>
<lpage>197</lpage>
<pub-id pub-id-type="doi">10.1107/S0108768190011041</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S0108768190011041">doi:10.1107/S0108768190011041</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Broderick</surname>
<given-names>S. R.</given-names>
</name>
<name>
<surname>Nowers</surname>
<given-names>J. R.</given-names>
</name>
<name>
<surname>Narasimhan</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Rajan</surname>
<given-names>K.</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Tracking chemical processing pathways in combinatorial polymer libraries via data mining</article-title>
<source>J. Comb. Chem</source>
<volume>12</volume>
<fpage>270</fpage>
<lpage>277</lpage>
<pub-id pub-id-type="doi">10.1021/cc900145d</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1021/cc900145d">doi:10.1021/cc900145d</ext-link>
)
<pub-id pub-id-type="pmid">20030378</pub-id>
</mixed-citation>
</ref>
<ref id="RSPA20100543C9">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Brown</surname>
<given-names>I. D.</given-names>
</name>
</person-group>
<year>2002</year>
<source>The chemical bond in inorganic chemistry:the bond valence model</source>
<publisher-loc>Oxford, UK</publisher-loc>
<publisher-name>Oxford University Press</publisher-name>
</element-citation>
</ref>
<ref id="RSPA20100543C10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>X.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>High spontaneous polarization in PbTiO
<sub>3</sub>
–BiMeO
<sub>3</sub>
systems with enhanced tetragonality</article-title>
<source>Appl. Phys. Lett</source>
<volume>91</volume>
<fpage>171</fpage>
<lpage>907</lpage>
<pub-id pub-id-type="doi">10.1063/1.2794742</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1063/1.2794742">doi:10.1063/1.2794742</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Jo</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Rödel</surname>
<given-names>J.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Temperature dependence of piezoelectric properties of high-
<italic>T</italic>
<sub>C</sub>
Bi(Mg
<sub>1/2</sub>
Ti
<sub>1/2</sub>
)O
<sub>3</sub>
–PbTiO
<sub>3</sub>
</article-title>
<source>J. Appl. Phys</source>
<volume>106</volume>
<fpage>034109</fpage>
<pub-id pub-id-type="doi">10.1063/1.3191666</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1063/1.3191666">doi:10.1063/1.3191666</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clementi</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Raimondi</surname>
<given-names>D. L.</given-names>
</name>
</person-group>
<year>1963</year>
<article-title>Atomic screening constants from SCF functions</article-title>
<source>J. Chem. Phys</source>
<volume>38</volume>
<fpage>2686</fpage>
<pub-id pub-id-type="doi">10.1063/1.1733573</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1063/1.1733573">doi:10.1063/1.1733573</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cohen</surname>
<given-names>R. E.</given-names>
</name>
</person-group>
<year>1992</year>
<article-title>Origin of ferroelectricity in perovskite oxides</article-title>
<source>Nature</source>
<volume>358</volume>
<fpage>136</fpage>
<lpage>138</lpage>
<pub-id pub-id-type="doi">10.1038/358136a0</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/358136a0">doi:10.1038/358136a0</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C14">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Cohen</surname>
<given-names>R. E.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>First-principles theories of piezoelectric materials</article-title>
<source>Springer series in materials science on piezoelectricity</source>
<volume>vol. 114</volume>
<person-group person-group-type="editor">
<name>
<surname>Heywang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Lubitz</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Wersing</surname>
<given-names>W.</given-names>
</name>
</person-group>
<fpage>471</fpage>
<lpage>492</lpage>
<publisher-loc>Berlin, Germany</publisher-loc>
<publisher-name>Springer</publisher-name>
</mixed-citation>
</ref>
<ref id="RSPA20100543C15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Curtarolo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Persson</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Rodgers</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ceder</surname>
<given-names>G.</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>Predicting crystal structures with data mining of quantum calculations</article-title>
<source>Phys. Rev. Lett</source>
<volume>91</volume>
<fpage>135</fpage>
<lpage>503</lpage>
<pub-id pub-id-type="doi">10.1103/PhysRevLett.91.135503</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1103/PhysRevLett.91.135503">doi:10.1103/PhysRevLett.91.135503</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Damjanovic</surname>
<given-names>D.</given-names>
</name>
</person-group>
<year>1998</year>
<article-title>Materials for high temperature piezoelectric transducers</article-title>
<source>Curr. Opin. Mater. Sci</source>
<volume>3</volume>
<fpage>469</fpage>
<lpage>473</lpage>
<pub-id pub-id-type="doi">10.1016/S1359-0286(98)80009-0</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/S1359-0286(98)80009-0">doi:10.1016/S1359-0286(98)80009-0</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drache</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Roussel</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wignacourt</surname>
<given-names>J.-P.</given-names>
</name>
<name>
<surname>Conflant</surname>
<given-names>P.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Bi
<sub>17</sub>
Yb
<sub>7</sub>
O
<sub>36</sub>
and BiYbO
<sub>3</sub>
:two new compounds from the Bi
<sub>2</sub>
O
<sub>3</sub>
–Yb
<sub>2</sub>
O
<sub>3</sub>
equilibrium phase diagram determination</article-title>
<source>Mater. Res. Bull</source>
<volume>39</volume>
<fpage>1393</fpage>
<lpage>1405</lpage>
<pub-id pub-id-type="doi">10.1016/j.materresbull.2004.04.034</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.materresbull.2004.04.034">doi:10.1016/j.materresbull.2004.04.034</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drache</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Roussel</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Conflant</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wignacourt</surname>
<given-names>J-P.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Bi
<sub>17</sub>
Yb
<sub>7</sub>
O
<sub>36</sub>
and BiYbO
<sub>3</sub>
crystal structures of thulium and lutetium homologous compounds</article-title>
<source>Solid State Sci</source>
<volume>7</volume>
<fpage>269</fpage>
<lpage>276</lpage>
</element-citation>
</ref>
<ref id="RSPA20100543C19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Speyer</surname>
<given-names>R. F.</given-names>
</name>
<name>
<surname>Alberta</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Shrout</surname>
<given-names>T. R.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>High Curie temperature perovskite BiInO
<sub>3</sub>
-PbTiO
<sub>3</sub>
ceramics</article-title>
<source>J. Mater. Res</source>
<volume>19</volume>
<fpage>2185</fpage>
<lpage>2193</lpage>
<pub-id pub-id-type="doi">10.1557/JMR.2004.0282</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1557/JMR.2004.0282">doi:10.1557/JMR.2004.0282</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dudiy</surname>
<given-names>S. V.</given-names>
</name>
<name>
<surname>Zunger</surname>
<given-names>A.</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Searching for alloy configurations with target physical properties:impurity design via a genetic algorithm inverse band structure approach</article-title>
<source>Phys. Rev. Lett</source>
<volume>97</volume>
<fpage>046401</fpage>
<pub-id pub-id-type="doi">10.1103/PhysRevLett.97.046401</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1103/PhysRevLett.97.046401">doi:10.1103/PhysRevLett.97.046401</ext-link>
)
<pub-id pub-id-type="pmid">16907596</pub-id>
</mixed-citation>
</ref>
<ref id="RSPA20100543C21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eitel</surname>
<given-names>R. E.</given-names>
</name>
<name>
<surname>Randall</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Shrout</surname>
<given-names>T. R.</given-names>
</name>
<name>
<surname>Rehrig</surname>
<given-names>P. W.</given-names>
</name>
<name>
<surname>Hackenberger</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S. E.</given-names>
</name>
</person-group>
<year>2001</year>
<article-title>New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O
<sub>3</sub>
–PbTiO
<sub>3</sub>
ceramics</article-title>
<source>Jpn J. Appl. Phys</source>
<volume>40</volume>
<fpage>5999</fpage>
<lpage>6002</lpage>
<pub-id pub-id-type="doi">10.1143/JJAP.40.5999</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1143/JJAP.40.5999">doi:10.1143/JJAP.40.5999</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C22">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Emsley</surname>
<given-names>J.</given-names>
</name>
</person-group>
<year>1998</year>
<source>The elements</source>
<edition>3rd edn</edition>
<publisher-loc>Oxford, UK</publisher-loc>
<publisher-name>Clarendon Press</publisher-name>
</element-citation>
</ref>
<ref id="RSPA20100543C23">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Ericksson</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Johansson</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Kettaneh-Wold</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Wold</surname>
<given-names>S.</given-names>
</name>
</person-group>
<year>2001</year>
<source>Multi- and megavariate data analysis:principles, applications</source>
<publisher-loc>Umea, Sweden</publisher-loc>
<publisher-name>UmetricsAb</publisher-name>
</element-citation>
</ref>
<ref id="RSPA20100543C24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Rongzi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Jiaji</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zhen</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lihong</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Changsheng</surname>
<given-names>T.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Phase formation and characterization of high temperature xBiYbO
<sub>3</sub>
-(1 − x)PbTiO
<sub>3</sub>
piezoelectric ceramics</article-title>
<source>J. Eur. Ceram. Soc</source>
<volume>29</volume>
<fpage>1687</fpage>
<lpage>1693</lpage>
<pub-id pub-id-type="doi">10.1016/j.jeurceramsoc.2008.09.024</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.jeurceramsoc.2008.09.024">doi:10.1016/j.jeurceramsoc.2008.09.024</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fischer</surname>
<given-names>C. C.</given-names>
</name>
<name>
<surname>Tibbetts</surname>
<given-names>K. J.</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ceder</surname>
<given-names>G.</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Predicting crystal structure by merging data mining with quantum mechanics</article-title>
<source>Nat. Mater</source>
<volume>5</volume>
<fpage>641</fpage>
<lpage>646</lpage>
<pub-id pub-id-type="doi">10.1038/nmat1691</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/nmat1691">doi:10.1038/nmat1691</ext-link>
)
<pub-id pub-id-type="pmid">16845417</pub-id>
</mixed-citation>
</ref>
<ref id="RSPA20100543C26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Froese-Fischer</surname>
<given-names>C.</given-names>
</name>
</person-group>
<year>1972</year>
<article-title>Average-energy-of-configuration Hartree–Fock results for the atoms helium and radon</article-title>
<source>Atom. Data Nucl. Data Tables</source>
<volume>4</volume>
<fpage>301</fpage>
<lpage>399</lpage>
<pub-id pub-id-type="doi">10.1016/S0092-640X(72)80008-1</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/S0092-640X(72)80008-1">doi:10.1016/S0092-640X(72)80008-1</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gadzuric</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Suh</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gaune-Escard</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rajan</surname>
<given-names>K.</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Extracting information from molten salt database</article-title>
<source>Met. Trans. A</source>
<volume>37</volume>
<fpage>3411</fpage>
<lpage>3414</lpage>
<pub-id pub-id-type="doi">10.1007/S11661-006-1034-6</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/S11661-006-1034-6">doi:10.1007/S11661-006-1034-6</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>George</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Hrubiak</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Rajan</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Saxena</surname>
<given-names>S.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Principal component analysis on properties of binary and ternary hydrides and a comparison of metal versus metal hydride properties</article-title>
<source>J. Alloy. Compd</source>
<volume>478</volume>
<fpage>731</fpage>
<lpage>735</lpage>
<pub-id pub-id-type="doi">10.1016/j.jallcom.2008.11.137</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.jallcom.2008.11.137">doi:10.1016/j.jallcom.2008.11.137</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goudochnikov</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Bell</surname>
<given-names>A. J.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Correlations between transition temperature, tolerance factor and cohesive energy in 2+ : 4+ perovskites</article-title>
<source>J. Phys. Condens. Matter</source>
<volume>19</volume>
<fpage>176</fpage>
<lpage>201</lpage>
<pub-id pub-id-type="doi">10.1088/0953-8984/19/17/176201</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1088/0953-8984/19/17/176201">doi:10.1088/0953-8984/19/17/176201</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goujon</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Darie</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bacia</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ortega</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bordet</surname>
<given-names>P.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>High pressure synthesis of BiCrO
<sub>3</sub>
, a candidate for multiferroism</article-title>
<source>J. Phys. Conf. Ser</source>
<volume>121</volume>
<fpage>022009</fpage>
<pub-id pub-id-type="doi">10.1088/1742-6596/121/2/022009</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1088/1742-6596/121/2/022009">doi:10.1088/1742-6596/121/2/022009</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grinberg</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Rappe</surname>
<given-names>A. M.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Silver solid solution peizoelectrics</article-title>
<source>Appl. Phys. Lett</source>
<volume>85</volume>
<fpage>1760</fpage>
<pub-id pub-id-type="doi">10.1063/1.1787946</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1063/1.1787946">doi:10.1063/1.1787946</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grinberg</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Rappe</surname>
<given-names>A. M.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>First-principles calculations, crystal chemistry and properties of ferroelectric perovskites</article-title>
<source>Phase Trans</source>
<volume>80</volume>
<fpage>351</fpage>
<lpage>368</lpage>
<pub-id pub-id-type="doi">10.1080/01411590701228505</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1080/01411590701228505">doi:10.1080/01411590701228505</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grinberg</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Suchomel</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>P. M.</given-names>
</name>
<name>
<surname>Rappe</surname>
<given-names>A. M.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Predicting morphotropic phase boundary locations and transition temperatures in Pb- and Bi-based perovskite solid solutions from crystal chemical and first-principles calculations</article-title>
<source>J. Appl. Phys</source>
<volume>98</volume>
<fpage>094111</fpage>
<pub-id pub-id-type="doi">10.1063/1.2128049</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1063/1.2128049">doi:10.1063/1.2128049</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hall</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Frank</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Holmes</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Pfahringer</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Reutemann</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Witten</surname>
<given-names>I. H.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>The WEKA Data Mining software:an update</article-title>
<source>SIGKDD Explorations</source>
<volume>11</volume>
<fpage>10</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1145/1656274.1656278</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1145/1656274.1656278">doi:10.1145/1656274.1656278</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C35">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Han</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kamber</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>2006</year>
<source>Data mining:concepts and techniques</source>
<edition>2nd edn</edition>
<publisher-loc>Amsterdam, The Netherlands</publisher-loc>
<publisher-name>Elsevier</publisher-name>
</element-citation>
</ref>
<ref id="RSPA20100543C36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hawkins</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Ruskino</surname>
<given-names>A.</given-names>
<suffix>III</suffix>
</name>
</person-group>
<year>1997</year>
<article-title>A. Analysis of a large structure-activity data set using recursive partitioning</article-title>
<source>Quant. Struct. Act. Rel</source>
<volume>16</volume>
<fpage>296</fpage>
<lpage>302</lpage>
<pub-id pub-id-type="doi">10.1002/qsar.19970160404</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1002/qsar.19970160404">doi:10.1002/qsar.19970160404</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hotop</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lineberger</surname>
<given-names>W. C.</given-names>
</name>
</person-group>
<year>1985</year>
<article-title>Binding energies in atomic negative ions:II</article-title>
<source>J. Phys. Chem. Ref. Data</source>
<volume>14</volume>
<fpage>731</fpage>
<lpage>750</lpage>
<pub-id pub-id-type="doi">10.1063/1.555735</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1063/1.555735">doi:10.1063/1.555735</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Igarashi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Koumoto</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yanagida</surname>
<given-names>H.</given-names>
</name>
</person-group>
<year>1987</year>
<article-title>Ferroelectric Curie points at perovskite-type oxides</article-title>
<source>J. Mater. Sci</source>
<volume>22</volume>
<fpage>2828</fpage>
<lpage>2832</lpage>
<pub-id pub-id-type="doi">10.1007/BF01086478</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/BF01086478">doi:10.1007/BF01086478</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Íñiguez</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Vanderbilt</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Bellaiche</surname>
<given-names>L.</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>First-principles study of (BiScO
<sub>3</sub>
)
<sub>1-x</sub>
–(PbTiO
<sub>3</sub>
)
<sub>x</sub>
piezoelectric alloys</article-title>
<source>Phys. Rev. B</source>
<volume>67</volume>
<fpage>224</fpage>
<lpage>107</lpage>
<pub-id pub-id-type="doi">10.1103/PhysRevB.67.224107</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1103/PhysRevB.67.224107">doi:10.1103/PhysRevB.67.224107</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ishiwata</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Azuma</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Takano</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nishibori</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Takata</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>K.</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>High pressure synthesis, crystal structure and physical properties of a new Ni(II) perovskite BiNiO
<sub>3</sub>
</article-title>
<source>J. Mater. Chem</source>
<volume>12</volume>
<fpage>3733</fpage>
<lpage>3737</lpage>
<pub-id pub-id-type="doi">10.1039/b206022a</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1039/b206022a">doi:10.1039/b206022a</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C41">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Izenman</surname>
<given-names>A. J.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>Modern multivariate statistical techniques</article-title>
<source>Regression, classification and manifold learning</source>
<person-group person-group-type="author">
<name>
<surname>Casella</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Fienberg</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Olkin</surname>
<given-names>I.</given-names>
</name>
</person-group>
<publisher-loc>New York, NY</publisher-loc>
<publisher-name>Springer</publisher-name>
<comment>Springer texts in statistics.</comment>
</element-citation>
</ref>
<ref id="RSPA20100543C42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jóhannesson</surname>
<given-names>G. H.</given-names>
</name>
<name>
<surname>Bligaard</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ruban</surname>
<given-names>A. V.</given-names>
</name>
<name>
<surname>Skriver</surname>
<given-names>H. L.</given-names>
</name>
<name>
<surname>Jacobsen</surname>
<given-names>K. W.</given-names>
</name>
<name>
<surname>Nørskov</surname>
<given-names>J. K.</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Combined electronic structure and evolutionary search approach to materials design</article-title>
<source>Phys. Rev. Lett</source>
<volume>88</volume>
<fpage>255</fpage>
<lpage>506</lpage>
<pub-id pub-id-type="doi">10.1103/PhysRevLett.88.255506</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1103/PhysRevLett.88.255506">doi:10.1103/PhysRevLett.88.255506</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karnani</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pääkkönen</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Annila</surname>
<given-names>A.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>The physical character of information</article-title>
<source>Proc. R. Soc. A</source>
<volume>465</volume>
<fpage>2155</fpage>
<lpage>2175</lpage>
<pub-id pub-id-type="doi">10.1098/rspa.2009.0063</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1098/rspa.2009.0063">doi:10.1098/rspa.2009.0063</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mackay</surname>
<given-names>A. L.</given-names>
</name>
</person-group>
<year>1966</year>
<article-title>Generalized crystallography</article-title>
<source>Comp. Maths. Appl. B</source>
<volume>12</volume>
<fpage>21</fpage>
<lpage>37</lpage>
</element-citation>
</ref>
<ref id="RSPA20100543C45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mackay</surname>
<given-names>A. L.</given-names>
</name>
</person-group>
<year>1974</year>
<article-title>Generalized structural geometry</article-title>
<source>Acta Cryst. A</source>
<volume>30</volume>
<fpage>440</fpage>
<lpage>447</lpage>
</element-citation>
</ref>
<ref id="RSPA20100543C46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mackay</surname>
<given-names>A. L.</given-names>
</name>
</person-group>
<year>1977</year>
<article-title>The generalized inverse and inverse structure</article-title>
<source>Acta Cryst. A</source>
<volume>33</volume>
<fpage>212</fpage>
<lpage>215</lpage>
</element-citation>
</ref>
<ref id="RSPA20100543C47">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Mackay</surname>
<given-names>A. L.</given-names>
</name>
</person-group>
<year>1986</year>
<article-title>Generalized crystallography science on form</article-title>
<source>Proc. of the 1st Int. Symposium on Form, Tsukuba, Japan, 26–30 November 1986</source>
<person-group person-group-type="editor">
<name>
<surname>Kato</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Takaki</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Toriwaki</surname>
<given-names>J.</given-names>
</name>
</person-group>
<fpage>615</fpage>
<lpage>620</lpage>
<publisher-loc>Tokyo, Japan</publisher-loc>
<publisher-name>KTK Scientific Publishers</publisher-name>
</mixed-citation>
</ref>
<ref id="RSPA20100543C48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mackay</surname>
<given-names>A. L.</given-names>
</name>
</person-group>
<year>2002</year>
<article-title>Generalized crystallography</article-title>
<source>Struct. Chem.</source>
<volume>13</volume>
<fpage>215</fpage>
<lpage>220</lpage>
<pub-id pub-id-type="doi">10.1023/A:1015838303255</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1023/A:1015838303255">doi:10.1023/A:1015838303255</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Makov</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Gattinoni</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>De</surname>
<given-names>Vita A.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Ab initio based multi-scale modeling for materials science</article-title>
<source>Model. Simul. Mater. Sci. Eng</source>
<volume>17</volume>
<fpage>084008</fpage>
<pub-id pub-id-type="doi">10.1088/0965-0393/17/8/084008</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1088/0965-0393/17/8/084008">doi:10.1088/0965-0393/17/8/084008</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C50">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Matsui</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nomura</surname>
<given-names>S.</given-names>
</name>
</person-group>
<year>1981</year>
<source>Landolt–Börnstein:numerical data in functional relationships in science and technologya</source>
<volume>vol. 16</volume>
<person-group person-group-type="editor">
<name>
<surname>Hellwege</surname>
<given-names>H.</given-names>
</name>
</person-group>
<publisher-loc>New York, NY</publisher-loc>
<publisher-name>Springer-Verlag</publisher-name>
</element-citation>
</ref>
<ref id="RSPA20100543C51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mizoguchi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Woodward</surname>
<given-names>P. M.</given-names>
</name>
<name>
<surname>Byeon</surname>
<given-names>S-H.</given-names>
</name>
<name>
<surname>Parise</surname>
<given-names>J. B.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Polymorphism in NaSbO
<sub>3</sub>
:structure and bonding in metal oxides</article-title>
<source>J. Am. Chem. Soc</source>
<volume>126</volume>
<fpage>3175</fpage>
<lpage>3184</lpage>
<pub-id pub-id-type="doi">10.1021/ja038365h</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1021/ja038365h">doi:10.1021/ja038365h</ext-link>
)
<pub-id pub-id-type="pmid">15012147</pub-id>
</mixed-citation>
</ref>
<ref id="RSPA20100543C52">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mohn</surname>
<given-names>C. E.</given-names>
</name>
<name>
<surname>Kob</surname>
<given-names>W.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>A genetic algorithm for the atomistic design and global optimization of substitutionally disordered materials</article-title>
<source>Comp. Mater. Sci</source>
<volume>45</volume>
<fpage>111</fpage>
<lpage>117</lpage>
<pub-id pub-id-type="doi">10.1016/j.commatsci.2008.03.046</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.commatsci.2008.03.046">doi:10.1016/j.commatsci.2008.03.046</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Montanari</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Righi</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Claestani</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Migliori</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gilioli</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Bolzoni</surname>
<given-names>F.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Room temperature polymorphism in metastable BiMnO
<sub>3</sub>
prepared by high-pressure synthesis</article-title>
<source>Chem. Mater</source>
<volume>17</volume>
<fpage>1765</fpage>
<lpage>1773</lpage>
<pub-id pub-id-type="doi">10.1021/cm048250s</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1021/cm048250s">doi:10.1021/cm048250s</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oganov</surname>
<given-names>A. R.</given-names>
</name>
<name>
<surname>Valle</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>How to quantify energy landscapes of solids</article-title>
<source>J. Chem. Phys</source>
<volume>130</volume>
<fpage>104</fpage>
<lpage>504</lpage>
<pub-id pub-id-type="doi">10.1063/1.3079326</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1063/1.3079326">doi:10.1063/1.3079326</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oka</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
</person-group>
<year>2010</year>
<article-title>Pressure-induced spin-state transition in BiCoO
<sub>3</sub>
</article-title>
<source>J. Am. Chem. Soc</source>
<volume>132</volume>
<fpage>9438</fpage>
<lpage>9443</lpage>
<pub-id pub-id-type="doi">10.1021/ja102987d</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1021/ja102987d">doi:10.1021/ja102987d</ext-link>
)
<pub-id pub-id-type="pmid">20568754</pub-id>
</mixed-citation>
</ref>
<ref id="RSPA20100543C56">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Pauling</surname>
<given-names>L.</given-names>
</name>
</person-group>
<year>1960</year>
<source>The nature of the chemical bond</source>
<edition>3rd edn</edition>
<publisher-loc>Ithaca, NY</publisher-loc>
<publisher-name>Cornell University Press</publisher-name>
</element-citation>
</ref>
<ref id="RSPA20100543C57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pearson</surname>
<given-names>R. G.</given-names>
</name>
</person-group>
<year>1988</year>
<article-title>Absolute electronegativity and hardness:application to inorganic chemistry</article-title>
<source>Inorg. Chem</source>
<volume>27</volume>
<fpage>734</fpage>
<lpage>740</lpage>
<pub-id pub-id-type="doi">10.1021/ic00277a030</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1021/ic00277a030">doi:10.1021/ic00277a030</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pettersson</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Suh</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Saxén</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Rajan</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Chakraborti</surname>
<given-names>N.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Analyzing sparse data for nitride spinels using data mining, neural networks and multiobjective genetic algorithm</article-title>
<source>Mater. Manuf. Process</source>
<volume>24</volume>
<fpage>2</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1080/10426910802539762</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1080/10426910802539762">doi:10.1080/10426910802539762</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C59">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Plenio</surname>
<given-names>M. B.</given-names>
</name>
<name>
<surname>Vitelli</surname>
<given-names>V.</given-names>
</name>
</person-group>
<year>2001</year>
<article-title>The physics of forgetting:Landauer’s erasure principle and information theory</article-title>
<source>Contemp. Phys</source>
<volume>42</volume>
<fpage>25</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="doi">10.1080/00107510010018916</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1080/00107510010018916">doi:10.1080/00107510010018916</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C60">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Rajagopalan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rajan</surname>
<given-names>K.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Informatics based optimization of crystallographic descriptors for framework structures</article-title>
<source>Combinatorial and high-throughput discovery and optimization of catalysts and materials</source>
<person-group person-group-type="editor">
<name>
<surname>Maier</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Potyrailo</surname>
<given-names>R. A.</given-names>
</name>
</person-group>
<publisher-loc>Boca Raton, FL</publisher-loc>
<publisher-name>CRC Press</publisher-name>
</element-citation>
</ref>
<ref id="RSPA20100543C61">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rajan</surname>
<given-names>K.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Materials informatics</article-title>
<source>Mater. Today</source>
<volume>8</volume>
<fpage>38</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="doi">10.1016/S1369-7021(05)71123-8</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/S1369-7021(05)71123-8">doi:10.1016/S1369-7021(05)71123-8</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C62">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Rajan</surname>
<given-names>K.</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Data mining and inorganic crystallography</article-title>
<source>Data mining in crystallography—structure and bonding series</source>
<volume>vol. 134</volume>
<person-group person-group-type="editor">
<name>
<surname>Kuleshova</surname>
<given-names>D. W. M.</given-names>
</name>
<name>
<surname>Liudmila</surname>
<given-names>N.</given-names>
</name>
</person-group>
<fpage>59</fpage>
<lpage>87</lpage>
<publisher-loc>Berlin, Germany</publisher-loc>
<publisher-name>Springer-Verlag</publisher-name>
</mixed-citation>
</ref>
<ref id="RSPA20100543C63">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ravez</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Pouchard</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hagenmuller</surname>
<given-names>P.</given-names>
</name>
</person-group>
<year>1997</year>
<article-title>Chemical bonding, a relevant tool for designing new perovskite-type ferroelectric materials</article-title>
<source>Ferroelectrics</source>
<volume>197</volume>
<fpage>161</fpage>
<lpage>173</lpage>
<pub-id pub-id-type="doi">10.1080/00150199708008406</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1080/00150199708008406">doi:10.1080/00150199708008406</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C64">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ringnér</surname>
<given-names>M.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>What is principal component analysis</article-title>
<source>Nat. Biotechnol</source>
<volume>26</volume>
<fpage>303</fpage>
<lpage>305</lpage>
<pub-id pub-id-type="doi">10.1038/nbt0308-303</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/nbt0308-303">doi:10.1038/nbt0308-303</ext-link>
)
<pub-id pub-id-type="pmid">18327243</pub-id>
</mixed-citation>
</ref>
<ref id="RSPA20100543C65">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rödel</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Klaus</surname>
<given-names>W. K.</given-names>
</name>
<name>
<surname>Seifert</surname>
<given-names>T. P.</given-names>
</name>
<name>
<surname>Anton</surname>
<given-names>E.-M.</given-names>
</name>
<name>
<surname>Granzow</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Damjanovic</surname>
<given-names>D.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Perspective on the development of lead-free piezoceramics</article-title>
<source>J. Am. Ceram. Soc</source>
<volume>92</volume>
<fpage>1153</fpage>
<lpage>1177</lpage>
<pub-id pub-id-type="doi">10.1111/j.1551-2916.2009.03061.x</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/j.1551-2916.2009.03061.x">doi:10.1111/j.1551-2916.2009.03061.x</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C66">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sághi-Szabó</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>R. E.</given-names>
</name>
<name>
<surname>Krakauer</surname>
<given-names>H.</given-names>
</name>
</person-group>
<year>1998</year>
<article-title>First-principles study of piezoelectricity in PbTiO
<sub>3</sub>
</article-title>
<source>Phys. Rev. Lett</source>
<volume>80</volume>
<fpage>4321</fpage>
<lpage>4324</lpage>
<pub-id pub-id-type="doi">10.1103/PhysRevLett.80.4321</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1103/PhysRevLett.80.4321">doi:10.1103/PhysRevLett.80.4321</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C67">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Saxena</surname>
<given-names>S. K.</given-names>
</name>
</person-group>
<year>1993</year>
<source>Thermodynamic data on oxides and silicates:an assessed dataset based on thermochemistry and high pressure phase equilibrium</source>
<publisher-loc>Berlin, Germany</publisher-loc>
<publisher-name>Springer-Verlag</publisher-name>
</element-citation>
</ref>
<ref id="RSPA20100543C68">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shannon</surname>
<given-names>R. D.</given-names>
</name>
</person-group>
<year>1967</year>
<article-title>Synthesis of some new perovskites containing indium and thallium</article-title>
<source>Inorg. Chem</source>
<volume>6</volume>
<fpage>1474</fpage>
<lpage>1478</lpage>
<pub-id pub-id-type="doi">10.1021/ic50054a009</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1021/ic50054a009">doi:10.1021/ic50054a009</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C69">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shannon</surname>
<given-names>R. D.</given-names>
</name>
</person-group>
<year>1976</year>
<article-title>Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides</article-title>
<source>Acta Cryst. A</source>
<volume>32</volume>
<fpage>751</fpage>
<lpage>767</lpage>
</element-citation>
</ref>
<ref id="RSPA20100543C70">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shell</surname>
<given-names>M. S.</given-names>
</name>
</person-group>
<year>2008</year>
<article-title>The relative entropy is fundamental to multiscale and inverse thermodynamic problems</article-title>
<source>J. Chem. Phys</source>
<volume>129</volume>
<fpage>144</fpage>
<lpage>108</lpage>
<pub-id pub-id-type="doi">10.1063/1.2992060</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1063/1.2992060">doi:10.1063/1.2992060</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C71">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Singh</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Bopardikar</surname>
<given-names>D. K.</given-names>
</name>
<name>
<surname>Atkare</surname>
<given-names>D. V.</given-names>
</name>
</person-group>
<year>1988</year>
<article-title>A compendium of
<italic>T</italic>
<sub>C</sub>
<italic>U</italic>
<sub>
<italic>s</italic>
</sub>
and
<italic>P</italic>
<sub>
<italic>s</italic>
</sub>
- Δ
<italic>z</italic>
data for displacive ferroelectrics</article-title>
<source>Ferroelectrics</source>
<volume>82</volume>
<fpage>55</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="doi">10.1080/00150198808201337</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1080/00150198808201337">doi:10.1080/00150198808201337</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C72">
<element-citation publication-type="webpage">
<person-group person-group-type="author">
<name>
<surname>Skriver</surname>
<given-names>H. L.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Materials science databases, CAMP DTU</article-title>
<comment>See
<uri xlink:type="simple" xlink:href="http://guglen.dk/databases/hlsPT/ptable.php">http://guglen.dk/databases/hlsPT/ptable.php</uri>
</comment>
</element-citation>
</ref>
<ref id="RSPA20100543C73">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Slater</surname>
<given-names>J. C.</given-names>
</name>
</person-group>
<year>1930</year>
<article-title>Atomic shielding constants</article-title>
<source>Phys. Rev</source>
<volume>36</volume>
<fpage>57</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="doi">10.1103/PhysRev.36.57</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1103/PhysRev.36.57">doi:10.1103/PhysRev.36.57</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C74">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sluiter</surname>
<given-names>M. H. F.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Lattice stability prediction of elemental tetrahedrally closed packed structure</article-title>
<source>Acta Mater</source>
<volume>55</volume>
<fpage>3707</fpage>
<lpage>3718</lpage>
<pub-id pub-id-type="doi">10.1016/j.actamat.2007.02.016</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.actamat.2007.02.016">doi:10.1016/j.actamat.2007.02.016</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C75">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stein</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Suchomel</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>P. K.</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Enhanced tetragonality in (x)PbTiO
<sub>3</sub>
-(1-
<italic>x</italic>
)Bi(B′B′′)O
<sub>3</sub>
systems:Bi(Zn
<sub>3/4</sub>
W
<sub>1/4</sub>
)O
<sub>3</sub>
</article-title>
<source>Appl. Phys. Lett</source>
<volume>89</volume>
<fpage>132</fpage>
<lpage>907</lpage>
<pub-id pub-id-type="doi">10.1063/1.2357871</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1063/1.2357871">doi:10.1063/1.2357871</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C76">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stringer</surname>
<given-names>C. J.</given-names>
</name>
<name>
<surname>Shrout</surname>
<given-names>T. R.</given-names>
</name>
<name>
<surname>Randall</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Reaney</surname>
<given-names>I. M.</given-names>
</name>
</person-group>
<year>2006</year>
<article-title>Classification of transition temperature behavior in ferroelectric PbTiO
<sub>3</sub>
–Bi(Me′Me′′)O
<sub>3</sub>
solid solutions</article-title>
<source>J. Appl. Phys</source>
<volume>99</volume>
<fpage>024</fpage>
<lpage>106</lpage>
<pub-id pub-id-type="doi">10.1063/1.2163986</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1063/1.2163986">doi:10.1063/1.2163986</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C77">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suchomel</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>P. K.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Predicting the position of the morphotropic phase boundary in high temperature PbTiO
<sub>3</sub>
–Bi(B′B′′)O
<sub>3</sub>
based dielectric ceramics</article-title>
<source>J. Appl. Phys</source>
<volume>96</volume>
<fpage>4405</fpage>
<lpage>4410</lpage>
<pub-id pub-id-type="doi">10.1063/1.1789267</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1063/1.1789267">doi:10.1063/1.1789267</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C78">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suchomel</surname>
<given-names>M. R.</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>P. K.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Enhanced tetragonality in (
<italic>x</italic>
)PbTiO
<sub>3</sub>
-(1 −
<italic>x</italic>
)Bi(Zn
<sub>1/2</sub>
Ti
<sub>1/2</sub>
)O
<sub>3</sub>
and related solid solution systems</article-title>
<source>Appl. Phys. Lett</source>
<volume>86</volume>
<fpage>262</fpage>
<lpage>905</lpage>
<pub-id pub-id-type="doi">10.1063/1.1978980</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1063/1.1978980">doi:10.1063/1.1978980</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C79">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suh</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rajan</surname>
<given-names>K.</given-names>
</name>
</person-group>
<year>2005</year>
<article-title>Virtual screening and QSAR formulations for crystal chemistry</article-title>
<source>QSAR Comb. Sci</source>
<volume>24</volume>
<fpage>114</fpage>
<lpage>119</lpage>
<pub-id pub-id-type="doi">10.1002/qsar.200420057</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1002/qsar.200420057">doi:10.1002/qsar.200420057</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C80">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suh</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rajan</surname>
<given-names>K.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Data mining and informatics for crystal chemistry:establishing measurement techniques for mapping structure–property relationships</article-title>
<source>Mater. Sci. Tech</source>
<volume>25</volume>
<fpage>466</fpage>
<lpage>471</lpage>
<pub-id pub-id-type="doi">10.1179/174328409X430483</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1179/174328409X430483">doi:10.1179/174328409X430483</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C81">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thomas</surname>
<given-names>N. W.</given-names>
</name>
</person-group>
<year>1997</year>
<article-title>Beyond the tolerance factor:harnessing X-ray and neutron diffraction data for the compositional design of perovskite ceramics</article-title>
<source>Br. Ceram. T</source>
<volume>96</volume>
<fpage>7</fpage>
<lpage>15</lpage>
</element-citation>
</ref>
<ref id="RSPA20100543C82">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Witten</surname>
<given-names>I. H.</given-names>
</name>
<name>
<surname>Frank</surname>
<given-names>E.</given-names>
</name>
</person-group>
<year>2000</year>
<source>Data mining, practical machine learning tools and techniques with Java implementations</source>
<publisher-loc>San Diego, CA</publisher-loc>
<publisher-name>Morgan Kaufman</publisher-name>
</element-citation>
</ref>
<ref id="RSPA20100543C83">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Woodley</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Sokol</surname>
<given-names>A. A.</given-names>
</name>
<name>
<surname>Catlow</surname>
<given-names>C. R. A.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>Structure prediction of inorganic nanoparticles with predefined architecture using a genetic algorithm</article-title>
<source>Z. Anorg. Allg. Chem</source>
<volume>630</volume>
<fpage>2343</fpage>
<lpage>2353</lpage>
<pub-id pub-id-type="doi">10.1002/zaac.200400338</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1002/zaac.200400338">doi:10.1002/zaac.200400338</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C84">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Woodward</surname>
<given-names>D. I.</given-names>
</name>
<name>
<surname>Reaney</surname>
<given-names>I. M.</given-names>
</name>
</person-group>
<year>2004</year>
<article-title>A structural study of ceramics in the (BiMnO
<sub>3</sub>
)
<sub>
<italic>x</italic>
</sub>
-(PbTiO
<sub>3</sub>
)
<sub>1 −
<italic>x</italic>
</sub>
solid solution series</article-title>
<source>J. Phys. Condens. Matter</source>
<volume>16</volume>
<fpage>8823</fpage>
<lpage>8834</lpage>
<pub-id pub-id-type="doi">10.1088/0953-8984/16/49/002</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1088/0953-8984/16/49/002">doi:10.1088/0953-8984/16/49/002</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C85">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ning</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Reece</surname>
<given-names>M. J.</given-names>
</name>
</person-group>
<year>2009</year>
<article-title>Piezoelectric ceramics with super-high Curie points</article-title>
<source>J. Am. Ceram. Soc</source>
<volume>92</volume>
<fpage>2270</fpage>
<lpage>2275</lpage>
<pub-id pub-id-type="doi">10.1111/j.1551-2916.2009.03209.x</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/j.1551-2916.2009.03209.x">doi:10.1111/j.1551-2916.2009.03209.x</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C86">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Randall</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Shrout</surname>
<given-names>T. R.</given-names>
</name>
</person-group>
<year>2003</year>
<article-title>High Curie temperature piezocrystals in BiScO
<sub>3</sub>
–PbTiO
<sub>3</sub>
perovskite system</article-title>
<source>Appl. Phys. Lett</source>
<volume>83</volume>
<fpage>3150</fpage>
<lpage>3152</lpage>
<pub-id pub-id-type="doi">10.1063/1.1619207</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1063/1.1619207">doi:10.1063/1.1619207</ext-link>
)</mixed-citation>
</ref>
<ref id="RSPA20100543C87">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Xue</surname>
<given-names>D.</given-names>
</name>
</person-group>
<year>2007</year>
<article-title>Structural stability and formability of ABO
<sub>3</sub>
-type perovskite compounds</article-title>
<source>Acta Cryst. B</source>
<volume>63</volume>
<fpage>812</fpage>
<lpage>818</lpage>
<pub-id pub-id-type="doi">10.1107/S0108768107046174</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1107/S0108768107046174">doi:10.1107/S0108768107046174</ext-link>
)
<pub-id pub-id-type="pmid">18004035</pub-id>
</mixed-citation>
</ref>
<ref id="RSPA20100543C88">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zenasni</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Aourag</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Broderick</surname>
<given-names>S. R.</given-names>
</name>
<name>
<surname>Rajan</surname>
<given-names>K.</given-names>
</name>
</person-group>
<year>2010</year>
<article-title>Electronic structure prediction via data-mining the empirical pseudopotential method</article-title>
<source>Phys. Status. Solidi. B</source>
<volume>247</volume>
<fpage>115</fpage>
<lpage>121</lpage>
<pub-id pub-id-type="doi">10.1002/pssb.200945268</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1002/pssb.200945268">doi:10.1002/pssb.200945268</ext-link>
)</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000394  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000394  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024