Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0003200 ( Pmc/Corpus ); précédent : 0003199; suivant : 0003201 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Maxwell’s Equations-based Dynamic Laser-Tissue Interaction Model</title>
<author>
<name sortKey="Ahmed, Elharith M" sort="Ahmed, Elharith M" uniqKey="Ahmed E" first="Elharith M." last="Ahmed">Elharith M. Ahmed</name>
<affiliation>
<nlm:aff id="A1">Department of Physics & Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">TASC Inc., 4141 Petroleum Road, Ft. Sam Houston, Texas 78234-2644, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barrera, Frederick J" sort="Barrera, Frederick J" uniqKey="Barrera F" first="Frederick J." last="Barrera">Frederick J. Barrera</name>
<affiliation>
<nlm:aff id="A1">Department of Physics & Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Early, Edward A" sort="Early, Edward A" uniqKey="Early E" first="Edward A." last="Early">Edward A. Early</name>
<affiliation>
<nlm:aff id="A2">TASC Inc., 4141 Petroleum Road, Ft. Sam Houston, Texas 78234-2644, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Denton, Michael L" sort="Denton, Michael L" uniqKey="Denton M" first="Michael L." last="Denton">Michael L. Denton</name>
<affiliation>
<nlm:aff id="A2">TASC Inc., 4141 Petroleum Road, Ft. Sam Houston, Texas 78234-2644, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Clark, C D" sort="Clark, C D" uniqKey="Clark C" first="C. D." last="Clark">C. D. Clark</name>
<affiliation>
<nlm:aff id="A3">Department of Physics, Fort Hays State University, 600 Park Street, Hays, Kansas 67601-4099</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sardar, Dhiraj K" sort="Sardar, Dhiraj K" uniqKey="Sardar D" first="Dhiraj K." last="Sardar">Dhiraj K. Sardar</name>
<affiliation>
<nlm:aff id="A1">Department of Physics & Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24290944</idno>
<idno type="pmc">4437579</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4437579</idno>
<idno type="RBID">PMC:4437579</idno>
<idno type="doi">10.1016/j.compbiomed.2013.09.005</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000320</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000320</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Maxwell’s Equations-based Dynamic Laser-Tissue Interaction Model</title>
<author>
<name sortKey="Ahmed, Elharith M" sort="Ahmed, Elharith M" uniqKey="Ahmed E" first="Elharith M." last="Ahmed">Elharith M. Ahmed</name>
<affiliation>
<nlm:aff id="A1">Department of Physics & Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="A2">TASC Inc., 4141 Petroleum Road, Ft. Sam Houston, Texas 78234-2644, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Barrera, Frederick J" sort="Barrera, Frederick J" uniqKey="Barrera F" first="Frederick J." last="Barrera">Frederick J. Barrera</name>
<affiliation>
<nlm:aff id="A1">Department of Physics & Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Early, Edward A" sort="Early, Edward A" uniqKey="Early E" first="Edward A." last="Early">Edward A. Early</name>
<affiliation>
<nlm:aff id="A2">TASC Inc., 4141 Petroleum Road, Ft. Sam Houston, Texas 78234-2644, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Denton, Michael L" sort="Denton, Michael L" uniqKey="Denton M" first="Michael L." last="Denton">Michael L. Denton</name>
<affiliation>
<nlm:aff id="A2">TASC Inc., 4141 Petroleum Road, Ft. Sam Houston, Texas 78234-2644, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Clark, C D" sort="Clark, C D" uniqKey="Clark C" first="C. D." last="Clark">C. D. Clark</name>
<affiliation>
<nlm:aff id="A3">Department of Physics, Fort Hays State University, 600 Park Street, Hays, Kansas 67601-4099</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sardar, Dhiraj K" sort="Sardar, Dhiraj K" uniqKey="Sardar D" first="Dhiraj K." last="Sardar">Dhiraj K. Sardar</name>
<affiliation>
<nlm:aff id="A1">Department of Physics & Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Computers in biology and medicine</title>
<idno type="ISSN">0010-4825</idno>
<idno type="eISSN">1879-0534</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Since its invention in the early 1960’s, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the dynamic changes in the spatial and temporal temperature rise during laser exposure to biological tissues. Unlike conventional models, the new approach is grounded on rigorous electromagnetic theory that accounts for wave interference, polarization, and nonlinearity in propagation using a Maxwell’s equation-based technique.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">1250250</journal-id>
<journal-id journal-id-type="pubmed-jr-id">3132</journal-id>
<journal-id journal-id-type="nlm-ta">Comput Biol Med</journal-id>
<journal-id journal-id-type="iso-abbrev">Comput. Biol. Med.</journal-id>
<journal-title-group>
<journal-title>Computers in biology and medicine</journal-title>
</journal-title-group>
<issn pub-type="ppub">0010-4825</issn>
<issn pub-type="epub">1879-0534</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24290944</article-id>
<article-id pub-id-type="pmc">4437579</article-id>
<article-id pub-id-type="doi">10.1016/j.compbiomed.2013.09.005</article-id>
<article-id pub-id-type="manuscript">NIHMS526664</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Maxwell’s Equations-based Dynamic Laser-Tissue Interaction Model</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Ahmed</surname>
<given-names>Elharith M.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Barrera</surname>
<given-names>Frederick J.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Early</surname>
<given-names>Edward A.</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Denton</surname>
<given-names>Michael L.</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Clark</surname>
<given-names>C. D.</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sardar</surname>
<given-names>Dhiraj K.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref rid="FN1" ref-type="author-notes">*</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Department of Physics & Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA</aff>
<aff id="A2">
<label>2</label>
TASC Inc., 4141 Petroleum Road, Ft. Sam Houston, Texas 78234-2644, USA</aff>
<aff id="A3">
<label>3</label>
Department of Physics, Fort Hays State University, 600 Park Street, Hays, Kansas 67601-4099</aff>
<author-notes>
<corresp id="FN1">
<label>*</label>
corresponding author:
<email>Dhiraj.Sardar@utsa.edu</email>
, Tel: (210)458-5462, Fax:(210) 458-4919</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>7</day>
<month>6</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>21</day>
<month>9</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="ppub">
<month>12</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>19</day>
<month>5</month>
<year>2015</year>
</pub-date>
<volume>43</volume>
<issue>12</issue>
<fpage>2278</fpage>
<lpage>2286</lpage>
<pmc-comment>elocation-id from pubmed: 10.1016/j.compbiomed.2013.09.005</pmc-comment>
<permissions>
<copyright-statement>© 2013 Elsevier Ltd. All rights reserved.</copyright-statement>
<copyright-year>2013</copyright-year>
</permissions>
<abstract>
<p id="P1">Since its invention in the early 1960’s, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the dynamic changes in the spatial and temporal temperature rise during laser exposure to biological tissues. Unlike conventional models, the new approach is grounded on rigorous electromagnetic theory that accounts for wave interference, polarization, and nonlinearity in propagation using a Maxwell’s equation-based technique.</p>
</abstract>
<kwd-group>
<kwd>finite element</kwd>
<kwd>laser-tissue interaction</kwd>
<kwd>photoacoustic</kwd>
<kwd>laser damage</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0003200 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0003200 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024