Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0003899 ( Pmc/Corpus ); précédent : 0003898; suivant : 0003900 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Semiempirical Quantum Chemistry Model for the Lanthanides: RM1 (Recife Model 1) Parameters for Dysprosium, Holmium and Erbium</title>
<author>
<name sortKey="Filho, Manoel A M" sort="Filho, Manoel A M" uniqKey="Filho M" first="Manoel A. M." last="Filho">Manoel A. M. Filho</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dutra, Jose Diogo L" sort="Dutra, Jose Diogo L" uniqKey="Dutra J" first="José Diogo L." last="Dutra">José Diogo L. Dutra</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rocha, Gerd B" sort="Rocha, Gerd B" uniqKey="Rocha G" first="Gerd B." last="Rocha">Gerd B. Rocha</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Departamento de Química, CCEN, Universidade Federal da Paraíba, João Pessoa, PB, Brazil</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Simas, Alfredo M" sort="Simas, Alfredo M" uniqKey="Simas A" first="Alfredo M." last="Simas">Alfredo M. Simas</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Freire, Ricardo O" sort="Freire, Ricardo O" uniqKey="Freire R" first="Ricardo O." last="Freire">Ricardo O. Freire</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24497945</idno>
<idno type="pmc">3908927</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3908927</idno>
<idno type="RBID">PMC:3908927</idno>
<idno type="doi">10.1371/journal.pone.0086376</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000389</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000389</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Semiempirical Quantum Chemistry Model for the Lanthanides: RM1 (Recife Model 1) Parameters for Dysprosium, Holmium and Erbium</title>
<author>
<name sortKey="Filho, Manoel A M" sort="Filho, Manoel A M" uniqKey="Filho M" first="Manoel A. M." last="Filho">Manoel A. M. Filho</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dutra, Jose Diogo L" sort="Dutra, Jose Diogo L" uniqKey="Dutra J" first="José Diogo L." last="Dutra">José Diogo L. Dutra</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Rocha, Gerd B" sort="Rocha, Gerd B" uniqKey="Rocha G" first="Gerd B." last="Rocha">Gerd B. Rocha</name>
<affiliation>
<nlm:aff id="aff2">
<addr-line>Departamento de Química, CCEN, Universidade Federal da Paraíba, João Pessoa, PB, Brazil</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Simas, Alfredo M" sort="Simas, Alfredo M" uniqKey="Simas A" first="Alfredo M." last="Simas">Alfredo M. Simas</name>
<affiliation>
<nlm:aff id="aff3">
<addr-line>Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Freire, Ricardo O" sort="Freire, Ricardo O" uniqKey="Freire R" first="Ricardo O." last="Freire">Ricardo O. Freire</name>
<affiliation>
<nlm:aff id="aff1">
<addr-line>Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Complexes of dysprosium, holmium, and erbium find many applications as single-molecule magnets, as contrast agents for magnetic resonance imaging, as anti-cancer agents, in optical telecommunications, etc. Therefore, the development of tools that can be proven helpful to complex design is presently an active area of research. In this article, we advance a major improvement to the semiempirical description of lanthanide complexes: the Recife Model 1, RM1, model for the lanthanides, parameterized for the trications of Dy, Ho, and Er. By representing such lanthanide in the RM1 calculation as a three-electron atom with a set of 5 d, 6 s, and 6 p semiempirical orbitals, the accuracy of the previous sparkle models, mainly concentrated on lanthanide-oxygen and lanthanide-nitrogen distances, is extended to other types of bonds in the trication complexes’ coordination polyhedra, such as lanthanide-carbon, lanthanide-chlorine, etc. This is even more important as, for example, lanthanide-carbon atom distances in the coordination polyhedra of the complexes comprise about 30% of all distances for all complexes of Dy, Ho, and Er considered. Our results indicate that the average unsigned mean error for the lanthanide-carbon distances dropped from an average of 0.30 Å, for the sparkle models, to 0.04 Å for the RM1 model for the lanthanides; for a total of 509 such distances for the set of all Dy, Ho, and Er complexes considered. A similar behavior took place for the other distances as well, such as lanthanide-chlorine, lanthanide-bromine, lanthanide, phosphorus and lanthanide-sulfur. Thus, the RM1 model for the lanthanides, being advanced in this article, broadens the range of application of semiempirical models to lanthanide complexes by including comprehensively many other types of bonds not adequately described by the previous models.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Ishikawa, N" uniqKey="Ishikawa N">N Ishikawa</name>
</author>
<author>
<name sortKey="Sugita, M" uniqKey="Sugita M">M Sugita</name>
</author>
<author>
<name sortKey="Ishikawa, T" uniqKey="Ishikawa T">T Ishikawa</name>
</author>
<author>
<name sortKey="Koshihara, S" uniqKey="Koshihara S">S Koshihara</name>
</author>
<author>
<name sortKey="Kaizu, Y" uniqKey="Kaizu Y">Y Kaizu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, P" uniqKey="Zhang P">P Zhang</name>
</author>
<author>
<name sortKey="Guo, Y N" uniqKey="Guo Y">Y-N Guo</name>
</author>
<author>
<name sortKey="Tang, J" uniqKey="Tang J">J Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ishikawa, N" uniqKey="Ishikawa N">N Ishikawa</name>
</author>
<author>
<name sortKey="Mizuno, Y" uniqKey="Mizuno Y">Y Mizuno</name>
</author>
<author>
<name sortKey="Takamatsu, S" uniqKey="Takamatsu S">S Takamatsu</name>
</author>
<author>
<name sortKey="Ishikawa, T" uniqKey="Ishikawa T">T Ishikawa</name>
</author>
<author>
<name sortKey="Koshihara, S Y" uniqKey="Koshihara S">S-Y Koshihara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aldamen, Ma" uniqKey="Aldamen M">MA AlDamen</name>
</author>
<author>
<name sortKey="Cardona Serra, S" uniqKey="Cardona Serra S">S Cardona-Serra</name>
</author>
<author>
<name sortKey="Clemente Juan, Jm" uniqKey="Clemente Juan J">JM Clemente-Juan</name>
</author>
<author>
<name sortKey="Coronado, E" uniqKey="Coronado E">E Coronado</name>
</author>
<author>
<name sortKey="Gaita Ari O, A" uniqKey="Gaita Ari O A">A Gaita-Ariño</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, P H" uniqKey="Lin P">P-H Lin</name>
</author>
<author>
<name sortKey="Burchell, Tj" uniqKey="Burchell T">TJ Burchell</name>
</author>
<author>
<name sortKey="Ungur, L" uniqKey="Ungur L">L Ungur</name>
</author>
<author>
<name sortKey="Chibotaru, Lf" uniqKey="Chibotaru L">LF Chibotaru</name>
</author>
<author>
<name sortKey="Wernsdorfer, W" uniqKey="Wernsdorfer W">W Wernsdorfer</name>
</author>
<author>
<name sortKey="Et, Al" uniqKey="Et A">al et</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rinehart, Jd" uniqKey="Rinehart J">JD Rinehart</name>
</author>
<author>
<name sortKey="Fang, M" uniqKey="Fang M">M Fang</name>
</author>
<author>
<name sortKey="Evans, Wj" uniqKey="Evans W">WJ Evans</name>
</author>
<author>
<name sortKey="Long, Jr" uniqKey="Long J">JR Long</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Norek, M" uniqKey="Norek M">M Norek</name>
</author>
<author>
<name sortKey="Peters, Ja" uniqKey="Peters J">JA Peters</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nilsson, S" uniqKey="Nilsson S">S Nilsson</name>
</author>
<author>
<name sortKey="Wikstrom, G" uniqKey="Wikstrom G">G Wikstrom</name>
</author>
<author>
<name sortKey="Ericsson, A" uniqKey="Ericsson A">A Ericsson</name>
</author>
<author>
<name sortKey="Wikstrom, M" uniqKey="Wikstrom M">M Wikström</name>
</author>
<author>
<name sortKey=" Ksendal, A" uniqKey=" Ksendal A">A Øksendal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wikstrom, M" uniqKey="Wikstrom M">M Wikström</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bayouth, Je" uniqKey="Bayouth J">JE Bayouth</name>
</author>
<author>
<name sortKey="Macey, Dj" uniqKey="Macey D">DJ Macey</name>
</author>
<author>
<name sortKey="Kasi, Lp" uniqKey="Kasi L">LP Kasi</name>
</author>
<author>
<name sortKey="Garlich, Jr" uniqKey="Garlich J">JR Garlich</name>
</author>
<author>
<name sortKey="Mcmillan, K" uniqKey="Mcmillan K">K McMillan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, L N" uniqKey="Sun L">L-N Sun</name>
</author>
<author>
<name sortKey="Zhang, H J" uniqKey="Zhang H">H-J Zhang</name>
</author>
<author>
<name sortKey="Fu, L S" uniqKey="Fu L">L-S Fu</name>
</author>
<author>
<name sortKey="Liu, F Y" uniqKey="Liu F">F-Y Liu</name>
</author>
<author>
<name sortKey="Meng, Q G" uniqKey="Meng Q">Q-G Meng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, Oh" uniqKey="Park O">OH Park</name>
</author>
<author>
<name sortKey="Seo, Sy" uniqKey="Seo S">SY Seo</name>
</author>
<author>
<name sortKey="Jung, Ji" uniqKey="Jung J">JI Jung</name>
</author>
<author>
<name sortKey="Bae, Jy" uniqKey="Bae J">JY Bae</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peter, E" uniqKey="Peter E">E Peter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dolg, M" uniqKey="Dolg M">M Dolg</name>
</author>
<author>
<name sortKey="Cao, X" uniqKey="Cao X">X Cao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dolg, M" uniqKey="Dolg M">M Dolg</name>
</author>
<author>
<name sortKey="Stoll, H" uniqKey="Stoll H">H Stoll</name>
</author>
<author>
<name sortKey="Preuss, H" uniqKey="Preuss H">H Preuss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dolg, M" uniqKey="Dolg M">M Dolg</name>
</author>
<author>
<name sortKey="Stoll, H" uniqKey="Stoll H">H Stoll</name>
</author>
<author>
<name sortKey="Savin, A" uniqKey="Savin A">A Savin</name>
</author>
<author>
<name sortKey="Preuss, H" uniqKey="Preuss H">H Preuss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freire, Ro" uniqKey="Freire R">RO Freire</name>
</author>
<author>
<name sortKey="Rocha, Gb" uniqKey="Rocha G">GB Rocha</name>
</author>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Andrade, Avm" uniqKey="De Andrade A">AVM de Andrade</name>
</author>
<author>
<name sortKey="Da Costa Jr, Nb" uniqKey="Da Costa Jr N">NB da Costa Jr</name>
</author>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
<author>
<name sortKey="De Sa, Gf" uniqKey="De Sa G">GF de Sá</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Andrade, Avm" uniqKey="De Andrade A">AVM de Andrade</name>
</author>
<author>
<name sortKey="Da Costa Jr, Nb" uniqKey="Da Costa Jr N">NB da Costa Jr</name>
</author>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
<author>
<name sortKey="De Sa, Gf" uniqKey="De Sa G">GF de Sá</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dewar, Mjs" uniqKey="Dewar M">MJS Dewar</name>
</author>
<author>
<name sortKey="Zoebisch, Eg" uniqKey="Zoebisch E">EG Zoebisch</name>
</author>
<author>
<name sortKey="Healy, Ef" uniqKey="Healy E">EF Healy</name>
</author>
<author>
<name sortKey="Stewart, Jjp" uniqKey="Stewart J">JJP Stewart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andrade, Avm" uniqKey="Andrade A">AVM Andrade</name>
</author>
<author>
<name sortKey="Longo, Rl" uniqKey="Longo R">RL Longo</name>
</author>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
<author>
<name sortKey="De Sa, Gf" uniqKey="De Sa G">GF de Sá</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rocha, Gb" uniqKey="Rocha G">GB Rocha</name>
</author>
<author>
<name sortKey="Freire, Ro" uniqKey="Freire R">RO Freire</name>
</author>
<author>
<name sortKey="Da Costa, Nb" uniqKey="Da Costa N">NB da Costa</name>
</author>
<author>
<name sortKey="De, Sa" uniqKey="De S">Sa de</name>
</author>
<author>
<name sortKey="Gf Simas, Am" uniqKey="Gf Simas A">AM GF, Simas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freire, Ro" uniqKey="Freire R">RO Freire</name>
</author>
<author>
<name sortKey="Rocha, Gb" uniqKey="Rocha G">GB Rocha</name>
</author>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Da Costa, Nb" uniqKey="Da Costa N">NB da Costa</name>
</author>
<author>
<name sortKey="Freire, Ro" uniqKey="Freire R">RO Freire</name>
</author>
<author>
<name sortKey="Rocha, Gb" uniqKey="Rocha G">GB Rocha</name>
</author>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Da Costa, Nb" uniqKey="Da Costa N">NB da Costa</name>
</author>
<author>
<name sortKey="Freire, Ro" uniqKey="Freire R">RO Freire</name>
</author>
<author>
<name sortKey="Rocha, Gb" uniqKey="Rocha G">GB Rocha</name>
</author>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freire, Ro" uniqKey="Freire R">RO Freire</name>
</author>
<author>
<name sortKey="Do Monte, Ev" uniqKey="Do Monte E">EV do Monte</name>
</author>
<author>
<name sortKey="Rocha, Gb" uniqKey="Rocha G">GB Rocha</name>
</author>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faustino, Wm" uniqKey="Faustino W">WM Faustino</name>
</author>
<author>
<name sortKey="Rocha, Gb" uniqKey="Rocha G">GB Rocha</name>
</author>
<author>
<name sortKey="Silva, Frge" uniqKey="Silva F">FRGE Silva</name>
</author>
<author>
<name sortKey="Malta, Ol" uniqKey="Malta O">OL Malta</name>
</author>
<author>
<name sortKey="De Sa, Gf" uniqKey="De Sa G">GF de Sá</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freire, Ro" uniqKey="Freire R">RO Freire</name>
</author>
<author>
<name sortKey="Rocha, Gb" uniqKey="Rocha G">GB Rocha</name>
</author>
<author>
<name sortKey="Albuquerque, Rq" uniqKey="Albuquerque R">RQ Albuquerque</name>
</author>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Faustino, Wm" uniqKey="Faustino W">WM Faustino</name>
</author>
<author>
<name sortKey="Malta, Ol" uniqKey="Malta O">OL Malta</name>
</author>
<author>
<name sortKey="Teotonio, Ees" uniqKey="Teotonio E">EES Teotonio</name>
</author>
<author>
<name sortKey="Brito, Hf" uniqKey="Brito H">HF Brito</name>
</author>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
<author>
<name sortKey="Freire, Ro" uniqKey="Freire R">RO Freire</name>
</author>
<author>
<name sortKey="Rocha, Gb" uniqKey="Rocha G">GB Rocha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freire, Ro" uniqKey="Freire R">RO Freire</name>
</author>
<author>
<name sortKey="Rocha, Gb" uniqKey="Rocha G">GB Rocha</name>
</author>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freire, Ro" uniqKey="Freire R">RO Freire</name>
</author>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dutra, Jdl" uniqKey="Dutra J">JDL Dutra</name>
</author>
<author>
<name sortKey="Filho, Mam" uniqKey="Filho M">MAM Filho</name>
</author>
<author>
<name sortKey="Rocha, Gb" uniqKey="Rocha G">GB Rocha</name>
</author>
<author>
<name sortKey="Freire, Ro" uniqKey="Freire R">RO Freire</name>
</author>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Filho, Mam" uniqKey="Filho M">MAM Filho</name>
</author>
<author>
<name sortKey="Dutra, Jdl" uniqKey="Dutra J">JDL Dutra</name>
</author>
<author>
<name sortKey="Rocha, Gb" uniqKey="Rocha G">GB Rocha</name>
</author>
<author>
<name sortKey="Freire, Ro" uniqKey="Freire R">RO Freire</name>
</author>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rocha, Gb" uniqKey="Rocha G">GB Rocha</name>
</author>
<author>
<name sortKey="Freire, Ro" uniqKey="Freire R">RO Freire</name>
</author>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
<author>
<name sortKey="Stewart, Jjp" uniqKey="Stewart J">JJP Stewart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allen, Fh" uniqKey="Allen F">FH Allen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orpen, G" uniqKey="Orpen G">G Orpen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Allen, Fh" uniqKey="Allen F">FH Allen</name>
</author>
<author>
<name sortKey="Motherwell, Wds" uniqKey="Motherwell W">WDS Motherwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsallis, C" uniqKey="Tsallis C">C Tsallis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freire, Ro" uniqKey="Freire R">RO Freire</name>
</author>
<author>
<name sortKey="Rocha, Gb" uniqKey="Rocha G">GB Rocha</name>
</author>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freire, Ro" uniqKey="Freire R">RO Freire</name>
</author>
<author>
<name sortKey="Rocha, Gb" uniqKey="Rocha G">GB Rocha</name>
</author>
<author>
<name sortKey="Simas, Am" uniqKey="Simas A">AM Simas</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24497945</article-id>
<article-id pub-id-type="pmc">3908927</article-id>
<article-id pub-id-type="publisher-id">PONE-D-13-41128</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0086376</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Chemistry</subject>
<subj-group>
<subject>Computational Chemistry</subject>
<subj-group>
<subject>Semi-Empirical Methods</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Inorganic Chemistry</subject>
<subj-group>
<subject>Inorganic Compounds</subject>
<subj-group>
<subject>Coordination Compounds</subject>
<subject>Solid State Compounds</subject>
</subj-group>
</subj-group>
<subj-group>
<subject>Crystal Field Theory</subject>
<subject>Organometallic Chemistry</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Materials Science</subject>
<subj-group>
<subject>Crystallography</subject>
</subj-group>
</subj-group>
<subj-group subj-group-type="Discipline-v2">
<subject>Physics</subject>
<subj-group>
<subject>Atomic Physics</subject>
<subj-group>
<subject>Electron Configuration</subject>
<subj-group>
<subject>Electron Shells</subject>
</subj-group>
</subj-group>
</subj-group>
<subj-group>
<subject>Condensed-Matter Physics</subject>
<subj-group>
<subject>Crystallography</subject>
</subj-group>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Semiempirical Quantum Chemistry Model for the Lanthanides: RM1 (Recife Model 1) Parameters for Dysprosium, Holmium and Erbium</article-title>
<alt-title alt-title-type="running-head">RM1 Parameters for Dysprosium, Holmium and Erbium</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Filho</surname>
<given-names>Manoel A. M.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dutra</surname>
<given-names>José Diogo L.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rocha</surname>
<given-names>Gerd B.</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Simas</surname>
<given-names>Alfredo M.</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Freire</surname>
<given-names>Ricardo O.</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<addr-line>Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil</addr-line>
</aff>
<aff id="aff2">
<label>2</label>
<addr-line>Departamento de Química, CCEN, Universidade Federal da Paraíba, João Pessoa, PB, Brazil</addr-line>
</aff>
<aff id="aff3">
<label>3</label>
<addr-line>Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Salahub</surname>
<given-names>Dennis</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>University of Calgary, Canada</addr-line>
</aff>
<author-notes>
<corresp id="cor1">* E-mail:
<email>rfreire@ufs.br</email>
</corresp>
<fn fn-type="conflict">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con">
<p>Conceived and designed the experiments: ROF GBR AMS. Performed the experiments: MAMF JDLD ROF. Analyzed the data: MAMF JDLD ROF. Wrote the paper: AMS ROF. Coded the model into MOPAC: GBR. Conceived the parameterization techniques: AMS GBR ROF. Conceived the sampling of the reference structures and the statistical validation of the model: AMS.</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>31</day>
<month>1</month>
<year>2014</year>
</pub-date>
<volume>9</volume>
<issue>1</issue>
<elocation-id>e86376</elocation-id>
<history>
<date date-type="received">
<day>8</day>
<month>10</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>6</day>
<month>12</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-year>2014</copyright-year>
<copyright-holder>Filho et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<abstract>
<p>Complexes of dysprosium, holmium, and erbium find many applications as single-molecule magnets, as contrast agents for magnetic resonance imaging, as anti-cancer agents, in optical telecommunications, etc. Therefore, the development of tools that can be proven helpful to complex design is presently an active area of research. In this article, we advance a major improvement to the semiempirical description of lanthanide complexes: the Recife Model 1, RM1, model for the lanthanides, parameterized for the trications of Dy, Ho, and Er. By representing such lanthanide in the RM1 calculation as a three-electron atom with a set of 5 d, 6 s, and 6 p semiempirical orbitals, the accuracy of the previous sparkle models, mainly concentrated on lanthanide-oxygen and lanthanide-nitrogen distances, is extended to other types of bonds in the trication complexes’ coordination polyhedra, such as lanthanide-carbon, lanthanide-chlorine, etc. This is even more important as, for example, lanthanide-carbon atom distances in the coordination polyhedra of the complexes comprise about 30% of all distances for all complexes of Dy, Ho, and Er considered. Our results indicate that the average unsigned mean error for the lanthanide-carbon distances dropped from an average of 0.30 Å, for the sparkle models, to 0.04 Å for the RM1 model for the lanthanides; for a total of 509 such distances for the set of all Dy, Ho, and Er complexes considered. A similar behavior took place for the other distances as well, such as lanthanide-chlorine, lanthanide-bromine, lanthanide, phosphorus and lanthanide-sulfur. Thus, the RM1 model for the lanthanides, being advanced in this article, broadens the range of application of semiempirical models to lanthanide complexes by including comprehensively many other types of bonds not adequately described by the previous models.</p>
</abstract>
<funding-group>
<funding-statement>This work received financial support from the Brazilian agencies, institutes and networks: CNPq, FAPITEC-SE, FACEPE (Pronex), and INAMI. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<page-count count="10"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec id="s1">
<title>Introduction</title>
<p>Lanthanide complexes, as is well known, have a wide range of high technology applications. Of particular importance is the discovery that, due to their slow magnetization relaxation, lanthanide mononuclear complexes may function as single-molecule magnets
<xref rid="pone.0086376-Ishikawa1" ref-type="bibr">[1]</xref>
,
<xref rid="pone.0086376-Zhang1" ref-type="bibr">[2]</xref>
, the ultimate size limit for spin-based devices. Dysprosium complexes, in particular, will be very important in the development of magnetic materials because of recent results leading to the highest relaxation energy barriers for multinuclear clusters
<xref rid="pone.0086376-Ishikawa2" ref-type="bibr">[3]</xref>
,
<xref rid="pone.0086376-AlDamen1" ref-type="bibr">[4]</xref>
, the highest temperature at which hysteresis has been observed for any single complex
<xref rid="pone.0086376-Lin1" ref-type="bibr">[5]</xref>
, and a record magnetic blocking temperature of 8.3 K at a sweep rate of 0.08 Ts-1
<xref rid="pone.0086376-Rinehart1" ref-type="bibr">[6]</xref>
. Future research, for example, might be directed towards the design of dysprosium complexes that may operate as single-molecule magnets capable of preserving their magnetization at higher and more practical temperatures
<xref rid="pone.0086376-Rinehart1" ref-type="bibr">[6]</xref>
. Dysprosium complexes are therefore promising for optical storage and memory.</p>
<p>Not only that, both dysprosium and holmium complexes can also effectively function in magnetic resonance imaging, MRI, as negative contrast agents at high magnetic fields, producing darker images, and as agents for susceptibility-induced enhancement at low magnetic fields
<xref rid="pone.0086376-Norek1" ref-type="bibr">[7]</xref>
. Indeed, they are complementary to gadolinium complexes, which act as positive contrast agents, which brighten the image. Indeed, through the simultaneous applications of gadolinium and dysprosium based contrast agents to the MRI diagnosis of conditions such as ischemic heart disease, unprecedented details can now be revealed
<xref rid="pone.0086376-Nilsson1" ref-type="bibr">[8]</xref>
,
<xref rid="pone.0086376-Wikstrm1" ref-type="bibr">[9]</xref>
. Future efforts will likely be intensified towards the design of such MRI contrast agents for the imaging of cellular molecular events involved in normal and pathological processes, including site specific macromolecular and particulate delivery systems
<xref rid="pone.0086376-Norek1" ref-type="bibr">[7]</xref>
.</p>
<p>Holmium is also employed in cancer therapeutics due to the characteristics of its
<sup>166</sup>
Ho isotope and of its complexes, like 166Ho-DOTMP which has been used in combination with chemotherapy in the treatment of myeloma because it concentrates in metastases of the skeleton and irradiates bone marrow
<xref rid="pone.0086376-Bayouth1" ref-type="bibr">[10]</xref>
.</p>
<p>Erbium (III) luminesces at 1.55 µm, essentially at the center of the third telecommunication window at 1.540 nm. Hence, erbium has been used in long-distance optical transmissions, power amplifiers, repeaters, etc. However, inorganic materials doped with erbium, display a very narrow full width at half maximum
<xref rid="pone.0086376-Sun1" ref-type="bibr">[11]</xref>
. In order to increase the band width, erbium complexes have been used in order to both protect the erbium ion from vibrational coupling, at the same time enhancing the absorption of light through the so-called antenna effect. Indeed, erbium complexes have been prepared that exhibit a much broader full width at half maximum of 68 nm
<xref rid="pone.0086376-Park1" ref-type="bibr">[12]</xref>
, a significant broadening when compared to erbium implanted silica which has a typical value of 11 nm for its most intense peak.</p>
<p>Thus, the design of lanthanide complexes towards enhancement of the property of interest, while seeking to avoid eventual side effects to the health of the subject (where applicable) is an active area of research, which may largely benefit from quantum chemical tools that attempt to predict several of the physical, chemical and even pharmacological
<xref rid="pone.0086376-Peter1" ref-type="bibr">[13]</xref>
properties of the conjectural new structures being considered; structures which might be sketched by assembling around the lanthanide ion, ligands, selected from a library of ligands in a combinatorial manner. And the most important information, from which essentially all quantum chemical property predictions derive, is an accurate geometry of the molecular structure of the complex.</p>
<p>Predictions of geometries of lanthanide complexes from ab initio calculations are not so easy due not only to significant relativistic effects, a consequence of their high atomic numbers, but also to the complex manifold of microstates due, not only to a partially filled f-shell, but also from possibly partially filled 5 d 6 s and 6 p shells
<xref rid="pone.0086376-Dolg1" ref-type="bibr">[14]</xref>
. Therefore, full geometry optimizations from such first principles calculations are essentially unfeasible for the technologically useful complexes, which usually exhibit sizes of the order of 100 atoms or more. As a consequence, effective core potentials arise as a practical and very efficient manner of circumventing the complexity, while retaining important characteristics of
<italic>ab initio</italic>
calculations. Of these, the most widely used are the relativistic pseudopotentials of Dolg
<xref rid="pone.0086376-Dolg2" ref-type="bibr">[15]</xref>
,
<xref rid="pone.0086376-Dolg3" ref-type="bibr">[16]</xref>
which represent an excellent compromise between accuracy and usage of computational resources, mainly computing time. So far, the most thorough study of the geometry prediction accuracy of these relativistic potentials has been carried out by our research group in 2006 when full geometry optimizations were carried out on 52 different lanthanide complexes, including complexes of dysprosium (III), holmium (III) and erbium (III).
<xref rid="pone.0086376-Freire1" ref-type="bibr">[17]</xref>
The counterintuitive results obtained indicated that the best combination of method with basis set when using the MWB pseudopotential was RHF/STO-3G when the intent of the calculation was to predict the geometry of the coordination polyhedron – very important for any subsequent ligand field application. Moreover, either increasing the basis set, or adding electron correlation, only worsened the quality of the resulting coordination polyhedron. On the other hand, although the quality of the obtained coordination polyhedron via RH/STO-3G was very good, that could not be said of the geometry of the attached organic ligands.</p>
<p>In 1994, we introduced the Sparkle Model for the calculation of lanthanide complexes
<xref rid="pone.0086376-deAndrade1" ref-type="bibr">[18]</xref>
,
<xref rid="pone.0086376-deAndrade2" ref-type="bibr">[19]</xref>
, a semiempirical model within the framework of the AM1 semiempirical model
<xref rid="pone.0086376-Dewar1" ref-type="bibr">[20]</xref>
, which replaced the lanthanide ion by a +3
<italic>e</italic>
charge, with the corresponding Coulomb field superimposed to a repulsive potential of the form exp(-αr), with α being a parameter designed to somewhat delineate the size of the lanthanide ion, preventing the implosion of the ligands towards it. A very useful method of obtaining absorption spectra of lanthanide complexes was subsequently published
<xref rid="pone.0086376-Andrade1" ref-type="bibr">[21]</xref>
. Later
<xref rid="pone.0086376-Rocha1" ref-type="bibr">[22]</xref>
, Gaussians were added to the core-core repulsion of the sparkle-ligand atom to make the Sparkle Model more consistent with the AM1. In 2005, based on a parameterization scheme employed for europium, gadolinium and terbium
<xref rid="pone.0086376-Freire2" ref-type="bibr">[23]</xref>
, the first useful and accurate semiempirical model for dysprosium was defined
<xref rid="pone.0086376-daCosta1" ref-type="bibr">[24]</xref>
, followed by holmium
<xref rid="pone.0086376-daCosta2" ref-type="bibr">[25]</xref>
; and in 2006 for erbium
<xref rid="pone.0086376-Freire3" ref-type="bibr">[26]</xref>
. These models were defined for AM1, and became later available in MOPAC2007
<xref rid="pone.0086376-Stewart1" ref-type="bibr">[27]</xref>
, the overall model being called Sparkle/AM1. So far, most applications of the Sparkle Model are related to luminescence research
<xref rid="pone.0086376-Faustino1" ref-type="bibr">[28]</xref>
<xref rid="pone.0086376-Faustino2" ref-type="bibr">[30]</xref>
. But since different semiempirical models possess different accuracies and eventually develop particular niches of applications, it soon became a necessity to extend the Sparkle Model to others, giving rise to Sparkle/PM3
<xref rid="pone.0086376-Simas1" ref-type="bibr">[31]</xref>
,
<xref rid="pone.0086376-Freire5" ref-type="bibr">[32]</xref>
, Sparkle/PM6
<xref rid="pone.0086376-Freire6" ref-type="bibr">[33]</xref>
, Sparkle/PM7
<xref rid="pone.0086376-Dutra1" ref-type="bibr">[34]</xref>
, targeted to solids, and Sparkle/RM1
<xref rid="pone.0086376-Filho1" ref-type="bibr">[35]</xref>
.</p>
<p>However, none of the above mentioned Sparkle Models attaches semiempirical atomic orbitals to the lanthanide ion. Nevertheless, these models are all very accurate to describe lanthanide-ligand atom distances when the coordinating atom of the ligands is another lanthanide, oxygen or nitrogen. By moving towards other types of lanthanide-ligand atom bonds, however, the accuracy of the Sparkle Models starts to wane. All that points out to the fact that there is some degree of overlap between the orbitals of the lanthanide and those of the coordinating atoms – in short, there is a degree of covalence not taken into account by the Sparkle Model.</p>
<p>In this article, in order to considerably broaden the range of applications of semiempirical methods for lanthanide complexes, we introduce a new model with orbitals for the lanthanide trications of dysprosium, holmium, and erbium, within RM1
<xref rid="pone.0086376-Rocha2" ref-type="bibr">[36]</xref>
, which we call simply RM1 model for the lanthanides, a significantly more general model, not to be confused with Sparkle/RM1
<xref rid="pone.0086376-Filho1" ref-type="bibr">[35]</xref>
which does not have orbitals associated with the lanthanide ion.</p>
</sec>
<sec sec-type="methods" id="s2">
<title>Methods</title>
<p>The rationale of the RM1 model for the lanthanides starts with the following electron configuration for the lanthanide atoms: {[Xe]4f
<sup>n</sup>
}5d
<sup>1</sup>
6s
<sup>2</sup>
, with n = 9, 10, 11 for Dy, Ho and Er, respectively. The semiempirical core of the atoms then becomes {[Xe]4f
<sup>n</sup>
}. The semiempirical valence shells will now have three electrons and will be described by 5 d, 6 s and 6 p orbitals, for a total of 9 orbitals. Hence the model will work for trications only, because for dications there would be a need to parameterize another core of the form {[Xe]4f
<sup>n+1</sup>
} and assign two electrons to the valence shells, although they could still be described by another set of 5 d, 6 s, and 6 p orbitals. Since trications are by far the most common form of lanthanide ions, as before, we expect the present parameterization to be able to tackle essentially all cases relevant to technological applications.</p>
<p>The next step is to define the universes of complexes, one universe for each of the lanthanide ions under consideration. Accordingly, we selected from the Cambridge Crystallographic Database
<xref rid="pone.0086376-Allen1" ref-type="bibr">[37]</xref>
<xref rid="pone.0086376-Allen2" ref-type="bibr">[39]</xref>
all available complexes of high crystallographic quality (R <0.05), for a total of 61 of Dy(III), 40 of Ho(III), and 50 of Er(III).</p>
<p>We then proceeded to select sub-sets of complexes, the parameterization sets, according to some metric capable of guaranteeing that these sub-sets are representative of the universe of complexes with respect to some accuracy measure. Assuming that any difficulties Sparkle/AM1 might be having in describing the coordination polyhedron of the complexes is a reasonable first order approximation to the eventual overall difficulty which the present model will encounter, we defined the following R
<sub>i</sub>
metric for each one of the i complexes of the universe for each lanthanide trication:
<disp-formula id="pone.0086376.e001">
<graphic xlink:href="pone.0086376.e001.jpg" position="anchor" orientation="portrait"></graphic>
<label>(1)</label>
</disp-formula>
where j runs over all types of bonds, e.g. Ln-N, Ln-O, Ln-C, Ln-S, Ln-P, etc; k, runs over all bonds of type j;
<inline-formula>
<inline-graphic xlink:href="pone.0086376.e002.jpg"></inline-graphic>
</inline-formula>
is the standard deviation of all crystallographic bond lengths of type j for all complexes of the universe;
<inline-formula>
<inline-graphic xlink:href="pone.0086376.e003.jpg"></inline-graphic>
</inline-formula>
is the crystallographic k
<sup>th</sup>
bond distance of type j for complex i;
<inline-formula>
<inline-graphic xlink:href="pone.0086376.e004.jpg"></inline-graphic>
</inline-formula>
is the calculated value of the same bond;
<inline-formula>
<inline-graphic xlink:href="pone.0086376.e005.jpg"></inline-graphic>
</inline-formula>
is the standard deviation of all crystallographic bond angles of the type A-Ln-B, with A,B = O, N, C, S, Cl, and Br;
<inline-formula>
<inline-graphic xlink:href="pone.0086376.e006.jpg"></inline-graphic>
</inline-formula>
is the crystallographic l
<sup>th</sup>
bond angle of complex I; and
<inline-formula>
<inline-graphic xlink:href="pone.0086376.e007.jpg"></inline-graphic>
</inline-formula>
is its calculated counterpart. The standard deviations were calculated from the experimental data only. We also found out that there was no need to split the angles into types, as they all formed a homogeneous set. The divisions of the errors by their corresponding standard deviations make sure that the summations in Eq. (1) add comparable terms. To the set of R
<sub>i</sub>
values, each one associated with a different complex, we employed a hierarchical clustering analysis DIANA
<xref rid="pone.0086376-Kaufman1" ref-type="bibr">[40]</xref>
. DIANA starts out with one large cluster containing all complexes. In the subsequent steps, the complexes that are the most dissimilar are split off into smaller clusters – a procedure which continues until each complex forms a cluster of itself. From the resulting dendogram, we chose two sets of complexes as parameterization sets: a smaller and a larger one. For Dy(III) these sets contained 13 and 26 complexes, respectively. The corresponding numbers for Ho(III) were 12 and 20, and for Er(III) 16, and 39.</p>
<p>The parameterization was carried out to minimize the sum of R
<sub>i</sub>
s for all complexes of parameterization set, with the difference that the calculated distances and angles in Eq. (1), are now the ones calculated by the model being parameterized. For the parameterization, we used a combination of Simplex and generalized simulated annealing
<xref rid="pone.0086376-Tsallis1" ref-type="bibr">[41]</xref>
algorithms. We started with the smaller parameterization sets. Once these preliminary optimizations converged, we then expanded the parameterization sets to the larger ones and repeated the process until termination.
<xref ref-type="table" rid="pone-0086376-t001">Table 1</xref>
presents the final optimized parameters.</p>
<table-wrap id="pone-0086376-t001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0086376.t001</object-id>
<label>Table 1</label>
<caption>
<title>Parameters
<xref ref-type="table-fn" rid="nt102">*</xref>
for the RM1 model for the trications of Dy, Ho and Er.</title>
</caption>
<alternatives>
<graphic id="pone-0086376-t001-1" xlink:href="pone.0086376.t001"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td colspan="5" align="left" rowspan="1">RM1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Parameter</td>
<td align="left" rowspan="1" colspan="1">Unit</td>
<td align="left" rowspan="1" colspan="1">Dy
<sup>3+</sup>
</td>
<td align="left" rowspan="1" colspan="1">Ho
<sup>3+</sup>
</td>
<td align="left" rowspan="1" colspan="1">Er
<sup>3+</sup>
</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>U
<sub>ss</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">eV</td>
<td align="left" rowspan="1" colspan="1">−20.92623973</td>
<td align="left" rowspan="1" colspan="1">−22.05745867</td>
<td align="left" rowspan="1" colspan="1">−21.97839904</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>U
<sub>pp</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">eV</td>
<td align="left" rowspan="1" colspan="1">−7.66730575</td>
<td align="left" rowspan="1" colspan="1">−7.59563761</td>
<td align="left" rowspan="1" colspan="1">−7.60784986</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>U
<sub>dd</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">eV</td>
<td align="left" rowspan="1" colspan="1">−17.94081525</td>
<td align="left" rowspan="1" colspan="1">−18.00040589</td>
<td align="left" rowspan="1" colspan="1">−17.97684107</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>ζ
<sub>s</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">bohr
<sup>−1</sup>
</td>
<td align="left" rowspan="1" colspan="1">1.29527540</td>
<td align="left" rowspan="1" colspan="1">1.33055043</td>
<td align="left" rowspan="1" colspan="1">1.34775672</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>ζ
<sub>p</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">bohr
<sup>−1</sup>
</td>
<td align="left" rowspan="1" colspan="1">1.91210659</td>
<td align="left" rowspan="1" colspan="1">1.77955939</td>
<td align="left" rowspan="1" colspan="1">1.80648084</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>ζ
<sub>d</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">bohr
<sup>−1</sup>
</td>
<td align="left" rowspan="1" colspan="1">1.41339670</td>
<td align="left" rowspan="1" colspan="1">1.53652417</td>
<td align="left" rowspan="1" colspan="1">1.46618905</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>β
<sub>s</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">eV</td>
<td align="left" rowspan="1" colspan="1">−7.60670536</td>
<td align="left" rowspan="1" colspan="1">−5.64522644</td>
<td align="left" rowspan="1" colspan="1">−5.63471034</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>β
<sub>p</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">eV</td>
<td align="left" rowspan="1" colspan="1">1.96173362</td>
<td align="left" rowspan="1" colspan="1">0.00653676</td>
<td align="left" rowspan="1" colspan="1">−0.01897203</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>β
<sub>d</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">eV</td>
<td align="left" rowspan="1" colspan="1">−4.36852734</td>
<td align="left" rowspan="1" colspan="1">−4.31289917</td>
<td align="left" rowspan="1" colspan="1">−4.25067889</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>F
<sup>0</sup>
<sub>sd</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">eV</td>
<td align="left" rowspan="1" colspan="1">8.30543139</td>
<td align="left" rowspan="1" colspan="1">8.24056943</td>
<td align="left" rowspan="1" colspan="1">8.25732681</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>G
<sup>2</sup>
<sub>sd</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">eV</td>
<td align="left" rowspan="1" colspan="1">1.31036509</td>
<td align="left" rowspan="1" colspan="1">1.24543189</td>
<td align="left" rowspan="1" colspan="1">1.24874510</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>ρ
<sub>core</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">bohr</td>
<td align="left" rowspan="1" colspan="1">1.62505501</td>
<td align="left" rowspan="1" colspan="1">1.71955962</td>
<td align="left" rowspan="1" colspan="1">2.71713627</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>α</italic>
</td>
<td align="left" rowspan="1" colspan="1">Å
<sup>−1</sup>
</td>
<td align="left" rowspan="1" colspan="1">1.34825876</td>
<td align="left" rowspan="1" colspan="1">1.33007543</td>
<td align="left" rowspan="1" colspan="1">1.32010273</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>ζ
<sub>s</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">bohr
<sup>−1</sup>
</td>
<td align="left" rowspan="1" colspan="1">1.37236617</td>
<td align="left" rowspan="1" colspan="1">1.49803844</td>
<td align="left" rowspan="1" colspan="1">1.44675714</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>ζ
<sub>p</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">bohr
<sup>−1</sup>
</td>
<td align="left" rowspan="1" colspan="1">1.07407253</td>
<td align="left" rowspan="1" colspan="1">1.96749739</td>
<td align="left" rowspan="1" colspan="1">1.97388315</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>ζ
<sub>d</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">bohr
<sup>−1</sup>
</td>
<td align="left" rowspan="1" colspan="1">0.81914360</td>
<td align="left" rowspan="1" colspan="1">0.66302146</td>
<td align="left" rowspan="1" colspan="1">0.65046083</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>a
<sub>1</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">none</td>
<td align="left" rowspan="1" colspan="1">1.13071544</td>
<td align="left" rowspan="1" colspan="1">1.09070756</td>
<td align="left" rowspan="1" colspan="1">1.17417665</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>b
<sub>1</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">Å
<sup>−2</sup>
</td>
<td align="left" rowspan="1" colspan="1">7.71195583</td>
<td align="left" rowspan="1" colspan="1">7.57151625</td>
<td align="left" rowspan="1" colspan="1">7.58325164</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>c
<sub>1</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">Å</td>
<td align="left" rowspan="1" colspan="1">1.53665819</td>
<td align="left" rowspan="1" colspan="1">1.49095411</td>
<td align="left" rowspan="1" colspan="1">1.50354881</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>a
<sub>2</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">none</td>
<td align="left" rowspan="1" colspan="1">0.06845575</td>
<td align="left" rowspan="1" colspan="1">0.00141941</td>
<td align="left" rowspan="1" colspan="1">0.00864571</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>b
<sub>2</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">Å
<sup>−2</sup>
</td>
<td align="left" rowspan="1" colspan="1">7.50653990</td>
<td align="left" rowspan="1" colspan="1">7.79969636</td>
<td align="left" rowspan="1" colspan="1">7.81378785</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">
<italic>c
<sub>2</sub>
</italic>
</td>
<td align="left" rowspan="1" colspan="1">Å</td>
<td align="left" rowspan="1" colspan="1">3.23417102</td>
<td align="left" rowspan="1" colspan="1">3.25425084</td>
<td align="left" rowspan="1" colspan="1">3.23359665</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt101">
<label></label>
<p>All these parameters are as defined in the formalisms and equations of the RM1 model.</p>
</fn>
<fn id="nt102">
<label>*</label>
<p>Parameters are
<italic>s</italic>
,
<italic>p</italic>
, and
<italic>d</italic>
atomic orbital one-electron one-center integrals U
<sub>ss</sub>
, U
<sub>pp</sub>
and U
<sub>dd</sub>
; the
<italic>s</italic>
,
<italic>p</italic>
, and
<italic>d</italic>
Slater atomic orbital exponents ξ
<italic>
<sub>s</sub>
</italic>
, ξ
<italic>
<sub>p</sub>
</italic>
, and ξ
<italic>
<sub>d</sub>
</italic>
; the
<italic>s, p,</italic>
and
<italic>d</italic>
atomic orbital one-electron two-center resonance integral terms
<italic>β
<sub>s</sub>
</italic>
,
<italic>β
<sub>p</sub>
</italic>
, and
<italic>β
<sub>d</sub>
</italic>
; the core-core repulsion term α; the two-electron integrals F
<sup>0</sup>
<sub>sd</sub>
, G
<sup>2</sup>
<sub>sd</sub>
; and the additive term ρ
<sub>core</sub>
needed to evaluate core-electron and core-core nuclear interactions; the second set of exponents to compute the one-center integrals
<italic>ξ
<sub>s</sub>
</italic>
,
<italic>ξ
<sub>p</sub>
</italic>
’, and
<italic>ξ
<sub>d</sub>
</italic>
; and the six parameters for the two Gaussian functions: height, a
<sub>i</sub>
; inverse broadness, b
<sub>i</sub>
; and displacement, c
<sub>i</sub>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec id="s3">
<title>Results and Discussion</title>
<p>In order to evaluate the quality of the optimized parameters, we devised two measures
<xref rid="pone.0086376-Freire2" ref-type="bibr">[23]</xref>
,
<xref rid="pone.0086376-Freire7" ref-type="bibr">[42]</xref>
. Both are based on the following formula:
<disp-formula id="pone.0086376.e008">
<graphic xlink:href="pone.0086376.e008.jpg" position="anchor" orientation="portrait"></graphic>
<label>(2)</label>
</disp-formula>
where UME stands for unsigned mean error; i refers to a given complex; n is the number of distances taken into consideration in the given complex; the superscript CSD indicates that the distance R is an experimental crystallographic distance taken from CSD, and the superscript RM1 means that the distance was calculated from the present model. In the first measure we consider only distances between the central lanthanide ion and its directly coordinating atom distances, which we call UME
<sub>(Ln-L).</sub>
In the second measure, which we call simply UME, we consider not only the lanthanide ion-directly coordinating atoms as before, but also all distances between all atoms of the coordinating polyhedron, thus indirectly taking into account the angles within the coordination polyhedron.</p>
<p>
<xref ref-type="table" rid="pone-0086376-t002">Tables 2</xref>
<xref ref-type="table" rid="pone-0086376-t004">4</xref>
present UME
<sub>(Ln-L)</sub>
s and UMEs for the universe set of complexes for each of the lanthanide trications: Dy(III), Ho(III), and Er(III), identified by their respective CSD codes.</p>
<table-wrap id="pone-0086376-t002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0086376.t002</object-id>
<label>Table 2</label>
<caption>
<title>Unsigned mean errors, UME
<sub>(Dy-L)</sub>
s and UMEs, for the RM1 model for the lanthanides, as compared to the respective experimental crystallographic values, obtained from the Cambridge Structural Database,
<xref rid="pone.0086376-Allen1" ref-type="bibr">[37]</xref>
<xref rid="pone.0086376-Allen2" ref-type="bibr">[39]</xref>
for each of the 61 dysprosium (III) complexes.</title>
</caption>
<alternatives>
<graphic id="pone-0086376-t002-2" xlink:href="pone.0086376.t002"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Complex
<xref ref-type="table-fn" rid="nt103">*</xref>
</td>
<td colspan="2" align="left" rowspan="1">RM1</td>
<td align="left" rowspan="1" colspan="1">Complex
<xref ref-type="table-fn" rid="nt103">*</xref>
</td>
<td colspan="2" align="left" rowspan="1">RM1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">UME
<sub>(Dy-L)</sub>
s (Å)</td>
<td align="left" rowspan="1" colspan="1">UME (Å)</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">UME
<sub>(Dy-L)</sub>
s (Å)</td>
<td align="left" rowspan="1" colspan="1">UME (Å)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">AMAQDY</td>
<td align="left" rowspan="1" colspan="1">0.0517</td>
<td align="left" rowspan="1" colspan="1">0.1503</td>
<td align="left" rowspan="1" colspan="1">AKUKAT</td>
<td align="left" rowspan="1" colspan="1">0.0216</td>
<td align="left" rowspan="1" colspan="1">0.1148</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BAFZUE</td>
<td align="left" rowspan="1" colspan="1">0.0470</td>
<td align="left" rowspan="1" colspan="1">0.1129</td>
<td align="left" rowspan="1" colspan="1">BEXLIA</td>
<td align="left" rowspan="1" colspan="1">0.0300</td>
<td align="left" rowspan="1" colspan="1">0.0972</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BIHLIN</td>
<td align="left" rowspan="1" colspan="1">0.0317</td>
<td align="left" rowspan="1" colspan="1">0.0719</td>
<td align="left" rowspan="1" colspan="1">DANPEN</td>
<td align="left" rowspan="1" colspan="1">0.0410</td>
<td align="left" rowspan="1" colspan="1">0.0953</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BUVXIZ01</td>
<td align="left" rowspan="1" colspan="1">0.0658</td>
<td align="left" rowspan="1" colspan="1">0.0872</td>
<td align="left" rowspan="1" colspan="1">DEKBEB</td>
<td align="left" rowspan="1" colspan="1">0.0438</td>
<td align="left" rowspan="1" colspan="1">0.0832</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CECLIF</td>
<td align="left" rowspan="1" colspan="1">0.0522</td>
<td align="left" rowspan="1" colspan="1">0.0959</td>
<td align="left" rowspan="1" colspan="1">DEKBEB01</td>
<td align="left" rowspan="1" colspan="1">0.0370</td>
<td align="left" rowspan="1" colspan="1">0.0843</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CECLIF10</td>
<td align="left" rowspan="1" colspan="1">0.0521</td>
<td align="left" rowspan="1" colspan="1">0.0960</td>
<td align="left" rowspan="1" colspan="1">DEKCAY01</td>
<td align="left" rowspan="1" colspan="1">0.0632</td>
<td align="left" rowspan="1" colspan="1">0.1068</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DIBTIR</td>
<td align="left" rowspan="1" colspan="1">0.0313</td>
<td align="left" rowspan="1" colspan="1">0.0977</td>
<td align="left" rowspan="1" colspan="1">DUFCOW10</td>
<td align="left" rowspan="1" colspan="1">0.0348</td>
<td align="left" rowspan="1" colspan="1">0.1042</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DIDBOH</td>
<td align="left" rowspan="1" colspan="1">0.0417</td>
<td align="left" rowspan="1" colspan="1">0.1567</td>
<td align="left" rowspan="1" colspan="1">FIGXEZ</td>
<td align="left" rowspan="1" colspan="1">0.0327</td>
<td align="left" rowspan="1" colspan="1">0.1403</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">FOPNAZ</td>
<td align="left" rowspan="1" colspan="1">0.0138</td>
<td align="left" rowspan="1" colspan="1">0.1471</td>
<td align="left" rowspan="1" colspan="1">FUXPAP01</td>
<td align="left" rowspan="1" colspan="1">0.1191</td>
<td align="left" rowspan="1" colspan="1">0.1026</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">FUXRAR</td>
<td align="left" rowspan="1" colspan="1">0.0401</td>
<td align="left" rowspan="1" colspan="1">0.1662</td>
<td align="left" rowspan="1" colspan="1">HIVWEP</td>
<td align="left" rowspan="1" colspan="1">0.0665</td>
<td align="left" rowspan="1" colspan="1">0.1222</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">GAKYEW</td>
<td align="left" rowspan="1" colspan="1">0.0258</td>
<td align="left" rowspan="1" colspan="1">0.1273</td>
<td align="left" rowspan="1" colspan="1">HOCYUU</td>
<td align="left" rowspan="1" colspan="1">0.0942</td>
<td align="left" rowspan="1" colspan="1">0.0976</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">GINPUO</td>
<td align="left" rowspan="1" colspan="1">0.0455</td>
<td align="left" rowspan="1" colspan="1">0.0813</td>
<td align="left" rowspan="1" colspan="1">IMOXAJ</td>
<td align="left" rowspan="1" colspan="1">0.0271</td>
<td align="left" rowspan="1" colspan="1">0.1036</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">HANCAA</td>
<td align="left" rowspan="1" colspan="1">0.0553</td>
<td align="left" rowspan="1" colspan="1">0.1424</td>
<td align="left" rowspan="1" colspan="1">KILZOU02</td>
<td align="left" rowspan="1" colspan="1">0.0487</td>
<td align="left" rowspan="1" colspan="1">0.1307</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">KITGEZ</td>
<td align="left" rowspan="1" colspan="1">0.0480</td>
<td align="left" rowspan="1" colspan="1">0.1391</td>
<td align="left" rowspan="1" colspan="1">KUYBIP</td>
<td align="left" rowspan="1" colspan="1">0.1338</td>
<td align="left" rowspan="1" colspan="1">0.1260</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LEYHUS</td>
<td align="left" rowspan="1" colspan="1">0.0296</td>
<td align="left" rowspan="1" colspan="1">0.2200</td>
<td align="left" rowspan="1" colspan="1">LEZZOG</td>
<td align="left" rowspan="1" colspan="1">0.0343</td>
<td align="left" rowspan="1" colspan="1">0.0741</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">MANHOY</td>
<td align="left" rowspan="1" colspan="1">0.0804</td>
<td align="left" rowspan="1" colspan="1">0.1208</td>
<td align="left" rowspan="1" colspan="1">MECCUT</td>
<td align="left" rowspan="1" colspan="1">0.0408</td>
<td align="left" rowspan="1" colspan="1">0.1836</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PALBIN</td>
<td align="left" rowspan="1" colspan="1">0.0205</td>
<td align="left" rowspan="1" colspan="1">0.4919</td>
<td align="left" rowspan="1" colspan="1">NAKMAO</td>
<td align="left" rowspan="1" colspan="1">0.0323</td>
<td align="left" rowspan="1" colspan="1">0.0713</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">QQQEMM01</td>
<td align="left" rowspan="1" colspan="1">0.0328</td>
<td align="left" rowspan="1" colspan="1">0.0841</td>
<td align="left" rowspan="1" colspan="1">NAPHAN</td>
<td align="left" rowspan="1" colspan="1">0.0377</td>
<td align="left" rowspan="1" colspan="1">0.0883</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SETADY</td>
<td align="left" rowspan="1" colspan="1">0.0883</td>
<td align="left" rowspan="1" colspan="1">0.2516</td>
<td align="left" rowspan="1" colspan="1">OHUYUM</td>
<td align="left" rowspan="1" colspan="1">0.0286</td>
<td align="left" rowspan="1" colspan="1">0.0985</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TISQUH</td>
<td align="left" rowspan="1" colspan="1">0.0670</td>
<td align="left" rowspan="1" colspan="1">0.1240</td>
<td align="left" rowspan="1" colspan="1">RABBEX</td>
<td align="left" rowspan="1" colspan="1">0.0825</td>
<td align="left" rowspan="1" colspan="1">0.2034</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TUQTUU</td>
<td align="left" rowspan="1" colspan="1">0.0601</td>
<td align="left" rowspan="1" colspan="1">0.0940</td>
<td align="left" rowspan="1" colspan="1">ROCTIN</td>
<td align="left" rowspan="1" colspan="1">0.1118</td>
<td align="left" rowspan="1" colspan="1">0.2276</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TUQTUU01</td>
<td align="left" rowspan="1" colspan="1">0.0601</td>
<td align="left" rowspan="1" colspan="1">0.0943</td>
<td align="left" rowspan="1" colspan="1">TESHEF</td>
<td align="left" rowspan="1" colspan="1">0.0348</td>
<td align="left" rowspan="1" colspan="1">0.1448</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">VOSBOU</td>
<td align="left" rowspan="1" colspan="1">0.0587</td>
<td align="left" rowspan="1" colspan="1">0.0879</td>
<td align="left" rowspan="1" colspan="1">TESHOP</td>
<td align="left" rowspan="1" colspan="1">0.0571</td>
<td align="left" rowspan="1" colspan="1">0.1010</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">XAWVIA</td>
<td align="left" rowspan="1" colspan="1">0.0408</td>
<td align="left" rowspan="1" colspan="1">0.1087</td>
<td align="left" rowspan="1" colspan="1">TESJEH</td>
<td align="left" rowspan="1" colspan="1">0.0356</td>
<td align="left" rowspan="1" colspan="1">0.1150</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">XEQMAH</td>
<td align="left" rowspan="1" colspan="1">0.0987</td>
<td align="left" rowspan="1" colspan="1">0.1019</td>
<td align="left" rowspan="1" colspan="1">TESJIL</td>
<td align="left" rowspan="1" colspan="1">0.0564</td>
<td align="left" rowspan="1" colspan="1">0.1008</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">XIVFUD</td>
<td align="left" rowspan="1" colspan="1">0.1015</td>
<td align="left" rowspan="1" colspan="1">0.2004</td>
<td align="left" rowspan="1" colspan="1">USEPEO</td>
<td align="left" rowspan="1" colspan="1">0.0484</td>
<td align="left" rowspan="1" colspan="1">0.1090</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">YAVSOD</td>
<td align="left" rowspan="1" colspan="1">0.0432</td>
<td align="left" rowspan="1" colspan="1">0.0726</td>
<td align="left" rowspan="1" colspan="1">WAQZEU</td>
<td align="left" rowspan="1" colspan="1">0.1499</td>
<td align="left" rowspan="1" colspan="1">0.1742</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">ZAXSAS</td>
<td align="left" rowspan="1" colspan="1">0.0700</td>
<td align="left" rowspan="1" colspan="1">0.1357</td>
<td align="left" rowspan="1" colspan="1">WAWJOT01</td>
<td align="left" rowspan="1" colspan="1">0.1152</td>
<td align="left" rowspan="1" colspan="1">0.1538</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">ZZZARG01</td>
<td align="left" rowspan="1" colspan="1">0.0602</td>
<td align="left" rowspan="1" colspan="1">0.0897</td>
<td align="left" rowspan="1" colspan="1">WEDHUJ</td>
<td align="left" rowspan="1" colspan="1">0.0282</td>
<td align="left" rowspan="1" colspan="1">0.1089</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">AGUTOL</td>
<td align="left" rowspan="1" colspan="1">0.0719</td>
<td align="left" rowspan="1" colspan="1">0.1019</td>
<td align="left" rowspan="1" colspan="1">XAYRIZ</td>
<td align="left" rowspan="1" colspan="1">0.0416</td>
<td align="left" rowspan="1" colspan="1">0.0874</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">AHANED</td>
<td align="left" rowspan="1" colspan="1">0.0817</td>
<td align="left" rowspan="1" colspan="1">0.1433</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt103">
<label>*</label>
<p>The complexes are identified by their unique CSD codes
<xref rid="pone.0086376-Allen1" ref-type="bibr">[37]</xref>
<xref rid="pone.0086376-Allen2" ref-type="bibr">[39]</xref>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="pone-0086376-t003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0086376.t003</object-id>
<label>Table 3</label>
<caption>
<title>Unsigned mean errors, UME
<sub>(Ho-L)</sub>
s and UMEs, for the RM1 model for the lanthanides, as compared to the respective experimental crystallographic values, obtained from the Cambridge Structural Database,
<xref rid="pone.0086376-Allen1" ref-type="bibr">[37]</xref>
<xref rid="pone.0086376-Allen2" ref-type="bibr">[39]</xref>
for each of the 40 holmium (III) complexes.</title>
</caption>
<alternatives>
<graphic id="pone-0086376-t003-3" xlink:href="pone.0086376.t003"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Complex
<xref ref-type="table-fn" rid="nt104">*</xref>
</td>
<td colspan="2" align="left" rowspan="1">Method RM1</td>
<td align="left" rowspan="1" colspan="1">Complex
<xref ref-type="table-fn" rid="nt104">*</xref>
</td>
<td colspan="2" align="left" rowspan="1">Method RM1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">UME
<sub>(Ho-L)</sub>
s (Å)</td>
<td align="left" rowspan="1" colspan="1">UME (Å)</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">UME
<sub>(Ho-L)</sub>
s (Å)</td>
<td align="left" rowspan="1" colspan="1">UME (Å)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">BAGBAN</td>
<td align="left" rowspan="1" colspan="1">0.0513</td>
<td align="left" rowspan="1" colspan="1">0.1131</td>
<td align="left" rowspan="1" colspan="1">XARVOB</td>
<td align="left" rowspan="1" colspan="1">0.0363</td>
<td align="left" rowspan="1" colspan="1">0.0912</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BEYSAZ</td>
<td align="left" rowspan="1" colspan="1">0.0529</td>
<td align="left" rowspan="1" colspan="1">0.1976</td>
<td align="left" rowspan="1" colspan="1">XAWVOG</td>
<td align="left" rowspan="1" colspan="1">0.0530</td>
<td align="left" rowspan="1" colspan="1">0.0930</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BUVXOF01</td>
<td align="left" rowspan="1" colspan="1">0.0634</td>
<td align="left" rowspan="1" colspan="1">0.0869</td>
<td align="left" rowspan="1" colspan="1">XEQMEL</td>
<td align="left" rowspan="1" colspan="1">0.0843</td>
<td align="left" rowspan="1" colspan="1">0.0602</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CAQFUV</td>
<td align="left" rowspan="1" colspan="1">0.0676</td>
<td align="left" rowspan="1" colspan="1">0.0790</td>
<td align="left" rowspan="1" colspan="1">XEWVIE</td>
<td align="left" rowspan="1" colspan="1">0.0696</td>
<td align="left" rowspan="1" colspan="1">0.1305</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">COZHEE</td>
<td align="left" rowspan="1" colspan="1">0.0223</td>
<td align="left" rowspan="1" colspan="1">0.0966</td>
<td align="left" rowspan="1" colspan="1">XORGEQ</td>
<td align="left" rowspan="1" colspan="1">0.0362</td>
<td align="left" rowspan="1" colspan="1">0.4482</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CUSYUK</td>
<td align="left" rowspan="1" colspan="1">0.0483</td>
<td align="left" rowspan="1" colspan="1">0.2318</td>
<td align="left" rowspan="1" colspan="1">AGUVED</td>
<td align="left" rowspan="1" colspan="1">0.0443</td>
<td align="left" rowspan="1" colspan="1">0.0838</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">ECOJEL</td>
<td align="left" rowspan="1" colspan="1">0.0975</td>
<td align="left" rowspan="1" colspan="1">0.1573</td>
<td align="left" rowspan="1" colspan="1">AXAZAA</td>
<td align="left" rowspan="1" colspan="1">0.0893</td>
<td align="left" rowspan="1" colspan="1">0.1137</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">FAGYOC</td>
<td align="left" rowspan="1" colspan="1">0.0695</td>
<td align="left" rowspan="1" colspan="1">0.3482</td>
<td align="left" rowspan="1" colspan="1">DEKBAX</td>
<td align="left" rowspan="1" colspan="1">0.0378</td>
<td align="left" rowspan="1" colspan="1">0.0768</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">GAKYIA</td>
<td align="left" rowspan="1" colspan="1">0.0462</td>
<td align="left" rowspan="1" colspan="1">0.1312</td>
<td align="left" rowspan="1" colspan="1">DEKBOL</td>
<td align="left" rowspan="1" colspan="1">0.1163</td>
<td align="left" rowspan="1" colspan="1">0.1557</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">GINREA</td>
<td align="left" rowspan="1" colspan="1">0.0460</td>
<td align="left" rowspan="1" colspan="1">0.0775</td>
<td align="left" rowspan="1" colspan="1">EWIPUV</td>
<td align="left" rowspan="1" colspan="1">0.0365</td>
<td align="left" rowspan="1" colspan="1">0.1275</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">GODKOZ</td>
<td align="left" rowspan="1" colspan="1">0.0358</td>
<td align="left" rowspan="1" colspan="1">0.0523</td>
<td align="left" rowspan="1" colspan="1">FUXRIZ</td>
<td align="left" rowspan="1" colspan="1">0.0742</td>
<td align="left" rowspan="1" colspan="1">0.0715</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">HANCII</td>
<td align="left" rowspan="1" colspan="1">0.0196</td>
<td align="left" rowspan="1" colspan="1">0.0593</td>
<td align="left" rowspan="1" colspan="1">GIFLIQ</td>
<td align="left" rowspan="1" colspan="1">0.1142</td>
<td align="left" rowspan="1" colspan="1">0.1489</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">HOESUL02</td>
<td align="left" rowspan="1" colspan="1">0.0621</td>
<td align="left" rowspan="1" colspan="1">0.0916</td>
<td align="left" rowspan="1" colspan="1">MOGWUB</td>
<td align="left" rowspan="1" colspan="1">0.4893</td>
<td align="left" rowspan="1" colspan="1">0.6047</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">KITGOJ</td>
<td align="left" rowspan="1" colspan="1">0.0254</td>
<td align="left" rowspan="1" colspan="1">0.0773</td>
<td align="left" rowspan="1" colspan="1">MUHWIW</td>
<td align="left" rowspan="1" colspan="1">0.0491</td>
<td align="left" rowspan="1" colspan="1">0.0888</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LEYJEE</td>
<td align="left" rowspan="1" colspan="1">0.0413</td>
<td align="left" rowspan="1" colspan="1">0.1874</td>
<td align="left" rowspan="1" colspan="1">NUFQAG</td>
<td align="left" rowspan="1" colspan="1">0.0399</td>
<td align="left" rowspan="1" colspan="1">0.0715</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LIZPAL</td>
<td align="left" rowspan="1" colspan="1">0.0499</td>
<td align="left" rowspan="1" colspan="1">0.2272</td>
<td align="left" rowspan="1" colspan="1">NUYNOL</td>
<td align="left" rowspan="1" colspan="1">0.0689</td>
<td align="left" rowspan="1" colspan="1">0.0652</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NIHRIF</td>
<td align="left" rowspan="1" colspan="1">0.0640</td>
<td align="left" rowspan="1" colspan="1">0.1070</td>
<td align="left" rowspan="1" colspan="1">NUYNOL01</td>
<td align="left" rowspan="1" colspan="1">0.0484</td>
<td align="left" rowspan="1" colspan="1">0.0764</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NUJBAV</td>
<td align="left" rowspan="1" colspan="1">0.0087</td>
<td align="left" rowspan="1" colspan="1">0.0625</td>
<td align="left" rowspan="1" colspan="1">QELLOJ</td>
<td align="left" rowspan="1" colspan="1">0.0493</td>
<td align="left" rowspan="1" colspan="1">0.0937</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">QOZVOQ</td>
<td align="left" rowspan="1" colspan="1">0.0185</td>
<td align="left" rowspan="1" colspan="1">0.1002</td>
<td align="left" rowspan="1" colspan="1">QIVYAW</td>
<td align="left" rowspan="1" colspan="1">0.0423</td>
<td align="left" rowspan="1" colspan="1">0.0620</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">SIFZIQ</td>
<td align="left" rowspan="1" colspan="1">0.0273</td>
<td align="left" rowspan="1" colspan="1">0.1721</td>
<td align="left" rowspan="1" colspan="1">YEFVUA</td>
<td align="left" rowspan="1" colspan="1">0.0349</td>
<td align="left" rowspan="1" colspan="1">0.0760</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt104">
<label>*</label>
<p>The complexes are identified by their unique CSD codes
<xref rid="pone.0086376-Allen1" ref-type="bibr">[37]</xref>
<xref rid="pone.0086376-Allen2" ref-type="bibr">[39]</xref>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="pone-0086376-t004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0086376.t004</object-id>
<label>Table 4</label>
<caption>
<title>Unsigned mean errors, UME
<sub>(Er-L)</sub>
s and UMEs, for Method RM1, as compared to the respective experimental crystallographic values, obtained from the Cambridge Structural Database,
<xref rid="pone.0086376-Allen1" ref-type="bibr">[37]</xref>
<xref rid="pone.0086376-Allen2" ref-type="bibr">[39]</xref>
for each of the 59 erbium (III) complexes.</title>
</caption>
<alternatives>
<graphic id="pone-0086376-t004-4" xlink:href="pone.0086376.t004"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Complex
<xref ref-type="table-fn" rid="nt105">*</xref>
</td>
<td colspan="2" align="left" rowspan="1">Method RM1</td>
<td align="left" rowspan="1" colspan="1">Complex
<xref ref-type="table-fn" rid="nt105">*</xref>
</td>
<td colspan="2" align="left" rowspan="1">Method RM1</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">UME
<sub>(Er-L)</sub>
s(Å)</td>
<td align="left" rowspan="1" colspan="1">UME(Å)</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">UME
<sub>(Er-L)</sub>
s(Å)</td>
<td align="left" rowspan="1" colspan="1">UME(Å)</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">AERETS02</td>
<td align="left" rowspan="1" colspan="1">0.0563</td>
<td align="left" rowspan="1" colspan="1">0.0895</td>
<td align="left" rowspan="1" colspan="1">RIKTEK</td>
<td align="left" rowspan="1" colspan="1">0.0522</td>
<td align="left" rowspan="1" colspan="1">0.2208</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">AKIYEY</td>
<td align="left" rowspan="1" colspan="1">0.0440</td>
<td align="left" rowspan="1" colspan="1">0.2700</td>
<td align="left" rowspan="1" colspan="1">RIKTEK01</td>
<td align="left" rowspan="1" colspan="1">0.0488</td>
<td align="left" rowspan="1" colspan="1">0.2197</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BAGBER</td>
<td align="left" rowspan="1" colspan="1">0.0462</td>
<td align="left" rowspan="1" colspan="1">0.1076</td>
<td align="left" rowspan="1" colspan="1">ROCSOS</td>
<td align="left" rowspan="1" colspan="1">0.0782</td>
<td align="left" rowspan="1" colspan="1">0.2444</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BEXLEW</td>
<td align="left" rowspan="1" colspan="1">0.0842</td>
<td align="left" rowspan="1" colspan="1">0.1678</td>
<td align="left" rowspan="1" colspan="1">ROCTOT</td>
<td align="left" rowspan="1" colspan="1">0.0595</td>
<td align="left" rowspan="1" colspan="1">0.2138</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BOBWAQ</td>
<td align="left" rowspan="1" colspan="1">0.0421</td>
<td align="left" rowspan="1" colspan="1">0.1184</td>
<td align="left" rowspan="1" colspan="1">RUNQOG</td>
<td align="left" rowspan="1" colspan="1">0.0513</td>
<td align="left" rowspan="1" colspan="1">0.1022</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BODMUD</td>
<td align="left" rowspan="1" colspan="1">0.0388</td>
<td align="left" rowspan="1" colspan="1">0.1382</td>
<td align="left" rowspan="1" colspan="1">SEGVAB</td>
<td align="left" rowspan="1" colspan="1">0.0691</td>
<td align="left" rowspan="1" colspan="1">0.1681</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BOWXOA</td>
<td align="left" rowspan="1" colspan="1">0.0450</td>
<td align="left" rowspan="1" colspan="1">0.1848</td>
<td align="left" rowspan="1" colspan="1">SOKBID</td>
<td align="left" rowspan="1" colspan="1">0.0280</td>
<td align="left" rowspan="1" colspan="1">0.0513</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DEKCEC</td>
<td align="left" rowspan="1" colspan="1">0.0371</td>
<td align="left" rowspan="1" colspan="1">0.0914</td>
<td align="left" rowspan="1" colspan="1">TACERB01</td>
<td align="left" rowspan="1" colspan="1">0.0262</td>
<td align="left" rowspan="1" colspan="1">0.0958</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DIBTAJ</td>
<td align="left" rowspan="1" colspan="1">0.0369</td>
<td align="left" rowspan="1" colspan="1">0.1778</td>
<td align="left" rowspan="1" colspan="1">TEJFEU</td>
<td align="left" rowspan="1" colspan="1">0.1355</td>
<td align="left" rowspan="1" colspan="1">0.2048</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DIDCAU</td>
<td align="left" rowspan="1" colspan="1">0.0399</td>
<td align="left" rowspan="1" colspan="1">0.2601</td>
<td align="left" rowspan="1" colspan="1">TEPKOO</td>
<td align="left" rowspan="1" colspan="1">0.0297</td>
<td align="left" rowspan="1" colspan="1">0.0715</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DIJQAO</td>
<td align="left" rowspan="1" colspan="1">0.0391</td>
<td align="left" rowspan="1" colspan="1">0.2332</td>
<td align="left" rowspan="1" colspan="1">TMHDER</td>
<td align="left" rowspan="1" colspan="1">0.0588</td>
<td align="left" rowspan="1" colspan="1">0.3224</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DIJQIW</td>
<td align="left" rowspan="1" colspan="1">0.0310</td>
<td align="left" rowspan="1" colspan="1">0.1024</td>
<td align="left" rowspan="1" colspan="1">TUMJEQ</td>
<td align="left" rowspan="1" colspan="1">0.0583</td>
<td align="left" rowspan="1" colspan="1">0.1227</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DIYNII</td>
<td align="left" rowspan="1" colspan="1">0.0260</td>
<td align="left" rowspan="1" colspan="1">0.1158</td>
<td align="left" rowspan="1" colspan="1">UFIRIK</td>
<td align="left" rowspan="1" colspan="1">0.0622</td>
<td align="left" rowspan="1" colspan="1">0.0716</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">DOGKEP</td>
<td align="left" rowspan="1" colspan="1">0.0323</td>
<td align="left" rowspan="1" colspan="1">0.1502</td>
<td align="left" rowspan="1" colspan="1">VEQFOM</td>
<td align="left" rowspan="1" colspan="1">0.0820</td>
<td align="left" rowspan="1" colspan="1">0.0617</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">GAKYOG</td>
<td align="left" rowspan="1" colspan="1">0.0266</td>
<td align="left" rowspan="1" colspan="1">0.1057</td>
<td align="left" rowspan="1" colspan="1">VOSNOG</td>
<td align="left" rowspan="1" colspan="1">0.0375</td>
<td align="left" rowspan="1" colspan="1">0.0833</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">GINRIE</td>
<td align="left" rowspan="1" colspan="1">0.0464</td>
<td align="left" rowspan="1" colspan="1">0.0807</td>
<td align="left" rowspan="1" colspan="1">VUSGUL</td>
<td align="left" rowspan="1" colspan="1">0.0817</td>
<td align="left" rowspan="1" colspan="1">0.0941</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">HANCOO</td>
<td align="left" rowspan="1" colspan="1">0.0165</td>
<td align="left" rowspan="1" colspan="1">0.0609</td>
<td align="left" rowspan="1" colspan="1">VUSHEW</td>
<td align="left" rowspan="1" colspan="1">0.0593</td>
<td align="left" rowspan="1" colspan="1">0.1107</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">HEDVIW</td>
<td align="left" rowspan="1" colspan="1">0.1052</td>
<td align="left" rowspan="1" colspan="1">0.1989</td>
<td align="left" rowspan="1" colspan="1">WEFVIM</td>
<td align="left" rowspan="1" colspan="1">0.0466</td>
<td align="left" rowspan="1" colspan="1">0.0843</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">HENAEB</td>
<td align="left" rowspan="1" colspan="1">0.0283</td>
<td align="left" rowspan="1" colspan="1">0.1548</td>
<td align="left" rowspan="1" colspan="1">XAXYAX</td>
<td align="left" rowspan="1" colspan="1">0.0593</td>
<td align="left" rowspan="1" colspan="1">0.0854</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">KITGUP</td>
<td align="left" rowspan="1" colspan="1">0.0149</td>
<td align="left" rowspan="1" colspan="1">0.0729</td>
<td align="left" rowspan="1" colspan="1">XEWVOK</td>
<td align="left" rowspan="1" colspan="1">0.0442</td>
<td align="left" rowspan="1" colspan="1">0.1163</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">KOZBUW</td>
<td align="left" rowspan="1" colspan="1">0.0144</td>
<td align="left" rowspan="1" colspan="1">0.0561</td>
<td align="left" rowspan="1" colspan="1">XEWWUR</td>
<td align="left" rowspan="1" colspan="1">0.0472</td>
<td align="left" rowspan="1" colspan="1">0.0938</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">LEYJII</td>
<td align="left" rowspan="1" colspan="1">0.0294</td>
<td align="left" rowspan="1" colspan="1">0.2276</td>
<td align="left" rowspan="1" colspan="1">XOVHAS</td>
<td align="left" rowspan="1" colspan="1">0.0851</td>
<td align="left" rowspan="1" colspan="1">0.2268</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">MAGDOP</td>
<td align="left" rowspan="1" colspan="1">0.0449</td>
<td align="left" rowspan="1" colspan="1">0.1319</td>
<td align="left" rowspan="1" colspan="1">XOYXIS</td>
<td align="left" rowspan="1" colspan="1">0.0285</td>
<td align="left" rowspan="1" colspan="1">0.1590</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">MECDEE</td>
<td align="left" rowspan="1" colspan="1">0.0281</td>
<td align="left" rowspan="1" colspan="1">0.0853</td>
<td align="left" rowspan="1" colspan="1">YEGFEV</td>
<td align="left" rowspan="1" colspan="1">0.0504</td>
<td align="left" rowspan="1" colspan="1">0.1687</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NIVQUE</td>
<td align="left" rowspan="1" colspan="1">0.0499</td>
<td align="left" rowspan="1" colspan="1">0.2188</td>
<td align="left" rowspan="1" colspan="1">YEMSIT</td>
<td align="left" rowspan="1" colspan="1">0.0767</td>
<td align="left" rowspan="1" colspan="1">0.1338</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">NUYNUR</td>
<td align="left" rowspan="1" colspan="1">0.0838</td>
<td align="left" rowspan="1" colspan="1">0.2163</td>
<td align="left" rowspan="1" colspan="1">YICCIW</td>
<td align="left" rowspan="1" colspan="1">0.0344</td>
<td align="left" rowspan="1" colspan="1">0.1527</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">OHUZEX</td>
<td align="left" rowspan="1" colspan="1">0.0269</td>
<td align="left" rowspan="1" colspan="1">0.0890</td>
<td align="left" rowspan="1" colspan="1">YUFWIG</td>
<td align="left" rowspan="1" colspan="1">0.0196</td>
<td align="left" rowspan="1" colspan="1">0.0988</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">OMATUS</td>
<td align="left" rowspan="1" colspan="1">0.0742</td>
<td align="left" rowspan="1" colspan="1">0.1597</td>
<td align="left" rowspan="1" colspan="1">ZADWUW</td>
<td align="left" rowspan="1" colspan="1">0.1281</td>
<td align="left" rowspan="1" colspan="1">0.2265</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">QIVXID</td>
<td align="left" rowspan="1" colspan="1">0.0742</td>
<td align="left" rowspan="1" colspan="1">0.2170</td>
<td align="left" rowspan="1" colspan="1">ZUFSAU</td>
<td align="left" rowspan="1" colspan="1">0.0480</td>
<td align="left" rowspan="1" colspan="1">0.1304</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">RELNIG</td>
<td align="left" rowspan="1" colspan="1">0.0530</td>
<td align="left" rowspan="1" colspan="1">0.1011</td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn id="nt105">
<label>*</label>
<p>The complexes are identified by their unique CSD codes
<xref rid="pone.0086376-Allen1" ref-type="bibr">[37]</xref>
<xref rid="pone.0086376-Allen2" ref-type="bibr">[39]</xref>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>We now proceed to the statistical validation of the model
<xref rid="pone.0086376-Freire8" ref-type="bibr">[43]</xref>
. If the parameterizations captured the essence of the coordinating bonds, then the histograms of both UME
<sub>(Ln-L)</sub>
and UME must follow gamma distribution functions since, by definition, the UMEs can only have positive values. The gamma distributions are then adjusted to reproduce the mean and variance of the UME
<sub>(Ln-L)</sub>
s, for each of the parameterized trications. Finally, the qualities of the gamma distribution fits of the data were then assessed via the one-sample nonparametric Kolmogorov-Smirnoff test
<xref rid="pone.0086376-Conover1" ref-type="bibr">[44]</xref>
. If the p-value of the test is larger than 0.05, then the gamma distribution fit is justified within a 95% interval and the use of the mean and variance of the data, as accuracy measures, is also statistically justified. Accordingly,
<xref ref-type="table" rid="pone-0086376-t005">Tables 5</xref>
and
<xref ref-type="table" rid="pone-0086376-t006">6</xref>
display the mean, variance, and p-value of the test for each of the lanthanide ions, for both the UME
<sub>(Ln-L)</sub>
s and UMEs. All p-values are substantially larger than 0.05 and, therefore, the means and variances in
<xref ref-type="table" rid="pone-0086376-t005">Tables 5</xref>
and
<xref ref-type="table" rid="pone-0086376-t006">6</xref>
can justifiably be taken as accuracy measures of the models for Dy(III), Ho(III), and Er(III).</p>
<table-wrap id="pone-0086376-t005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0086376.t005</object-id>
<label>Table 5</label>
<caption>
<title>Means and variances for the
<italic>γ</italic>
distribution fits of the UME
<sub>(Ln-L)</sub>
s computed for the
<italic>N</italic>
complexes for each lanthanide trication.</title>
</caption>
<alternatives>
<graphic id="pone-0086376-t005-5" xlink:href="pone.0086376.t005"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td colspan="5" align="left" rowspan="1">UME
<sub>(Ln-L)</sub>
s</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Lanthanide ion</td>
<td align="left" rowspan="1" colspan="1">N</td>
<td align="left" rowspan="1" colspan="1">mean (Å)</td>
<td align="left" rowspan="1" colspan="1">variance (Å
<sup>2</sup>
)</td>
<td align="left" rowspan="1" colspan="1">p-value</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Dy
<sup>3+</sup>
</td>
<td align="left" rowspan="1" colspan="1">61</td>
<td align="left" rowspan="1" colspan="1">0.0539</td>
<td align="left" rowspan="1" colspan="1">0.0032</td>
<td align="left" rowspan="1" colspan="1">0.7986</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ho
<sup>3+</sup>
</td>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1">0.0602</td>
<td align="left" rowspan="1" colspan="1">0.0069</td>
<td align="left" rowspan="1" colspan="1">0.1292</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Er
<sup>3+</sup>
</td>
<td align="left" rowspan="1" colspan="1">58</td>
<td align="left" rowspan="1" colspan="1">0.0506</td>
<td align="left" rowspan="1" colspan="1">0.0025</td>
<td align="left" rowspan="1" colspan="1">0.9082</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<table-wrap id="pone-0086376-t006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0086376.t006</object-id>
<label>Table 6</label>
<caption>
<title>Means and variances for the
<italic>γ</italic>
distribution fits for the UMEs computed for the
<italic>N</italic>
complexes for each lanthanide trication.</title>
</caption>
<alternatives>
<graphic id="pone-0086376-t006-6" xlink:href="pone.0086376.t006"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td colspan="5" align="left" rowspan="1">UMEs</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Lanthanide ion</td>
<td align="left" rowspan="1" colspan="1">N</td>
<td align="left" rowspan="1" colspan="1">mean (Å)</td>
<td align="left" rowspan="1" colspan="1">variance (Å
<sup>2</sup>
)</td>
<td align="left" rowspan="1" colspan="1">p-value</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Dy
<sup>3+</sup>
</td>
<td align="left" rowspan="1" colspan="1">61</td>
<td align="left" rowspan="1" colspan="1">0.1193</td>
<td align="left" rowspan="1" colspan="1">0.0169</td>
<td align="left" rowspan="1" colspan="1">0.1578</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ho
<sup>3+</sup>
</td>
<td align="left" rowspan="1" colspan="1">40</td>
<td align="left" rowspan="1" colspan="1">0.1225</td>
<td align="left" rowspan="1" colspan="1">0.0290</td>
<td align="left" rowspan="1" colspan="1">0.1463</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Er
<sup>3+</sup>
</td>
<td align="left" rowspan="1" colspan="1">58</td>
<td align="left" rowspan="1" colspan="1">0.1348</td>
<td align="left" rowspan="1" colspan="1">0.0228</td>
<td align="left" rowspan="1" colspan="1">0.5425</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<p>We now proceed to analyze the performance of the models with respect to specific types of distances for Dy(III), Ho(III), and Er(III).
<xref ref-type="table" rid="pone-0086376-t007">Tables 7</xref>
<xref ref-type="table" rid="pone-0086376-t009">9</xref>
and
<xref ref-type="fig" rid="pone-0086376-g001">Figures 1</xref>
<xref ref-type="fig" rid="pone-0086376-g003">3</xref>
show UMEs for all types of Ln-L distances present in the universe of Ln(III) complexes, together with the corresponding values from the previous sparkle models for comparison. It must be noted, though, that in the original sparkle model articles, we only included complexes with exclusively Ln-O and Ln-N bonds. But, in the present article, we are considering a much larger set of complexes with other types of bonds such as Ln-C, Ln-Cl, etc. Indeed, here we now may have complexes which have not only Ln-O and/or Ln-N bonds, but also other types of bonds, such as Ln-C bonds, all in the same compound. Of course, these were not included as test cases for the previous Sparkle models, but are here taken in full consideration. And that is the reason why UMEs for the Ln-O and Ln-N types of bonds in the present article tend to be different, slightly larger, when set side by side to similar Ln-O and Ln-N UMEs of the original sparkle model articles. However, not to unnecessarily crowd the present article, in the tables, we only show numbers computed using the old models, but for the new test set.</p>
<fig id="pone-0086376-g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0086376.g001</object-id>
<label>Figure 1</label>
<caption>
<title>UME
<sub>(Ln-Ln)</sub>
s obtained using the RM1 model for the lanthanides and all five versions of the Sparkle Model: Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3 and Sparkle/AM1 for all complexes of the universe set for each of the lanthanide trications: Dy(III), Ho(III) and Er(III).</title>
<p>The UMEs are calculated as the absolute value of the difference between the experimental and calculated Ln-Ln interatomic distances, summed up for all complexes, for each of the lanthanides.</p>
</caption>
<graphic xlink:href="pone.0086376.g001"></graphic>
</fig>
<fig id="pone-0086376-g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0086376.g002</object-id>
<label>Figure 2</label>
<caption>
<title>UME
<sub>(Ln-O)</sub>
s obtained using the RM1 model for the lanthanides and all five versions of the Sparkle Model: Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3 and Sparkle/AM1 for all complexes of the universe set for each of the lanthanide trications: Dy(III), Ho(III) and Er(III).</title>
<p>The UMEs are calculated as the absolute value of the difference between the experimental and calculated Ln-O interatomic distances, summed up for all complexes, for each of the lanthanides.</p>
</caption>
<graphic xlink:href="pone.0086376.g002"></graphic>
</fig>
<fig id="pone-0086376-g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0086376.g003</object-id>
<label>Figure 3</label>
<caption>
<title>UME
<sub>(Ln-N)</sub>
s obtained using the RM1 model for the lanthanides and all five versions of the Sparkle Model: Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3 and Sparkle/AM1 for all complexes of the universe set for each of the lanthanide trications: Dy(III), Ho(III) and Er(III).</title>
<p>The UMEs are calculated as the absolute value of the difference between the experimental and calculated Ln-N interatomic distances, summed up for all complexes, for each of the lanthanides.</p>
</caption>
<graphic xlink:href="pone.0086376.g003"></graphic>
</fig>
<table-wrap id="pone-0086376-t007" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0086376.t007</object-id>
<label>Table 7</label>
<caption>
<title>RM1, Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3, and Sparkle/AM1 unsigned mean errors for different types of distances of dysprosium(III) complexes.</title>
</caption>
<alternatives>
<graphic id="pone-0086376-t007-7" xlink:href="pone.0086376.t007"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Type of distances</td>
<td colspan="7" align="left" rowspan="1">unsigned mean errors for specific types of distances (Å)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">N</td>
<td align="left" rowspan="1" colspan="1">RM1</td>
<td align="left" rowspan="1" colspan="1">Sparkle/RM1</td>
<td align="left" rowspan="1" colspan="1">Sparkle/PM7</td>
<td align="left" rowspan="1" colspan="1">Sparkle/PM6</td>
<td align="left" rowspan="1" colspan="1">Sparkle/PM3</td>
<td align="left" rowspan="1" colspan="1">Sparkle/AM1</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Dy - Dy</td>
<td align="left" rowspan="1" colspan="1">16</td>
<td align="left" rowspan="1" colspan="1">0.2118</td>
<td align="left" rowspan="1" colspan="1">0.2397</td>
<td align="left" rowspan="1" colspan="1">0.5950</td>
<td align="left" rowspan="1" colspan="1">0.5025</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1784</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.2531</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Dy - O</td>
<td align="left" rowspan="1" colspan="1">283</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0637</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.0760</td>
<td align="left" rowspan="1" colspan="1">0.0692</td>
<td align="left" rowspan="1" colspan="1">0.1259</td>
<td align="left" rowspan="1" colspan="1">0.0685</td>
<td align="left" rowspan="1" colspan="1">0.0740</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Dy - N</td>
<td align="left" rowspan="1" colspan="1">105</td>
<td align="left" rowspan="1" colspan="1">0.0594</td>
<td align="left" rowspan="1" colspan="1">0.0510</td>
<td align="left" rowspan="1" colspan="1">0.2084</td>
<td align="left" rowspan="1" colspan="1">0.0992</td>
<td align="left" rowspan="1" colspan="1">0.0741</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0500</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Dy - C</td>
<td align="left" rowspan="1" colspan="1">315</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0341</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.1854</td>
<td align="left" rowspan="1" colspan="1">0.2567</td>
<td align="left" rowspan="1" colspan="1">0.4616</td>
<td align="left" rowspan="1" colspan="1">0.2346</td>
<td align="left" rowspan="1" colspan="1">0.2161</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Dy - S</td>
<td align="left" rowspan="1" colspan="1">21</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0824</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.5016</td>
<td align="left" rowspan="1" colspan="1">0.9833</td>
<td align="left" rowspan="1" colspan="1">0.5359</td>
<td align="left" rowspan="1" colspan="1">0.4996</td>
<td align="left" rowspan="1" colspan="1">0.5019</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Dy - P</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0273</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.1591</td>
<td align="left" rowspan="1" colspan="1">2.3194</td>
<td align="left" rowspan="1" colspan="1">0.3934</td>
<td align="left" rowspan="1" colspan="1">0.4205</td>
<td align="left" rowspan="1" colspan="1">0.3918</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Dy - Cl</td>
<td align="left" rowspan="1" colspan="1">20</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0525</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.2858</td>
<td align="left" rowspan="1" colspan="1">0.1757</td>
<td align="left" rowspan="1" colspan="1">0.2318</td>
<td align="left" rowspan="1" colspan="1">0.2475</td>
<td align="left" rowspan="1" colspan="1">0.2546</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Dy - Br</td>
<td align="left" rowspan="1" colspan="1">5</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0311</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.4564</td>
<td align="left" rowspan="1" colspan="1">1.3418</td>
<td align="left" rowspan="1" colspan="1">0.3986</td>
<td align="left" rowspan="1" colspan="1">0.4209</td>
<td align="left" rowspan="1" colspan="1">0.4320</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Dy - L</td>
<td align="left" rowspan="1" colspan="1">768</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0539</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.1408</td>
<td align="left" rowspan="1" colspan="1">0.2209</td>
<td align="left" rowspan="1" colspan="1">0.2846</td>
<td align="left" rowspan="1" colspan="1">0.1598</td>
<td align="left" rowspan="1" colspan="1">0.1527</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">L-L′</td>
<td align="left" rowspan="1" colspan="1">3499</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1336</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.2370</td>
<td align="left" rowspan="1" colspan="1">0.2931</td>
<td align="left" rowspan="1" colspan="1">0.3449</td>
<td align="left" rowspan="1" colspan="1">0.2433</td>
<td align="left" rowspan="1" colspan="1">0.2621</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Dy-L, Dy-Dy and L-L′</td>
<td align="left" rowspan="1" colspan="1">4267</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1193</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.2197</td>
<td align="left" rowspan="1" colspan="1">0.2801</td>
<td align="left" rowspan="1" colspan="1">0.3341</td>
<td align="left" rowspan="1" colspan="1">0.2283</td>
<td align="left" rowspan="1" colspan="1">0.2424</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<table-wrap id="pone-0086376-t008" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0086376.t008</object-id>
<label>Table 8</label>
<caption>
<title>RM1, Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3, and Sparkle/AM1 unsigned mean errors for specific types of distances for holmium(III) complexes.</title>
</caption>
<alternatives>
<graphic id="pone-0086376-t008-8" xlink:href="pone.0086376.t008"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Type of distances</td>
<td colspan="7" align="left" rowspan="1">unsigned mean errors for specific types of distances (Å)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">N</td>
<td align="left" rowspan="1" colspan="1">RM1</td>
<td align="left" rowspan="1" colspan="1">Sparkle/RM1</td>
<td align="left" rowspan="1" colspan="1">Sparkle/PM7</td>
<td align="left" rowspan="1" colspan="1">Sparkle/PM6</td>
<td align="left" rowspan="1" colspan="1">Sparkle/PM3</td>
<td align="left" rowspan="1" colspan="1">Sparkle/AM1</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Ho - Ho</td>
<td align="left" rowspan="1" colspan="1">4</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1301</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.2083</td>
<td align="left" rowspan="1" colspan="1">0.2144</td>
<td align="left" rowspan="1" colspan="1">0.2751</td>
<td align="left" rowspan="1" colspan="1">0.1958</td>
<td align="left" rowspan="1" colspan="1">0.2747</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ho - O</td>
<td align="left" rowspan="1" colspan="1">219</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0475</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.0604</td>
<td align="left" rowspan="1" colspan="1">0.0554</td>
<td align="left" rowspan="1" colspan="1">0.1021</td>
<td align="left" rowspan="1" colspan="1">0.0639</td>
<td align="left" rowspan="1" colspan="1">0.0557</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ho - N</td>
<td align="left" rowspan="1" colspan="1">58</td>
<td align="left" rowspan="1" colspan="1">0.0786</td>
<td align="left" rowspan="1" colspan="1">0.0696</td>
<td align="left" rowspan="1" colspan="1">0.1592</td>
<td align="left" rowspan="1" colspan="1">0.1732</td>
<td align="left" rowspan="1" colspan="1">0.0585</td>
<td align="left" rowspan="1" colspan="1">0.
<bold>0469</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ho - C</td>
<td align="left" rowspan="1" colspan="1">98</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0752</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.2256</td>
<td align="left" rowspan="1" colspan="1">0.4544</td>
<td align="left" rowspan="1" colspan="1">0.5380</td>
<td align="left" rowspan="1" colspan="1">0.2537</td>
<td align="left" rowspan="1" colspan="1">0.2655</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ho - Cl</td>
<td align="left" rowspan="1" colspan="1">28</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0585</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.3055</td>
<td align="left" rowspan="1" colspan="1">0.1262</td>
<td align="left" rowspan="1" colspan="1">0.2777</td>
<td align="left" rowspan="1" colspan="1">0.2480</td>
<td align="left" rowspan="1" colspan="1">0.2679</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ho - L</td>
<td align="left" rowspan="1" colspan="1">407</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0602</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.1198</td>
<td align="left" rowspan="1" colspan="1">0.1727</td>
<td align="left" rowspan="1" colspan="1">0.2310</td>
<td align="left" rowspan="1" colspan="1">0.1228</td>
<td align="left" rowspan="1" colspan="1">0.1217</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">L – L′</td>
<td align="left" rowspan="1" colspan="1">1748</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1371</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.2326</td>
<td align="left" rowspan="1" colspan="1">0.3289</td>
<td align="left" rowspan="1" colspan="1">0.3462</td>
<td align="left" rowspan="1" colspan="1">0.2324</td>
<td align="left" rowspan="1" colspan="1">0.2585</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ho-L, Ho-Ho and L-L</td>
<td align="left" rowspan="1" colspan="1">2155</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1225</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.2113</td>
<td align="left" rowspan="1" colspan="1">0.2994</td>
<td align="left" rowspan="1" colspan="1">0.3245</td>
<td align="left" rowspan="1" colspan="1">0.2117</td>
<td align="left" rowspan="1" colspan="1">0.2327</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<table-wrap id="pone-0086376-t009" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0086376.t009</object-id>
<label>Table 9</label>
<caption>
<title>RM1, Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3, and Sparkle/AM1 unsigned mean errors for specific types of distances for erbium complexes.</title>
</caption>
<alternatives>
<graphic id="pone-0086376-t009-9" xlink:href="pone.0086376.t009"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
<col align="center" span="1"></col>
</colgroup>
<thead>
<tr>
<td align="left" rowspan="1" colspan="1">Type of distances</td>
<td colspan="7" align="left" rowspan="1">unsigned mean errors for specific types of distances (Å)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"></td>
<td align="left" rowspan="1" colspan="1">N</td>
<td align="left" rowspan="1" colspan="1">RM1</td>
<td align="left" rowspan="1" colspan="1">Sparkle/RM1</td>
<td align="left" rowspan="1" colspan="1">Sparkle/PM7</td>
<td align="left" rowspan="1" colspan="1">Sparkle/PM6</td>
<td align="left" rowspan="1" colspan="1">Sparkle/PM3</td>
<td align="left" rowspan="1" colspan="1">Sparkle/AM1</td>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Er - Er</td>
<td align="left" rowspan="1" colspan="1">6</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1200</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.2639</td>
<td align="left" rowspan="1" colspan="1">0.5458</td>
<td align="left" rowspan="1" colspan="1">0.2124</td>
<td align="left" rowspan="1" colspan="1">0.2439</td>
<td align="left" rowspan="1" colspan="1">0.2626</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Er - O</td>
<td align="left" rowspan="1" colspan="1">336</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0509</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.0730</td>
<td align="left" rowspan="1" colspan="1">0.0874</td>
<td align="left" rowspan="1" colspan="1">0.1285</td>
<td align="left" rowspan="1" colspan="1">0.0657</td>
<td align="left" rowspan="1" colspan="1">0.0689</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Er - N</td>
<td align="left" rowspan="1" colspan="1">77</td>
<td align="left" rowspan="1" colspan="1">0.0594</td>
<td align="left" rowspan="1" colspan="1">0.0484</td>
<td align="left" rowspan="1" colspan="1">0.0529</td>
<td align="left" rowspan="1" colspan="1">0.0846</td>
<td align="left" rowspan="1" colspan="1">0.0551</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0434</bold>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Er - C</td>
<td align="left" rowspan="1" colspan="1">96</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0318</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.2004</td>
<td align="left" rowspan="1" colspan="1">0.4280</td>
<td align="left" rowspan="1" colspan="1">0.5474</td>
<td align="left" rowspan="1" colspan="1">0.2277</td>
<td align="left" rowspan="1" colspan="1">0.2177</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Er - S</td>
<td align="left" rowspan="1" colspan="1">12</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1088</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.4802</td>
<td align="left" rowspan="1" colspan="1">1.2501</td>
<td align="left" rowspan="1" colspan="1">0.5234</td>
<td align="left" rowspan="1" colspan="1">0.5211</td>
<td align="left" rowspan="1" colspan="1">0.5212</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Er - Cl</td>
<td align="left" rowspan="1" colspan="1">33</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0574</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.3243</td>
<td align="left" rowspan="1" colspan="1">0.3406</td>
<td align="left" rowspan="1" colspan="1">0.2753</td>
<td align="left" rowspan="1" colspan="1">0.2975</td>
<td align="left" rowspan="1" colspan="1">0.2928</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Er - Br</td>
<td align="left" rowspan="1" colspan="1">3</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0463</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.4526</td>
<td align="left" rowspan="1" colspan="1">1.5964</td>
<td align="left" rowspan="1" colspan="1">0.4475</td>
<td align="left" rowspan="1" colspan="1">0.4146</td>
<td align="left" rowspan="1" colspan="1">0.4291</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Er - L</td>
<td align="left" rowspan="1" colspan="1">563</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.0511</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.1199</td>
<td align="left" rowspan="1" colspan="1">0.1967</td>
<td align="left" rowspan="1" colspan="1">0.2136</td>
<td align="left" rowspan="1" colspan="1">0.1205</td>
<td align="left" rowspan="1" colspan="1">0.1189</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">L – L′</td>
<td align="left" rowspan="1" colspan="1">2259</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1575</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.2197</td>
<td align="left" rowspan="1" colspan="1">0.2938</td>
<td align="left" rowspan="1" colspan="1">0.3519</td>
<td align="left" rowspan="1" colspan="1">0.2076</td>
<td align="left" rowspan="1" colspan="1">0.2371</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Er-L, Er-Er and L-L′</td>
<td align="left" rowspan="1" colspan="1">2822</td>
<td align="left" rowspan="1" colspan="1">
<bold>0.1363</bold>
</td>
<td align="left" rowspan="1" colspan="1">0.2000</td>
<td align="left" rowspan="1" colspan="1">0.2746</td>
<td align="left" rowspan="1" colspan="1">0.3243</td>
<td align="left" rowspan="1" colspan="1">0.1904</td>
<td align="left" rowspan="1" colspan="1">0.2137</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<p>Dy-Dy distances in dilanthanide complexes of Dy (III), Ho (III), and Er (III) lie in the range from 3.6 Å to 6.6 Å, while lanthanide-other ligand atom distances lie on average around 2.5 Å. That is why Ln-Ln UMEs are larger than other Ln-L UMEs. The previous Sparkle Models focused on these Ln-Ln, a also on Ln-O, and Ln-N distances only. Indeed, considering only Dy complexes (
<xref ref-type="table" rid="pone-0086376-t007">Table 7</xref>
), there are 404 distances of these types, which represent 53% of all distances involving Dy(III) in its universe of complexes. The next most important types are Dy(III)-C distances, for which there are 315 of them making up 41% of the total.</p>
<p>By examining
<xref ref-type="table" rid="pone-0086376-t007">Table 7</xref>
and
<xref ref-type="fig" rid="pone-0086376-g004">Figure 4</xref>
, we can see a significant improvement in these next types of distances, with UME
<sub> (Dy-C)</sub>
s for the RM1 model for the lanthanides being 0.03 Å, whereas the corresponding average value of the sparkle models is 0.27 Å, a value 9 times larger. That alone would justify the introduction of the RM1 model for the lanthanides because, in the case of dysprosium, almost half the extant Ln-L distances are significantly more accurately described by RM1.</p>
<fig id="pone-0086376-g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0086376.g004</object-id>
<label>Figure 4</label>
<caption>
<title>UME
<sub>(Ln-C)</sub>
obtained using the RM1 model for the lanthanides and all five versions of the Sparkle Model: Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3 and Sparkle/AM1 for all complexes of the universe set for each of the lanthanide trications: Dy(III), Ho(III) and Er(III).</title>
<p>The UMEs are calculated as the absolute value of the difference between the experimental and calculated Ln-C interatomic distances, summed up for all complexes, for each of the lanthanides.</p>
</caption>
<graphic xlink:href="pone.0086376.g004"></graphic>
</fig>
<p>The situation is less dramatic but still significant for the other trications being parameterized, when Ln-C distances represent 24% of the total for Ho(III), and 17% for Er(III). The RM1 model for the lanthanides is even further justified when we compare other types of less common distances like Ln-S, Ln-Cl, and Ln-Br, because it outperforms all previous sparkle models as shown in
<xref ref-type="table" rid="pone-0086376-t007">Tables 7</xref>
<xref ref-type="table" rid="pone-0086376-t009">9</xref>
and
<xref ref-type="fig" rid="pone-0086376-g005">Figures 5</xref>
<xref ref-type="fig" rid="pone-0086376-g007">7</xref>
. In all these instances, the RM1 UMEs tend to be almost ten times smaller than the corresponding errors of all previous sparkle models.</p>
<fig id="pone-0086376-g005" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0086376.g005</object-id>
<label>Figure 5</label>
<caption>
<title>UME
<sub>(Ln-S)</sub>
obtained using the RM1 model for the lanthanides and all five versions of the Sparkle Model: Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3 and Sparkle/AM1 for all complexes of the universe set for each of the lanthanide trications: Dy(III), Ho(III) and Er(III).</title>
<p>The UMEs are calculated as the absolute value of the difference between the experimental and calculated Ln-S interatomic distances, summed up for all complexes, for each of the lanthanides. There are no Ho-S distances in the universe of Ho(III) complexes considered.</p>
</caption>
<graphic xlink:href="pone.0086376.g005"></graphic>
</fig>
<fig id="pone-0086376-g006" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0086376.g006</object-id>
<label>Figure 6</label>
<caption>
<title>UME
<sub>(Ln-Cl)</sub>
s obtained using the RM1 model for the lanthanides and all five versions of the Sparkle Model: Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3 and Sparkle/AM1 for all complexes of the universe set for each of the lanthanide trications: Dy(III), Ho(III) and Er(III).</title>
<p>The UMEs are calculated as the absolute value of the difference between the experimental and calculated Ln-Cl interatomic distances, summed up for all complexes, for each of the lanthanides.</p>
</caption>
<graphic xlink:href="pone.0086376.g006"></graphic>
</fig>
<fig id="pone-0086376-g007" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0086376.g007</object-id>
<label>Figure 7</label>
<caption>
<title>UME
<sub>(Ln-Br)</sub>
s obtained using the RM1 model for the lanthanides and all five versions of the Sparkle Model: Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3 and Sparkle/AM1 for all complexes of the universe set for each of the lanthanide trications: Dy(III), Ho(III) and Er(III).</title>
<p>The UMEs are calculated as the absolute value of the difference between the experimental and calculated Ln-Br interatomic distances, summed up for all complexes, for each of the lanthanides. The RM1 model for lanthanides UME
<sub>(Ln-Br)</sub>
bars are very small. Besides, there are no Ho-Br distances in the universe of Ho(III) complexes considered.</p>
</caption>
<graphic xlink:href="pone.0086376.g007"></graphic>
</fig>
<p>Finally, we can have an idea of the accuracy of the angles by examining the distances between any two atoms of the coordination polyhedron, the L-L′distances. For all three lanthanide trications, there was a significant reduction of these UMEs by a factor of two when compared to the corresponding UMEs for the previous sparkle models: from 0.26 Å to 0.13 Å, as can be inferred from
<xref ref-type="fig" rid="pone-0086376-g008">Figure 8</xref>
. This is indirect evidence that the angles are much better predicted in the RM1 model for the lanthanides.</p>
<fig id="pone-0086376-g008" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0086376.g008</object-id>
<label>Figure 8</label>
<caption>
<title>UME
<sub>(L-L′)</sub>
s obtained using the RM1 model for the lanthanides and all five versions of the Sparkle Model: Sparkle/RM1, Sparkle/PM7, Sparkle/PM6, Sparkle/PM3 and Sparkle/AM1 for all complexes of the universe set for each of the lanthanide trications: Dy(III), Ho(III) and Er(III).</title>
<p>The UMEs are calculated as the absolute value of the difference between the experimental and calculated interatomic distances between the coordinated atoms, L-L′, summed up for all complexes, for each of the lanthanides.</p>
</caption>
<graphic xlink:href="pone.0086376.g008"></graphic>
</fig>
</sec>
<sec id="s4">
<title>Conclusions</title>
<p>The RM1 model for the lanthanides represents a significant improvement in the theoretical semiempirical modeling of lanthanide complexes, which started with the sparkle model in 1994
<xref rid="pone.0086376-deAndrade1" ref-type="bibr">[18]</xref>
,
<xref rid="pone.0086376-deAndrade2" ref-type="bibr">[19]</xref>
which and attained maturity with the introduction of Sparkle/AM1 in 2005
<xref rid="pone.0086376-Freire2" ref-type="bibr">[23]</xref>
, and was extended to Sparkle/PM3
<xref rid="pone.0086376-Simas1" ref-type="bibr">[31]</xref>
,
<xref rid="pone.0086376-Freire5" ref-type="bibr">[32]</xref>
, Sparkle/PM6
<xref rid="pone.0086376-Freire6" ref-type="bibr">[33]</xref>
, to Sparkle/PM7
<xref rid="pone.0086376-Dutra1" ref-type="bibr">[34]</xref>
and up to Sparkle/RM1
<xref rid="pone.0086376-Filho1" ref-type="bibr">[35]</xref>
, the last two in 2013.</p>
<p>There is, however, a cost associated with the improvement. The RM1 model for the lanthanides adds nine more orbitals per lanthanide to the calculation, whereas all sparkle models add none. Thus, for a single SCF calculation of a complex of about 60 atoms, for example, an RM1 model for the lanthanides calculation takes about twice the computing time of a Sparkle/RM1 calculation. Such cost can become even weightier if the molecular structure contains more than one lanthanide ion, as is usually the case of metal-organic frameworks. Since the performance of both Sparkle/RM1 and RM1 model for the lanthanides is essentially equivalent for Ln-Ln, Ln-O, and Ln-N, the user may still benefit from the speed of the sparkle models if the structure of interest contains only these types of bonds, as it takes place in the majority of cases.</p>
<p>In conclusion, via the introduction of a set of 5 d, 6 s, and 6 p semiempirical atomic orbitals, the RM1 model for the lanthanides thus extends the Sparkle Models’ capabilities of correctly describing Ln-Ln, Ln-O, and Ln-N distances, to other types of distances, such as Ln-C, Ln-S, Ln-P, Ln-Cl, and Ln-Br, while simultaneously improving the coordinating bond angles.</p>
</sec>
<sec sec-type="supplementary-material" id="s5">
<title>Supporting Information</title>
<supplementary-material content-type="local-data" id="pone.0086376.s001">
<label>File S1</label>
<caption>
<p>
<bold>Instructions on how to run the RM1 model for the lanthanides in MOPAC12 </bold>
<xref rid="pone.0086376-Stewart2" ref-type="bibr">[
<bold>45</bold>
]</xref>
<bold>, and MOPAC sample input and output files for complexes of Dy(III), Ho(III), and Er(III).</bold>
</p>
<p>(DOC)</p>
</caption>
<media xlink:href="pone.0086376.s001.doc">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>We gratefully acknowledge the Cambridge Crystallographic Data Centre for the Cambridge Structural Database.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pone.0086376-Ishikawa1">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ishikawa</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Sugita</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Ishikawa</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Koshihara</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Kaizu</surname>
<given-names>Y</given-names>
</name>
(
<year>2003</year>
)
<article-title>Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level</article-title>
.
<source>Journal of the American Chemical Society</source>
<volume>125</volume>
:
<fpage>8694</fpage>
<lpage>8695</lpage>
<pub-id pub-id-type="pmid">12862442</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0086376-Zhang1">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Guo</surname>
<given-names>Y-N</given-names>
</name>
,
<name>
<surname>Tang</surname>
<given-names>J</given-names>
</name>
(
<year>2013</year>
)
<article-title>Recent advances in dysprosium-based single molecule magnets: Structural overview and synthetic strategies</article-title>
.
<source>Coordination Chemistry Reviews</source>
<volume>257</volume>
:
<fpage>1728</fpage>
<lpage>1763</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Ishikawa2">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ishikawa</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Mizuno</surname>
<given-names>Y</given-names>
</name>
,
<name>
<surname>Takamatsu</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Ishikawa</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Koshihara</surname>
<given-names>S-Y</given-names>
</name>
(
<year>2008</year>
)
<article-title>Effects of chemically induced contraction of a coordination polyhedron on the dynamical magnetism bis(phthalocyaninato)dysprosium, a single-4f-ionic single-molecule magnet with a Kramers ground state</article-title>
.
<source>Inorganic Chemistry</source>
<volume>47</volume>
:
<fpage>10217</fpage>
<lpage>10219</lpage>
<pub-id pub-id-type="pmid">18855382</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0086376-AlDamen1">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>AlDamen</surname>
<given-names>MA</given-names>
</name>
,
<name>
<surname>Cardona-Serra</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Clemente-Juan</surname>
<given-names>JM</given-names>
</name>
,
<name>
<surname>Coronado</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Gaita-Ariño</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
(
<year>2009</year>
)
<article-title>Mononuclear lanthanide single molecule magnets based on the polyoxometalates [Ln(W
<sub>5</sub>
O
<sub>18</sub>
)
<sub>2</sub>
]
<sup>9−</sup>
and [Ln(β
<sub>2</sub>
-SiW
<sub>11</sub>
O
<sub>39</sub>
)
<sub>2</sub>
]
<sup>13−</sup>
(Ln
<sup>III</sup>
 = Tb, Dy, Ho, Er, Tm, and Yb)</article-title>
.
<source>Inorganic Chemistry</source>
<volume>48</volume>
:
<fpage>3467</fpage>
<lpage>3479</lpage>
<pub-id pub-id-type="pmid">19361246</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0086376-Lin1">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lin</surname>
<given-names>P-H</given-names>
</name>
,
<name>
<surname>Burchell</surname>
<given-names>TJ</given-names>
</name>
,
<name>
<surname>Ungur</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Chibotaru</surname>
<given-names>LF</given-names>
</name>
,
<name>
<surname>Wernsdorfer</surname>
<given-names>W</given-names>
</name>
,
<name>
<surname>et</surname>
<given-names>al</given-names>
</name>
(
<year>2009</year>
)
<article-title>A polynuclear lanthanide single-molecule magnet with a record anisotropic barrier</article-title>
.
<source>Angewandte Chemie International Edition</source>
<volume>48</volume>
:
<fpage>9489</fpage>
<lpage>9492</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Rinehart1">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rinehart</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Fang</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Evans</surname>
<given-names>WJ</given-names>
</name>
,
<name>
<surname>Long</surname>
<given-names>JR</given-names>
</name>
(
<year>2011</year>
)
<article-title>Strong exchange and magnetic blocking in N2 32-radical-bridged lanthanide complexes</article-title>
.
<source>Nature Chemistry</source>
<volume>3</volume>
:
<fpage>538</fpage>
<lpage>542</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Norek1">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Norek</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Peters</surname>
<given-names>JA</given-names>
</name>
(
<year>2011</year>
)
<article-title>MRI contrast agents based on dysprosium or holmium</article-title>
.
<source>Progress in Nuclear Magnetic Resonance Spectroscopy</source>
<volume>59</volume>
:
<fpage>64</fpage>
<lpage>82</lpage>
<pub-id pub-id-type="pmid">21600356</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0086376-Nilsson1">
<label>8</label>
<mixed-citation publication-type="journal">
<name>
<surname>Nilsson</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Wikstrom</surname>
<given-names>G</given-names>
</name>
,
<name>
<surname>Ericsson</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Wikström</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Øksendal</surname>
<given-names>A</given-names>
</name>
,
<etal>et al</etal>
(
<year>1996</year>
)
<article-title>Double-contrast MR imaging of reperfused porcine myocardial infarction. An experimental study using Gd-DTAA and Dy-DTPA-BMA</article-title>
.
<source>Acta Radiologica</source>
<volume>37</volume>
:
<fpage>27</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="pmid">8611319</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0086376-Wikstrm1">
<label>9</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wikström</surname>
<given-names>M</given-names>
</name>
(
<year>1992</year>
)
<article-title>MR imaging of experimental myocardial infarction. Acta radiologica</article-title>
.
<source>Supplementum</source>
<volume>379</volume>
:
<fpage>1</fpage>
<lpage>30</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Bayouth1">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bayouth</surname>
<given-names>JE</given-names>
</name>
,
<name>
<surname>Macey</surname>
<given-names>DJ</given-names>
</name>
,
<name>
<surname>Kasi</surname>
<given-names>LP</given-names>
</name>
,
<name>
<surname>Garlich</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>McMillan</surname>
<given-names>K</given-names>
</name>
,
<etal>et al</etal>
(
<year>1995</year>
)
<article-title>Pharmacokinetics, dosimetry and toxicity of Holmium-166-DOTMP for bone marrow ablation in multiple myeloma</article-title>
.
<source>Journal of Nuclear Medicine</source>
<volume>36</volume>
:
<fpage>730</fpage>
<lpage>737</lpage>
<pub-id pub-id-type="pmid">7738641</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0086376-Sun1">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Sun</surname>
<given-names>L-N</given-names>
</name>
,
<name>
<surname>Zhang</surname>
<given-names>H-J</given-names>
</name>
,
<name>
<surname>Fu</surname>
<given-names>L-S</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>F-Y</given-names>
</name>
,
<name>
<surname>Meng</surname>
<given-names>Q-G</given-names>
</name>
,
<etal>et al</etal>
(
<year>2005</year>
)
<article-title>A New Sol-Gel aterial Doped with an Erbium Complex and Its Potential optical-Amplification Application</article-title>
.
<source>Advanced Functinal Materials</source>
<volume>15</volume>
:
<fpage>1041</fpage>
<lpage>1048</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Park1">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Park</surname>
<given-names>OH</given-names>
</name>
,
<name>
<surname>Seo</surname>
<given-names>SY</given-names>
</name>
,
<name>
<surname>Jung</surname>
<given-names>JI</given-names>
</name>
,
<name>
<surname>Bae</surname>
<given-names>JY</given-names>
</name>
(
<year>2003</year>
)
<article-title>Photoluminescence of mesoporous silica films impregnated with an erbium complex</article-title>
.
<source>Journal of Materials Research</source>
<volume>18</volume>
:
<fpage>1039</fpage>
<lpage>1042</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Peter1">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Peter</surname>
<given-names>E</given-names>
</name>
(
<year>2003</year>
)
<article-title>Cheminformatics Analysis of Organic Substituents: Identification of the Most Common Substituents, Calculation of Substituent Properties, and Automatic Identification of Drug-like Bioisosteric Groups</article-title>
.
<source>Journal of Chemical Information and Computer Sciences</source>
<volume>43</volume>
:
<fpage>374</fpage>
<lpage>380</lpage>
<pub-id pub-id-type="pmid">12653499</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0086376-Dolg1">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dolg</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Cao</surname>
<given-names>X</given-names>
</name>
(
<year>2012</year>
)
<article-title>Relativistic Pseudopotentials: Their Development and Scope of Applications</article-title>
.
<source>Chemical Reviews</source>
<volume>112</volume>
:
<fpage>403</fpage>
<lpage>480</lpage>
<pub-id pub-id-type="pmid">21913696</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0086376-Dolg2">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dolg</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Stoll</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Preuss</surname>
<given-names>H</given-names>
</name>
(
<year>1989</year>
)
<article-title>Energy-adjusted Abinitio Pseudopotentials for the Rare-earth Elements</article-title>
.
<source>Journal of Chemical Physics</source>
<volume>90</volume>
:
<fpage>1730</fpage>
<lpage>1734</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Dolg3">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dolg</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Stoll</surname>
<given-names>H</given-names>
</name>
,
<name>
<surname>Savin</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Preuss</surname>
<given-names>H</given-names>
</name>
(
<year>1989</year>
)
<article-title>Energy-Adjusted Pseudopotentials for the Rare-earth Elements</article-title>
.
<source>Theoretica Chimica Acta</source>
<volume>75</volume>
:
<fpage>173</fpage>
<lpage>194</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Freire1">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Freire</surname>
<given-names>RO</given-names>
</name>
,
<name>
<surname>Rocha</surname>
<given-names>GB</given-names>
</name>
,
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
(
<year>2006</year>
)
<article-title>Lanthanide Complex Coordination Polyhedron Geometry Prediction Accuracies of Ab initio Effective Core Potential Calculations</article-title>
.
<source>Journal of Molecular Modeling</source>
<volume>12</volume>
:
<fpage>373</fpage>
<lpage>389</lpage>
<pub-id pub-id-type="pmid">16465508</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0086376-deAndrade1">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>de Andrade</surname>
<given-names>AVM</given-names>
</name>
,
<name>
<surname>da Costa Jr</surname>
<given-names>NB</given-names>
</name>
,
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>de Sá</surname>
<given-names>GF</given-names>
</name>
(
<year>1994</year>
)
<article-title>Sparkle model for the quantum chemical AM1 calculation of europium complexes</article-title>
.
<source>Chemical Physics Letters</source>
<volume>227</volume>
:
<fpage>349</fpage>
<lpage>353</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-deAndrade2">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>de Andrade</surname>
<given-names>AVM</given-names>
</name>
,
<name>
<surname>da Costa Jr</surname>
<given-names>NB</given-names>
</name>
,
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>de Sá</surname>
<given-names>GF</given-names>
</name>
(
<year>1995</year>
)
<article-title>Sparkle model for the quantum chemical AM1 calculation of europium complexes of coordination number nine</article-title>
.
<source>Journal of Alloys and Compounds</source>
<volume>225</volume>
:
<fpage>55</fpage>
<lpage>59</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Dewar1">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dewar</surname>
<given-names>MJS</given-names>
</name>
,
<name>
<surname>Zoebisch</surname>
<given-names>EG</given-names>
</name>
,
<name>
<surname>Healy</surname>
<given-names>EF</given-names>
</name>
,
<name>
<surname>Stewart</surname>
<given-names>JJP</given-names>
</name>
(
<year>1985</year>
)
<article-title>AM1: A New General Purpose Quantum Mechanical Molecular Model</article-title>
.
<source>Journal of the American Chemical Society</source>
<volume>107</volume>
:
<fpage>3902</fpage>
<lpage>3909</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Andrade1">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>Andrade</surname>
<given-names>AVM</given-names>
</name>
,
<name>
<surname>Longo</surname>
<given-names>RL</given-names>
</name>
,
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>de Sá</surname>
<given-names>GF</given-names>
</name>
(
<year>1996</year>
)
<article-title>Theoretical Model for the Prediction of Electronic Spectra of Lanthanide Complexes</article-title>
.
<source>Journal of the Chemical Society Faraday Transactions</source>
<volume>92</volume>
:
<fpage>1835</fpage>
<lpage>1839</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Rocha1">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rocha</surname>
<given-names>GB</given-names>
</name>
,
<name>
<surname>Freire</surname>
<given-names>RO</given-names>
</name>
,
<name>
<surname>da Costa</surname>
<given-names>NB</given-names>
</name>
,
<name>
<surname>de</surname>
<given-names>Sa</given-names>
</name>
,
<name>
<surname>GF, Simas</surname>
<given-names>AM</given-names>
</name>
(
<year>2004</year>
)
<article-title>Sparkle Model for AM1 Calculation of Lanthanide Complexes: Improved Parameters for Europium</article-title>
.
<source>Inorganic Chemistry</source>
<volume>43</volume>
:
<fpage>2346</fpage>
<lpage>2354</lpage>
<pub-id pub-id-type="pmid">15046511</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0086376-Freire2">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Freire</surname>
<given-names>RO</given-names>
</name>
,
<name>
<surname>Rocha</surname>
<given-names>GB</given-names>
</name>
,
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
(
<year>2005</year>
)
<article-title>Sparkle Model for the Calculation of Lanthanide Complexes: AM1 Parameters for Eu(III), Gd(III), and Tb(III)</article-title>
.
<source>Inorganic Chemistry</source>
<volume>44</volume>
:
<fpage>3299</fpage>
<lpage>3310</lpage>
<pub-id pub-id-type="pmid">15847440</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0086376-daCosta1">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>da Costa</surname>
<given-names>NB</given-names>
</name>
,
<name>
<surname>Freire</surname>
<given-names>RO</given-names>
</name>
,
<name>
<surname>Rocha</surname>
<given-names>GB</given-names>
</name>
,
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
(
<year>2005</year>
)
<article-title>Sparkle Model for the AM1 Calculation of Dysprosium (III) Complexes</article-title>
.
<source>Inorganic Chemistry Communication</source>
<volume>8</volume>
:
<fpage>831</fpage>
<lpage>835</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-daCosta2">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>da Costa</surname>
<given-names>NB</given-names>
</name>
,
<name>
<surname>Freire</surname>
<given-names>RO</given-names>
</name>
,
<name>
<surname>Rocha</surname>
<given-names>GB</given-names>
</name>
,
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
(
<year>2005</year>
)
<article-title>Sparkle/AM1 Modeling of Holmium (III) Complexes</article-title>
.
<source>Polyhedron</source>
<volume>24</volume>
:
<fpage>3046</fpage>
<lpage>3051</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Freire3">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Freire</surname>
<given-names>RO</given-names>
</name>
,
<name>
<surname>do Monte</surname>
<given-names>EV</given-names>
</name>
,
<name>
<surname>Rocha</surname>
<given-names>GB</given-names>
</name>
,
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
(
<year>2006</year>
)
<article-title>AM1 Sparkle Modeling of Er(III) and Ce(III) Coordination Compounds</article-title>
.
<source>Journal of Organometallic Chemistry</source>
<volume>691</volume>
:
<fpage>2584</fpage>
<lpage>2588</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Stewart1">
<label>27</label>
<mixed-citation publication-type="other">Stewart JJP (2007) MOPAC2007, Stewart Computational Chemistry: Colorado Springs, USA.</mixed-citation>
</ref>
<ref id="pone.0086376-Faustino1">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Faustino</surname>
<given-names>WM</given-names>
</name>
,
<name>
<surname>Rocha</surname>
<given-names>GB</given-names>
</name>
,
<name>
<surname>Silva</surname>
<given-names>FRGE</given-names>
</name>
,
<name>
<surname>Malta</surname>
<given-names>OL</given-names>
</name>
,
<name>
<surname>de Sá</surname>
<given-names>GF</given-names>
</name>
,
<etal>et al</etal>
(
<year>2000</year>
)
<article-title>Design of Ligands to Obtain Lanthanide Ion Complexes Displaying High Quantum Efficiencies o Luminescence using the Sparkle Model</article-title>
.
<source>Journal of Molecular Structure - Theochem</source>
<volume>527</volume>
:
<fpage>245</fpage>
<lpage>251</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Freire4">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Freire</surname>
<given-names>RO</given-names>
</name>
,
<name>
<surname>Rocha</surname>
<given-names>GB</given-names>
</name>
,
<name>
<surname>Albuquerque</surname>
<given-names>RQ</given-names>
</name>
,
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
(
<year>2005</year>
)
<article-title>Efficacy of the Semiempirical Sparkle Model as Compared to ECP Ab-initio Calculations for the Prediction of Ligand Field Parameters of Europium(III) Complexes</article-title>
.
<source>Journal of Luminescence</source>
<volume>111</volume>
:
<fpage>81</fpage>
<lpage>87</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Faustino2">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Faustino</surname>
<given-names>WM</given-names>
</name>
,
<name>
<surname>Malta</surname>
<given-names>OL</given-names>
</name>
,
<name>
<surname>Teotonio</surname>
<given-names>EES</given-names>
</name>
,
<name>
<surname>Brito</surname>
<given-names>HF</given-names>
</name>
,
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
,
<etal>et al</etal>
(
<year>2006</year>
)
<article-title>The Journal of Physical Chemistry A</article-title>
.
<volume>110</volume>
:
<fpage>2510</fpage>
<lpage>2516</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Simas1">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Freire</surname>
<given-names>RO</given-names>
</name>
,
<name>
<surname>Rocha</surname>
<given-names>GB</given-names>
</name>
(
<year>2008</year>
)
<article-title>Lanthanide Coordination Compounds Modeling: Sparkle/PM3 Parameters for Dysprosium (III), Holmium (III) and Erbium (III)</article-title>
.
<source>Journal of Organometallic Chemistry</source>
<volume>693</volume>
:
<fpage>1952</fpage>
<lpage>1956</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Freire5">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Freire</surname>
<given-names>RO</given-names>
</name>
,
<name>
<surname>Rocha</surname>
<given-names>GB</given-names>
</name>
,
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
(
<year>2009</year>
)
<article-title>Sparkle/PM3 for the Modeling of Europium(III), Gadolinium(III), and Terbium(III) Complexes</article-title>
.
<source>Journal of the Brazilian Chemical Society</source>
<volume>20</volume>
:
<fpage>1638</fpage>
<lpage>1645</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Freire6">
<label>33</label>
<mixed-citation publication-type="journal">
<name>
<surname>Freire</surname>
<given-names>RO</given-names>
</name>
,
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
(
<year>2010</year>
)
<article-title>Sparkle/PM6 Parameters for all Lanthanide Trications from La(III) to Lu(III)</article-title>
.
<source>Journal of Chemical Theory and Computation</source>
<volume>6</volume>
:
<fpage>2019</fpage>
<lpage>2023</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Dutra1">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dutra</surname>
<given-names>JDL</given-names>
</name>
,
<name>
<surname>Filho</surname>
<given-names>MAM</given-names>
</name>
,
<name>
<surname>Rocha</surname>
<given-names>GB</given-names>
</name>
,
<name>
<surname>Freire</surname>
<given-names>RO</given-names>
</name>
,
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
,
<etal>et al</etal>
(
<year>2013</year>
)
<article-title>Sparkle/PM7 Lanthanide Parameters for the Modeling of Complexes and Materials</article-title>
.
<source>Journal of Chemical Theory and Computation</source>
<volume>9</volume>
:
<fpage>3333</fpage>
<lpage>3341</lpage>
<pub-id pub-id-type="pmid">24163641</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0086376-Filho1">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Filho</surname>
<given-names>MAM</given-names>
</name>
,
<name>
<surname>Dutra</surname>
<given-names>JDL</given-names>
</name>
,
<name>
<surname>Rocha</surname>
<given-names>GB</given-names>
</name>
,
<name>
<surname>Freire</surname>
<given-names>RO</given-names>
</name>
,
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
(
<year>2013</year>
)
<article-title>Sparkle/RM1 parameters for the semiempirical quantum chemical calculation of lanthanide complexes</article-title>
.
<source>RSC Advances</source>
<volume>3</volume>
:
<fpage>16747</fpage>
<lpage>16755</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Rocha2">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rocha</surname>
<given-names>GB</given-names>
</name>
,
<name>
<surname>Freire</surname>
<given-names>RO</given-names>
</name>
,
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
,
<name>
<surname>Stewart</surname>
<given-names>JJP</given-names>
</name>
(
<year>2006</year>
)
<article-title>RM1: A Reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. Journal of Computational Chemistry</article-title>
.
<volume>27</volume>
:
<fpage>1101</fpage>
<lpage>1111</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Allen1">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Allen</surname>
<given-names>FH</given-names>
</name>
(
<year>2002</year>
)
<article-title>The Cambridge Structural Database: A Quarter of a Million Crystal Structures and Rising</article-title>
.
<source>Acta Crystallographica Section B</source>
<volume>58</volume>
:
<fpage>380</fpage>
<lpage>388</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Orpen1">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Orpen</surname>
<given-names>G</given-names>
</name>
(
<year>2002</year>
)
<article-title>Applications of the Cambridge Structural Database to Molecular Inorganic Chemistry</article-title>
.
<source>Acta Crystallographica Section B</source>
<volume>58</volume>
:
<fpage>398</fpage>
<lpage>406</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Allen2">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Allen</surname>
<given-names>FH</given-names>
</name>
,
<name>
<surname>Motherwell</surname>
<given-names>WDS</given-names>
</name>
(
<year>2002</year>
)
<article-title>Applications of the Cambridge Structural Database in Organic Chemistry and Crystal Chemistry</article-title>
.
<source>Acta Crystallographica Section B</source>
<volume>58</volume>
:
<fpage>407</fpage>
<lpage>422</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Kaufman1">
<label>40</label>
<mixed-citation publication-type="other">Kaufman L, Rousseeuw PJ (2009) Finding Groups in Data: An Introduction to Cluster Analysis, Eds. John Wiley & Sons: New Jersey.</mixed-citation>
</ref>
<ref id="pone.0086376-Tsallis1">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Tsallis</surname>
<given-names>C</given-names>
</name>
(
<year>1988</year>
)
<article-title>Possible generalization of Boltzmann-Gibbs statistics</article-title>
.
<source>Journal of Statistical Physics</source>
<volume>52</volume>
:
<fpage>479</fpage>
<lpage>487</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Freire7">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Freire</surname>
<given-names>RO</given-names>
</name>
,
<name>
<surname>Rocha</surname>
<given-names>GB</given-names>
</name>
,
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
(
<year>2005</year>
)
<article-title>Modeling Lanthanide Complexes: Sparkle/AM1 Parameters for Ytterbium (III)</article-title>
.
<source>Journal of Computational Chemistry</source>
<volume>26</volume>
:
<fpage>1524</fpage>
<lpage>1528</lpage>
<pub-id pub-id-type="pmid">16108055</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0086376-Freire8">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Freire</surname>
<given-names>RO</given-names>
</name>
,
<name>
<surname>Rocha</surname>
<given-names>GB</given-names>
</name>
,
<name>
<surname>Simas</surname>
<given-names>AM</given-names>
</name>
(
<year>2006</year>
)
<article-title>Modeling Rare Earth Complexes: Sparkle/PM3 Parameters for Thulium(III)</article-title>
.
<source>Chemical Physics Letters</source>
<volume>425</volume>
:
<fpage>138</fpage>
<lpage>141</lpage>
</mixed-citation>
</ref>
<ref id="pone.0086376-Conover1">
<label>44</label>
<mixed-citation publication-type="other">Conover WJ (1999) Statistics of the Kolmogorov-Smirnov type. In Practical nonparametric statistics, 3rd ed.; Wiley, B., II, Ed.; John Wiley & Sons: New York, U.S.A 428–473.</mixed-citation>
</ref>
<ref id="pone.0086376-Stewart2">
<label>45</label>
<mixed-citation publication-type="other">Stewart JJP (2012) MOPAC2012, Stewart Computational Chemistry, Colorado Springs, CO, USA. Available:
<ext-link ext-link-type="uri" xlink:href="http://OpenMOPAC.net">http://OpenMOPAC.net</ext-link>
Accessed 2010 Oct 6.</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0003899 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0003899 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024