Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000189 ( Pmc/Corpus ); précédent : 0001889; suivant : 0001900 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Attenuation of N2 amplitude of laser-evoked potentials by theta burst stimulation of primary somatosensory cortex</title>
<author>
<name sortKey="Poreisz, Csaba" sort="Poreisz, Csaba" uniqKey="Poreisz C" first="Csaba" last="Poreisz">Csaba Poreisz</name>
<affiliation>
<nlm:aff id="Aff1">Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Antal, Andrea" sort="Antal, Andrea" uniqKey="Antal A" first="Andrea" last="Antal">Andrea Antal</name>
<affiliation>
<nlm:aff id="Aff1">Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Boros, Klara" sort="Boros, Klara" uniqKey="Boros K" first="Klára" last="Boros">Klára Boros</name>
<affiliation>
<nlm:aff id="Aff1">Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brepohl, Nadine" sort="Brepohl, Nadine" uniqKey="Brepohl N" first="Nadine" last="Brepohl">Nadine Brepohl</name>
<affiliation>
<nlm:aff id="Aff1">Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Csifcsak, Gabor" sort="Csifcsak, Gabor" uniqKey="Csifcsak G" first="Gábor" last="Csifcsák">Gábor Csifcsák</name>
<affiliation>
<nlm:aff id="Aff1">Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Department of Psychiatry, University of Szeged, Semmelweis u. 6, 6725 Szeged, Hungary</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Paulus, Walter" sort="Paulus, Walter" uniqKey="Paulus W" first="Walter" last="Paulus">Walter Paulus</name>
<affiliation>
<nlm:aff id="Aff1">Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">18043910</idno>
<idno type="pmc">2248215</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248215</idno>
<idno type="RBID">PMC:2248215</idno>
<idno type="doi">10.1007/s00221-007-1188-5</idno>
<date when="2007">2007</date>
<idno type="wicri:Area/Pmc/Corpus">000189</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000189</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Attenuation of N2 amplitude of laser-evoked potentials by theta burst stimulation of primary somatosensory cortex</title>
<author>
<name sortKey="Poreisz, Csaba" sort="Poreisz, Csaba" uniqKey="Poreisz C" first="Csaba" last="Poreisz">Csaba Poreisz</name>
<affiliation>
<nlm:aff id="Aff1">Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Antal, Andrea" sort="Antal, Andrea" uniqKey="Antal A" first="Andrea" last="Antal">Andrea Antal</name>
<affiliation>
<nlm:aff id="Aff1">Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Boros, Klara" sort="Boros, Klara" uniqKey="Boros K" first="Klára" last="Boros">Klára Boros</name>
<affiliation>
<nlm:aff id="Aff1">Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Brepohl, Nadine" sort="Brepohl, Nadine" uniqKey="Brepohl N" first="Nadine" last="Brepohl">Nadine Brepohl</name>
<affiliation>
<nlm:aff id="Aff1">Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Csifcsak, Gabor" sort="Csifcsak, Gabor" uniqKey="Csifcsak G" first="Gábor" last="Csifcsák">Gábor Csifcsák</name>
<affiliation>
<nlm:aff id="Aff1">Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Department of Psychiatry, University of Szeged, Semmelweis u. 6, 6725 Szeged, Hungary</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Paulus, Walter" sort="Paulus, Walter" uniqKey="Paulus W" first="Walter" last="Paulus">Walter Paulus</name>
<affiliation>
<nlm:aff id="Aff1">Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale</title>
<idno type="ISSN">0014-4819</idno>
<idno type="eISSN">1432-1106</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Theta burst stimulation (TBS) is a special repetitive transcranial magnetic stimulation (rTMS) paradigm, where bursts of low-intensity stimuli are applied in the theta frequency. The aim of this study was to investigate the effect of neuronavigated TBS over primary somatosensory cortex (SI) on laser-evoked potentials (LEPs) and acute pain perception induced with Tm : YAG laser stimulation. The amplitude changes of the N1, N2, and P2 components of LEPs and related subjective pain rating scores of 12 healthy subjects were analyzed prior to and following continuous TBS (cTBS), intermittent TBS (iTBS), intermediate TBS (imTBS), and sham stimulation. Our results demonstrate that all active TBS paradigms significantly diminished the amplitude of the N2 component, when the hand contralateral to the site of TBS was laser-stimulated. Sham stimulation condition had no significant effect. The subjective pain perception also decreased during the experimental sessions, but did not differ significantly from the sham stimulation condition. The main finding of our study is that TBS over SI diminished the amplitude of the N2 component evoked from the contralateral side without any significant analgesic effects. Furthermore, imTBS produced responses similar to those observed by other forms of TBS induced excitability changes in the SI.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Exp Brain Res</journal-id>
<journal-title>Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale</journal-title>
<issn pub-type="ppub">0014-4819</issn>
<issn pub-type="epub">1432-1106</issn>
<publisher>
<publisher-name>Springer-Verlag</publisher-name>
<publisher-loc>Berlin/Heidelberg</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">18043910</article-id>
<article-id pub-id-type="pmc">2248215</article-id>
<article-id pub-id-type="publisher-id">1188</article-id>
<article-id pub-id-type="doi">10.1007/s00221-007-1188-5</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Attenuation of N2 amplitude of laser-evoked potentials by theta burst stimulation of primary somatosensory cortex</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Poreisz</surname>
<given-names>Csaba</given-names>
</name>
<address>
<phone>+49-551-3912310</phone>
<fax>+49-551-398126 </fax>
<email>csaba.poreisz@med.uni-goettingen.de</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Antal</surname>
<given-names>Andrea</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Boros</surname>
<given-names>Klára</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Brepohl</surname>
<given-names>Nadine</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Csifcsák</surname>
<given-names>Gábor</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Paulus</surname>
<given-names>Walter</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
Department of Clinical Neurophysiology, Georg-August University of Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany</aff>
<aff id="Aff2">
<label>2</label>
Department of Psychiatry, University of Szeged, Semmelweis u. 6, 6725 Szeged, Hungary</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>28</day>
<month>11</month>
<year>2007</year>
</pub-date>
<pub-date pub-type="ppub">
<month>3</month>
<year>2008</year>
</pub-date>
<volume>185</volume>
<issue>4</issue>
<fpage>611</fpage>
<lpage>621</lpage>
<history>
<date date-type="received">
<day>16</day>
<month>8</month>
<year>2007</year>
</date>
<date date-type="accepted">
<day>17</day>
<month>10</month>
<year>2007</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2007</copyright-statement>
</permissions>
<abstract>
<p>Theta burst stimulation (TBS) is a special repetitive transcranial magnetic stimulation (rTMS) paradigm, where bursts of low-intensity stimuli are applied in the theta frequency. The aim of this study was to investigate the effect of neuronavigated TBS over primary somatosensory cortex (SI) on laser-evoked potentials (LEPs) and acute pain perception induced with Tm : YAG laser stimulation. The amplitude changes of the N1, N2, and P2 components of LEPs and related subjective pain rating scores of 12 healthy subjects were analyzed prior to and following continuous TBS (cTBS), intermittent TBS (iTBS), intermediate TBS (imTBS), and sham stimulation. Our results demonstrate that all active TBS paradigms significantly diminished the amplitude of the N2 component, when the hand contralateral to the site of TBS was laser-stimulated. Sham stimulation condition had no significant effect. The subjective pain perception also decreased during the experimental sessions, but did not differ significantly from the sham stimulation condition. The main finding of our study is that TBS over SI diminished the amplitude of the N2 component evoked from the contralateral side without any significant analgesic effects. Furthermore, imTBS produced responses similar to those observed by other forms of TBS induced excitability changes in the SI.</p>
</abstract>
<kwd-group>
<title>Keywords</title>
<kwd>Theta burst transcranial magnetic stimulation</kwd>
<kwd>Primary somatosensory cortex</kwd>
<kwd>Laser-evoked potentials</kwd>
<kwd>Pain</kwd>
<kwd>Neuronavigation</kwd>
</kwd-group>
<custom-meta-wrap>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Springer-Verlag 2008</meta-value>
</custom-meta>
</custom-meta-wrap>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Introduction</title>
<p>Functional neuroimaging studies have provided unequivocal evidence of the participation of the primary somatosensory cortex (SI), secondary somatosensory cortex (SII), and insula in pain processing (Talbot et al.
<xref ref-type="bibr" rid="CR55">1991</xref>
; Casey et al.
<xref ref-type="bibr" rid="CR7">1994</xref>
; Apkarian et al.
<xref ref-type="bibr" rid="CR3">1999</xref>
; Gelnar et al.
<xref ref-type="bibr" rid="CR19">1999</xref>
). Evidence suggests that the nociceptive input into these regions at least partially underlies the perception of sensory features of pain (Bushnell et al.
<xref ref-type="bibr" rid="CR6">1999</xref>
; Coghill et al.
<xref ref-type="bibr" rid="CR9">1999</xref>
; Peyron et al.
<xref ref-type="bibr" rid="CR46">1999</xref>
; Chen et al.
<xref ref-type="bibr" rid="CR8">2002</xref>
; for a review
<bold>s</bold>
see: Peyron et al.
<xref ref-type="bibr" rid="CR47">2000</xref>
; Apkarian et al.
<xref ref-type="bibr" rid="CR4">2005</xref>
).</p>
<p>Electrophysiological studies have also confirmed the participation of the SI in pain processing, contralateral to the stimulated side. Tarkka and Treede (
<xref ref-type="bibr" rid="CR58">1993</xref>
) first reported pain induced-activity in the SI using electroencephalogram (EEG) and applying brain electric source analysis (BESA). In their model, the peak latency measured at the SI was very similar to that of SII. In a combined magnetoencephalogramm (MEG) and laser-evoked potential (LEP) study Ploner et al. (
<xref ref-type="bibr" rid="CR48">1999</xref>
) reported SI activity also contralateral to the side of stimulation and further to this proposed a parallel pain processing in SI and SII. This parallel activation of SI and SII was confirmed by other studies (Ploner et al.
<xref ref-type="bibr" rid="CR49">2000</xref>
,
<xref ref-type="bibr" rid="CR50">2002</xref>
) and other groups (Timmermann et al.
<xref ref-type="bibr" rid="CR60">2001</xref>
; Kanda et al.
<xref ref-type="bibr" rid="CR27">2000</xref>
; Inui et al.
<xref ref-type="bibr" rid="CR23">2003</xref>
; Nakata et al.
<xref ref-type="bibr" rid="CR39">2004</xref>
). However, some previous LEP dipole modelling studies showed that a dipole source in SI area was necessary to explain the scalp LEP topography, none of them reported a clear correspondence between the SI activity and a definite LEP component (Tarkka and Treede
<xref ref-type="bibr" rid="CR58">1993</xref>
; Ploner et al.
<xref ref-type="bibr" rid="CR50">2002</xref>
; Kanda et al.
<xref ref-type="bibr" rid="CR28">2003</xref>
). Kanda et al. (
<xref ref-type="bibr" rid="CR27">2000</xref>
) detected SI activity following painful stimulation by recording intracranial EEG, but recently, intracerebral depth recordings in an epileptic patient have shown no reliable LEP response from the area 3b of the SI after painful laser stimulation, although a reliable N2–P2 response could be recorded at Cz (Valeriani et al.
<xref ref-type="bibr" rid="CR65">2004</xref>
). Inui et al. (
<xref ref-type="bibr" rid="CR23">2003</xref>
) reported the absence of activation from area 3b of the SI after noxious electrical stimulation as well, however they found activity in the area 1 of SI. Other studies found no pain-related activation of the SI at all (for a review see: Garcia-Larrea et al.
<xref ref-type="bibr" rid="CR18">2003</xref>
; Kakigi et al.
<xref ref-type="bibr" rid="CR26">2005</xref>
).</p>
<p>Recent studies showed, that several kinds of external stimulation methods such as single-pulse transcranial magnetic stimulation (TMS) (Kujirai et al.
<xref ref-type="bibr" rid="CR31">1993</xref>
), 1 Hz repetitive TMS (rTMS) (Enomoto et al.
<xref ref-type="bibr" rid="CR12">2001</xref>
), paired associative stimulation (PAS) (Tsuji and Rothwell
<xref ref-type="bibr" rid="CR64">2002</xref>
; Wolters et al.
<xref ref-type="bibr" rid="CR66">2005</xref>
), transcranial direct current stimulation (tDCS) (Matsunaga et al.
<xref ref-type="bibr" rid="CR35">2004</xref>
; Dieckhofer et al.
<xref ref-type="bibr" rid="CR11">2006</xref>
) or theta burst stimulation (TBS) (Ishikawa et al.
<xref ref-type="bibr" rid="CR24">2007</xref>
) modulate the amplitude of cortical components of median nerve somatosensory evoked potentials (SEPs). It was recently reported that, cathodal tDCS over the SI (Dieckhofer et al.
<xref ref-type="bibr" rid="CR11">2006</xref>
) significantly reduced the N20 amplitude of median nerve SEPs. Furthermore, cathodal polarization over the SI induced a prolonged decrease of tactile discrimination (Rogalewski et al.
<xref ref-type="bibr" rid="CR52">2004</xref>
) and diminished acute pain perception and the amplitude of the N2 component of LEPs (Antal et al.
<xref ref-type="bibr" rid="CR2">2007</xref>
).</p>
<p>Recently Huang et al. (
<xref ref-type="bibr" rid="CR21">2005</xref>
) developed a special “theta burst” paradigm to modulate human motor cortex (M1) excitability using low intensity, repetitive bursts of magnetic stimuli. The authors distinguished three stimulation patterns, which were proved to have different effects over M1 activity, when it was monitored by the amplitude of transcranial motor evoked potentials (MEPs). Continuous TBS (cTBS) caused a significant reduction in MEP amplitudes, which was probably due to the inhibition of specific excitatory circuits (I1-wave inputs to corticospinal neurons), as later confirmed by another study (Di Lazzaro et al.
<xref ref-type="bibr" rid="CR10">2005</xref>
). In contrast, intermittent TBS (iTBS) facilitated M1 activity and produced increase in MEP amplitudes. Interestingly, intermediate TBS (imTBS) had no effect at all. In addition, TBS has also been shown to have an effect on the human premotor (Mochizuki et al.
<xref ref-type="bibr" rid="CR36">2005</xref>
) and visual cortex (Franca et al.
<xref ref-type="bibr" rid="CR14">2006</xref>
).</p>
<p>Non-invasive cortical stimulation of M1 for the treatment of certain kinds of chronic and experimentally induced pain has recently attracted much interest. Both low and high frequency rTMS was reported to reduce subjective pain perception and has been used experimentally to reduce chronic pain (for review
<bold>s</bold>
see: Leo and Latif
<xref ref-type="bibr" rid="CR33">2007</xref>
; Fregni et al.
<xref ref-type="bibr" rid="CR15">2007</xref>
). However, although the involvement of SI in pain perception and processing is reported by several imaging studies (for reviews see: Peyron et al.
<xref ref-type="bibr" rid="CR47">2000</xref>
; Apkarian et al.
<xref ref-type="bibr" rid="CR4">2005</xref>
), the magnetic stimulation of this cortical area in order to modify pain perception is neglected. Therefore, the aim of our study was to investigate the effects of cTBS, iTBS, and imTBS, on the early (N1) and late (N2, P2) components of LEPs and related subjective pain perception when applied over the left SI. We hypothesized that the three TBS types, which have short durations (maximum 190 s), would affect LEP components in a specific, paradigm-dependent manner similarly to the effect over M1 as revealed by Huang and et al. (
<xref ref-type="bibr" rid="CR21">2005</xref>
).</p>
</sec>
<sec id="Sec2" sec-type="methods">
<title>Methods</title>
<sec id="Sec3">
<title>Subjects</title>
<p>Nineteen healthy volunteers between 18 and 35 years were informed about all aspects of the experiments and signed an informed consent. Three subjects chose not to continue the experiment after the first or second session and during off-line EEG analysis four further subjects were dropped out because of their hardly detectable LEP components. Hence, twelve of the subjects (six male, six female; mean age = 26.33 ± 3.17 years) were included in the final analysis. We conformed with the Declaration of Helsinki and the experimental protocol was approved by the Ethics Committee of the University of Göttingen. None of the subjects suffered from chronic pain syndromes, nor took any medication regularly. None had a history of neurological or psychiatric illness. All of them participated in all four sessions, the three TBS and sham stimulations.</p>
</sec>
<sec id="Sec4">
<title>TBS stimulation</title>
<p>Theta burst stimulation was applied over the hand area of the left SI using a standard, figure-of-eight-coil (MCF-B65 Butterfly Coil) and MagPro stimulator (Medtronic, Denmark) with an outer half-coil radius of 75 mm, with a posterior–anterior–posterior current flow in the coil. Stimulus intensity was 80% of active motor threshold (AMT) (Huang et al.
<xref ref-type="bibr" rid="CR21">2005</xref>
).</p>
<p>For AMT determination, the coil was placed tangentially to the scalp, with the handle pointing backwards and laterally 45° from mid-line. MEPs of the right abductor digiti minimi muscle (ADM) were recorded by Ag-AgCl-electrodes in a belly tendon-montage before each stimulation. The signals were amplified and filtered (1.59 Hz-1 kHz, sampling rate of 5 kHz), digitalized with a micro 1401 AD converter (Cambridge Electronic Design, Cambridge, UK), recorded by a computer using SIGNAL software (Cambridge Electronic Design, Version 2.13). Complete muscle relaxation was controlled though auditory and visual feedback of EMG activity. AMT was defined as the minimum intensity eliciting a MEP of a superior size when compared to spontaneous moderate muscular activity in at least three of six pulses.</p>
<p>The pattern of TBS consisted of bursts containing three pulses at 50 Hz which were repeated at 200 ms intervals (i.e., 5 Hz) for up to 600 pulses for 40 s continuously (cTBS), or triads repeated at 200 ms intervals for 2 s intermittently with 8 s breaks for up to 600 pulses (iTBS). In the case of imTBS the triads (three pulses at 50 Hz) were repeated at 200 ms intervals for 5 s, in every 15 s up to 600 pulses (Huang et al.
<xref ref-type="bibr" rid="CR21">2005</xref>
). In separate experimental sessions, sham stimulation was applied with the cTBS protocol using the same coil held over the same position but tilted to a 90° angle (one-wing 90°) (Lisanby et al.
<xref ref-type="bibr" rid="CR34">2001</xref>
) with only the margin of the coil in contact with the scalp.</p>
</sec>
<sec id="Sec5">
<title>Determination of the primary somatosensory cortex (SI)</title>
<p>Anatomical magnetic resonance imaging (MRI) (Siemens 3 T, T1 weighted) dataset was used to determinate the coil localization for the stimulation of SI for all subjects using the Brainsight neuronavigation system (Rogue Research Inc., Montreal Quebec, Canada). The hand area was determined by previous fMRI studies (Bushnell et al.
<xref ref-type="bibr" rid="CR6">1999</xref>
; Blankenburg et al.
<xref ref-type="bibr" rid="CR5">2003</xref>
) and was located and marked in the MRI dataset as the target for TMS application (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
).
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Three dimensional anatomical MRI of a single subject. Anatomical magnetic resonance imaging (
<italic>MRI</italic>
) (Siemens 3 T, T1 weighted) dataset was used to determinate the coil localization for the stimulation of SI by all subjects using the Brainsight neuronavigation system. The hand area was located and marked in the MRI dataset as target for TMS application. The
<italic>black point</italic>
indicates the hot-spot of the stimulation coil</p>
</caption>
<graphic position="anchor" xlink:href="221_2007_1188_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
</sec>
<sec id="Sec6">
<title>Laser stimulation</title>
<p>A Tm : YAG laser system (WaveLight Laser Technologie AG, Erlangen, Germany) was used to induce painful stimulation. The thulium laser emits near-infrared radiation (wavelength 2,000 nm, pulse duration 1 ms, laser beam diameter 7 mm) with a penetration depth of 360 μm into the human skin and allows a precise restriction of the emitted heat energy to the termination area of primary nociceptive afferents without affecting the subcutaneous tissue (Treede et al.
<xref ref-type="bibr" rid="CR62">2003</xref>
). The distal handpiece of the laser was positioned 30 cm from the radial part of the dorsal surface of the hand. The pain threshold was determined on both hands at the beginning each session before baseline EEG recording by applying laser stimuli from 200 mJ in 50 mJ steps. During EEG recordings, each laser stimulus was delivered with an intensity of 1.4–1.6 times the threshold intensity to a slightly different spot in a 5 × 5 cm square on the dorsum of the hand in order to reduce receptor fatigue or sensitization by skin overheating (Treede et al.
<xref ref-type="bibr" rid="CR62">2003</xref>
). Skin temperature of the stimulated area was checked prior to every switch between hands, and corrected with a heating lamp if it fell below 35°C.</p>
</sec>
<sec id="Sec7">
<title>Psychophysical evaluation</title>
<p>We used the verbal analogue score (VAS) to assess the subjective intensity of pain. The subjects were instructed to pay attention to the laser stimuli and to rate the perceived pain verbally (1-warm, 1.1 smallest pain, and 1.9 most intense pain) about 2–3 s after each laser-impulse. The values were individually averaged separately for both hands in each session and conditions. The ears of the subjects were plugged during the measurements to avoid auditory artifacts accompanying laser stimulation.</p>
</sec>
</sec>
<sec id="Sec8">
<title>Electrophysiological recordings</title>
<p>The EEG was recorded using a 64-channel montage applying 64 ring electrodes (inner diameter: 6 mm, outer diameter: 12 mm) (EasyCap; Falk and Minow GmbH, Münich, Germany). The electrodes were placed in accordance with the extended international 10–20 system. The impedance was kept <5 kΩ. The Fz was used as reference, the ground was placed 2 cm anterior to the tragus of the right ear. Data were collected at a sampling rate of 1,000 Hz with the BrainAmp system (Brain Products GmbH, Munich, Germany) and were analyzed offline. The obtained data were re-referenced to the connected mastoids (TP9-TP10). A 0.5 Hz low-cutoff as well as a 30 Hz high-cutoff filter was used. In addition to automatic artifact detection (200 μV amplitude criterion) all epochs were visually inspected, and those containing eye blinks or muscle movement artifacts were excluded. Baseline correction was performed on the basis of the 100 ms prestimulus interval. The amplitudes of N1 (referring to Fz) and N2–P2 (referring to TP9-TP10) components were measured.</p>
<p>Although we recorded data on 64 channels, we assessed LEPs according to the scalp distribution on the analyzed peaks. The N2 is a negative component (referring to TP9-TP10) was peaking around 160–240 ms. The amplitude of the early N1 negative peak which came before N2 on T7 and T8 channels (referring to Fz) was analyzed. The P2 positive component after N2 was peaking around 300–360 ms. The N2 component is largest over the lateral temporal and fronto-central areas on electrodes Fz, Cz, CPz, F1–F4, FC1–FC6, C1–C6, T7, T8, and CP1–CP6. In contrast, the P2 peak has its maximum amplitude over the vertex on electrodes FCz, Cz, CPz, Pz, F1–F4, FC1–FC4, C1–C4, CP1–CP4, and P1–P4. For the analysis of LEPs according to regional distribution, we defined three distinct areas with pooling the data: central (with all the mid-line electrodes such as Fz, FCz, Cz, CPz, and Pz), left (F3, FC3, C3, CP3, P3, FC5, C5, CP5, and T7) and right (electrodes according to the left side) instead of separate electrodes.</p>
<sec id="Sec9">
<title>Experimental design</title>
<p>The subjects were sitting in a reclining chair. In case of all sessions first the EEG cap was placed on the head. After pain threshold determination the baseline LEP measurements were performed. Every run for the LEP recording consisted of 40 epochs of laser stimulation on each hand. The interstimulus interval of the stimulation ranged from 8 to 15 s (Raij et al.
<xref ref-type="bibr" rid="CR51">2003</xref>
). Thus the LEP recording lasted for 8–10 min for the first hand and also for 8–10 min for the second hand laser-stimulation. In all three TBS and sham TBS conditions, the right hand was stimulated first in half of the cases and the left hand was stimulated first in the other half. This order was kept for the subjects for all conditions. After baseline LEP recording the AMT was measured (∼15–20 min) and the TBS were applied for 40–190 s through the cap. After TBS the impedance of the EEG electrodes were retested and corrected below 5 kΩ if it was necessary. The TBS was followed by a post-stimulation LEP recording in ∼5 min after TBS. Thus, the interval between the two LEP recordings with regard to the same hand was about 30–35 min including all subjects and conditions.</p>
<p>The experimental sessions were separated from each other by at least 5 days. The subjects were blinded as to the type of magnetic stimulation. The order of the sessions was randomized across subjects.</p>
</sec>
<sec id="Sec10">
<title>Data analysis</title>
<p>The individually averaged VAS values and LEP amplitudes were entered into a repeated-measures-ANOVA for both hands and LEP components separately [four TBS CONDITION (cTBS, iTBS, imTBS, and sham) × 2 TIME (before, after TBS)]. We considered a psychophysical or an electrophysiological change only if the CONDITION × TIME interaction was significant. In case of the LEP components we investigated if this effect was dependent on the defined areas by calculating the CONDITION × TIME × REGION interaction. Post hoc analysis was done using Student’s
<italic>t</italic>
tests (paired samples, two-tailed, level of significance
<italic>P</italic>
 < 0.05).</p>
</sec>
</sec>
<sec id="Sec11" sec-type="results">
<title>Results</title>
<sec id="Sec12">
<title>Psychophysics</title>
<p>The intensity of the laser stimulation (1.4–1.6 × of the pain threshold) was 19.88 mJ/mm
<sup>2</sup>
for cTBS, 20.53 mJ/mm
<sup>2</sup>
for iTBS, 20.52 mJ/mm
<sup>2</sup>
for imTBS, and 20.33 mJ/mm
<sup>2</sup>
for sham stimulation. None of the subjects reported any side-effect after the stimulation.</p>
<p>In case of the contralateral hand (right) stimulation, repeated-measures-ANOVA revealed no main effect of CONDITION [
<italic>F</italic>
(3,33) = 0.828,
<italic>P</italic>
 = 0.488] but the TIME was significant [
<italic>F</italic>
(1,11) = 27.270,
<italic>P</italic>
 < 0.001]. The CONDITION × TIME interaction was also not significant [
<italic>F</italic>
(3,33) = 0.080,
<italic>P</italic>
 = 0.97]. In case of the ipsilateral hand (left) stimulation, there was no significant main effect of CONDITION [
<italic>F</italic>
(3,33) = 1.329,
<italic>P</italic>
 = 0.282] but the TIME was significant [
<italic>F</italic>
(1,11) = 15.395,
<italic>P</italic>
 < 0.005]. The CONDITION × TIME interaction was also not significant [
<italic>F</italic>
(3,33) = 0.716,
<italic>P</italic>
 = 0.55] (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
).
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>The effects of the TBS on subjective pain perception. The VAS-values were standardized for each subject, for each condition by calculating the after/before ratio. The independent variables were the CONDITION and HAND in order to determine if there is any difference between stimulation of the two hands. There was no main effect of the stimulation CONDITION and the HAND (
<italic>left</italic>
or
<italic>right</italic>
). The interaction CONDITION × TIME was also not significant</p>
</caption>
<graphic position="anchor" xlink:href="221_2007_1188_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
</sec>
<sec id="Sec13">
<title>Electrophysiology</title>
<p>The N1, N2, and P2 components could clearly be identified in all subjects. The LEPs are presented in Figs. 
<xref rid="Fig3" ref-type="fig">3</xref>
and
<xref rid="Fig4" ref-type="fig">4</xref>
.
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>The effects of the TBS on the N1 component. The figure shows N1 amplitude changes during the experimental sessions on the grand averages of LEPs. The N1 was analyzed over the electrodes T7 and T8 referred to Fz (international 10–20 electrode system) in case of both hands. The
<italic>solid line</italic>
shows LEPs before and the
<italic>intermittent line</italic>
after TBS interventions. There was no significant difference between stimulation conditions</p>
</caption>
<graphic position="anchor" xlink:href="221_2007_1188_Fig3_HTML" id="MO3"></graphic>
</fig>
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>Grand averages of LEPs obtained by contralateral (
<italic>right</italic>
) hand laser stimulation for three scalp regions (
<italic>central</italic>
,
<italic>left</italic>
and
<italic>right</italic>
) re-referenced to the connected mastoids (TP9-TP10), before and after the three TBS conditions and sham stimulation. The
<italic>solid line</italic>
shows LEPs before and the
<italic>intermittent line</italic>
after TBS interventions</p>
</caption>
<graphic position="anchor" xlink:href="221_2007_1188_Fig4_HTML" id="MO4"></graphic>
</fig>
</p>
<sec id="Sec14">
<title>The N1 component</title>
<p>We analyzed the amplitudes of the early N1 components on channels T7 and T8 (referring to Fz). There was no significant main effect of CONDITION [contralateral hand:
<italic>F</italic>
(3,33) = 2.216,
<italic>P</italic>
 = 0.105; ipsilateral hand:
<italic>F</italic>
(3,33) = 2.865,
<italic>P</italic>
 = 0.052]. The TIME was significant if the contralateral hand was stimulated [
<italic>F</italic>
(1,11) = 6.186,
<italic>P</italic>
 = 0.030] but not for the ipsilateral hand [
<italic>F</italic>
(1,11) = 3.305,
<italic>P</italic>
 = 0.096]. The interaction of the CONDITION × TIME resulted in no significant interaction neither after the contraleteral [
<italic>F</italic>
(3,33) = 0.727,
<italic>P</italic>
 = 0.543] or ipsilateral [
<italic>F</italic>
(3,33) = 1.694,
<italic>P</italic>
 = 0.187] hand stimulation (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
).</p>
</sec>
<sec id="Sec15">
<title>The N2 component</title>
<p>The repeated-measures-ANOVA (ipsilateral hand) showed no significant main effect of CONDITION [
<italic>F</italic>
(3,33) = 0.555,
<italic>P</italic>
 = 0.65], but the effect of TIME was significant [
<italic>F</italic>
(1,11) = 11.769,
<italic>P</italic>
 = 0.006]. The CONDITION × TIME interaction resulted in no significance [
<italic>F</italic>
(3,33) = 0.149,
<italic>P</italic>
 = 0.93] (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
a). In case of the (contralateral hand) the main effect of CONDITION [
<italic>F</italic>
(3,33) = 0.250,
<italic>P</italic>
 = 0.86] was not significant, but the TIME was significant [
<italic>F</italic>
(1,11) = 32.034,
<italic>P</italic>
 < 0.001]. The CONDITION × TIME interaction was also significant [
<italic>F</italic>
(3,33) = 4.058,
<italic>P</italic>
 = 0.015] (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
b). The interaction with electrode position was not significant [
<italic>F</italic>
(6,66) = 1.068,
<italic>P</italic>
 = 0.39]. The post hoc
<italic>t</italic>
test showed that all active TBS stimulation significantly decreased the amplitudes of the N2 component at all defined regions for the contralateral hand stimulation. Table 
<xref rid="Tab1" ref-type="table">1</xref>
summarizes the results of
<italic>t</italic>
tests.
<fig id="Fig5">
<label>Fig. 5</label>
<caption>
<p>The mean N2 amplitude changes during the four TBS conditions at the ipsilateral (
<italic>left</italic>
) (Fig. 5a) and contralateral (
<italic>right</italic>
) (Fig. 5b) hand laser-stimulation for the three calculated regions (
<italic>central</italic>
,
<italic>left</italic>
and
<italic>right</italic>
). The
<italic>stars mark</italic>
significant differences between before-after TBS conditions (post hoc
<italic>t</italic>
-tests, paired samples, two-tailed,
<italic>P</italic>
 < 0.05)</p>
</caption>
<graphic position="anchor" xlink:href="221_2007_1188_Fig5_HTML" id="MO5"></graphic>
</fig>
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Post hoc analysis of the N2 component</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="2"></th>
<th align="left" rowspan="2"></th>
<th align="left">cTBS</th>
<th align="left">iTBS</th>
<th align="left">imTBS</th>
<th align="left">sham</th>
</tr>
<tr>
<th align="left">Before versus after</th>
<th align="left">Before versus after</th>
<th align="left">Before versus after</th>
<th align="left">Before versus after</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="2">Central</td>
<td align="left">
<italic>P</italic>
-levels</td>
<td char="." align="char">0.0033</td>
<td char="." align="char">0.0002</td>
<td char="." align="char">0.0021</td>
<td char="." align="char">0.3942</td>
</tr>
<tr>
<td align="left">
<italic>t</italic>
-values</td>
<td char="." align="char">−3.730</td>
<td char="." align="char">−5.499</td>
<td char="." align="char">−4.005</td>
<td char="." align="char">−0.887</td>
</tr>
<tr>
<td align="left" rowspan="2">Left</td>
<td align="left">
<italic>P</italic>
-levels</td>
<td char="." align="char">0.0054</td>
<td char="." align="char">0.0004</td>
<td char="." align="char">0.0031</td>
<td char="." align="char">0.5921</td>
</tr>
<tr>
<td align="left">
<italic>t</italic>
-values</td>
<td char="." align="char">−3.451</td>
<td char="." align="char">−5.041</td>
<td char="." align="char">−3.775</td>
<td char="." align="char">−0.552</td>
</tr>
<tr>
<td align="left" rowspan="2">Right</td>
<td align="left">
<italic>P</italic>
-levels</td>
<td char="." align="char">0.0394</td>
<td char="." align="char">0.0085</td>
<td char="." align="char">0.0039</td>
<td char="." align="char">0.8118</td>
</tr>
<tr>
<td align="left">
<italic>t</italic>
-values</td>
<td char="." align="char">−2.337</td>
<td char="." align="char">−3.196</td>
<td char="." align="char">−3.645</td>
<td char="." align="char">0.244</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>Shows the results of the Student’s
<italic>t</italic>
-tests (paired samples, two-tailed) in case of the right hand stimulation. The level of the significance was
<italic>P</italic>
 < 0.05</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="Sec16">
<title>The P2 component</title>
<p>The repeated-measures-ANOVA showed no significant main effect of CONDITION [contralateral:
<italic>F</italic>
(3,33) = 1.571,
<italic>P</italic>
 = 0.22; ipsilateral:
<italic>F</italic>
(3,33) = 1.054,
<italic>P</italic>
 = 0.38], but the TIME was significant [contralateral:
<italic>F</italic>
(1,11) = 17.038,
<italic>P</italic>
 = 0.002; ipsilateral:
<italic>F</italic>
(1,11) = 15.362,
<italic>P</italic>
 = 0.002]. The CONDITION × TIME interaction was also not significant [contralateral:
<italic>F</italic>
(3,33) = 2.669,
<italic>P</italic>
 = 0.064; ipsilateral:
<italic>F</italic>
(3,33) = 0.418,
<italic>P</italic>
 = 0.74].</p>
<p>The means of the different LEP components from all 12 subjects are presented in Table 
<xref rid="Tab2" ref-type="table">2</xref>
.
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>The mean amplitudes of the LEP components</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="2">Peak</th>
<th align="left" rowspan="2"></th>
<th align="left" colspan="2">cTBS</th>
<th align="left" colspan="2">iTBS</th>
<th align="left" colspan="2">imTBS</th>
<th align="left" colspan="2">sham</th>
</tr>
<tr>
<th align="left">Before</th>
<th align="left">After</th>
<th align="left">Before</th>
<th align="left">After</th>
<th align="left">Before</th>
<th align="left">After</th>
<th align="left">Before</th>
<th align="left">After</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" colspan="10">Left hand</td>
</tr>
<tr>
<td align="left" rowspan="2">N1</td>
<td align="left">T7</td>
<td char="±" align="char">−4.42 ± 2.75</td>
<td char="±" align="char">−4.60 ± 3.13</td>
<td char="±" align="char">−4.68 ± 2.52</td>
<td char="±" align="char">−3.71 ± 2.65</td>
<td char="±" align="char">−3.33 ± 3.22</td>
<td char="±" align="char">−3.50 ± 3.15</td>
<td char="±" align="char">−4.98 ± 2.70</td>
<td char="±" align="char">−5.20 ± 3.08</td>
</tr>
<tr>
<td align="left">T8</td>
<td char="±" align="char">−6.13 ± 2.17</td>
<td char="±" align="char">−4.78 ± 3.60</td>
<td char="±" align="char">−6.73 ± 3.44</td>
<td char="±" align="char">−5.13 ± 2.89 </td>
<td char="±" align="char">−4.99 ± 4.27</td>
<td char="±" align="char">−4.64 ± 3.62</td>
<td char="±" align="char">−6.56 ± 3.47</td>
<td char="±" align="char">−6.33 ± 3.11</td>
</tr>
<tr>
<td align="left" rowspan="3">N2</td>
<td align="left">Central</td>
<td char="±" align="char">−9.77 ± 5.48</td>
<td char="±" align="char">−7.92 ± 4.91</td>
<td char="±" align="char">−10.29 ± 5.01</td>
<td char="±" align="char">−8.88 ± 3.98</td>
<td char="±" align="char">−9.04 ± 5.43</td>
<td char="±" align="char">−7.25 ± 5.52</td>
<td char="±" align="char">−10.02 ± 4.43</td>
<td char="±" align="char">−8.11 ± 6.16</td>
</tr>
<tr>
<td align="left">Left</td>
<td char="±" align="char">−7.13 ± 3.60</td>
<td char="±" align="char">−6.05 ± 3.44</td>
<td char="±" align="char">−7.44 ± 3.49</td>
<td char="±" align="char">−6.69 ± 2.91</td>
<td char="±" align="char">−6.81 ± 3.69</td>
<td char="±" align="char">−5.55 ± 3.88</td>
<td char="±" align="char">−7.13 ± 3.55</td>
<td char="±" align="char">−5.98 ± 4.28</td>
</tr>
<tr>
<td align="left">Right</td>
<td char="±" align="char">−6.70 ± 3.05</td>
<td char="±" align="char">−4.59 ± 3.25</td>
<td char="±" align="char">−6.42 ± 3.54</td>
<td char="±" align="char">−5.41 ± 2.56</td>
<td char="±" align="char">−5.88 ± 3.05</td>
<td char="±" align="char">−4.70 ± 3.19</td>
<td char="±" align="char">−6.11 ± 3.24</td>
<td char="±" align="char">−4.82 ± 3.85</td>
</tr>
<tr>
<td align="left" rowspan="3">P2</td>
<td align="left">Central</td>
<td char="±" align="char">14.79 ± 8.02</td>
<td char="±" align="char">11.74 ± 7.03</td>
<td char="±" align="char">14.86 ± 7.69</td>
<td char="±" align="char">12.43 ± 7.00</td>
<td char="±" align="char">13.19 ± 7.74</td>
<td char="±" align="char">11.26 ± 8.23</td>
<td char="±" align="char">13.83 ± 6.75</td>
<td char="±" align="char">12.03 ± 6.31</td>
</tr>
<tr>
<td align="left">Left</td>
<td char="±" align="char">8.40 ± 3.89</td>
<td char="±" align="char">7.18 ± 3.66</td>
<td char="±" align="char">9.19 ± 4.74 </td>
<td char="±" align="char">7.74 ± 3.59</td>
<td char="±" align="char">7.36 ± 4.80</td>
<td char="±" align="char">6.63 ± 5.16</td>
<td char="±" align="char">7.90 ± 3.64</td>
<td char="±" align="char">6.84 ± 3.67</td>
</tr>
<tr>
<td align="left">Right</td>
<td char="±" align="char">8.80 ± 3.80</td>
<td char="±" align="char">6.78 ± 3.03</td>
<td char="±" align="char">8.68 ± 4.65</td>
<td char="±" align="char">7.59 ± 3.68</td>
<td char="±" align="char">7.91 ± 3.70</td>
<td char="±" align="char">6.90 ± 3.98</td>
<td char="±" align="char">8.28 ± 4.27</td>
<td char="±" align="char">7.76 ± 4.17</td>
</tr>
<tr>
<td align="left" colspan="10">Right hand</td>
</tr>
<tr>
<td align="left" rowspan="2">N1</td>
<td align="left">T7</td>
<td char="±" align="char">−8.18 ± 4.79</td>
<td char="±" align="char">−5.98 ± 3.39</td>
<td char="±" align="char">−6.38 ± 4.67</td>
<td char="±" align="char">−5.12 ± 3.62</td>
<td char="±" align="char">−7.34 ± 4.70</td>
<td char="±" align="char">−5.88 ± 3.73</td>
<td char="±" align="char">−7.43 ± 3.30</td>
<td char="±" align="char">−6.38 ± 3.21</td>
</tr>
<tr>
<td align="left">T8</td>
<td char="±" align="char">−4.92 ± 4.43</td>
<td char="±" align="char">−3.96 ± 3.24</td>
<td char="±" align="char">−3.25 ± 3.29</td>
<td char="±" align="char">−2.98 ± 2.35</td>
<td char="±" align="char">−4.56 ± 4.61</td>
<td char="±" align="char">−3.03 ± 2.39</td>
<td char="±" align="char">−4.37 ± 3.53</td>
<td char="±" align="char">−4.15 ± 2.62</td>
</tr>
<tr>
<td align="left" rowspan="3">N2</td>
<td align="left">Central</td>
<td char="±" align="char">−10.11 ± 3.83</td>
<td char="±" align="char">−7.44 ± 4.52</td>
<td char="±" align="char">−11.05 ± 4.87</td>
<td char="±" align="char">−6.69 ± 4.23</td>
<td char="±" align="char">−9.99 ± 5.06</td>
<td char="±" align="char">−6.40 ± 4.27</td>
<td char="±" align="char">−9.57 3.97</td>
<td char="±" align="char">−8.94 ± 5.40</td>
</tr>
<tr>
<td align="left">Left</td>
<td char="±" align="char">−7.74 ± 2.70</td>
<td char="±" align="char">−5.67 ± 2.77</td>
<td char="±" align="char">−8.62 ± 3.65</td>
<td char="±" align="char">−5.71 ± 3.43</td>
<td char="±" align="char">−7.77 ± 3.80</td>
<td char="±" align="char">−5.09 ± 2.64</td>
<td char="±" align="char">−6.79 ± 3.29</td>
<td char="±" align="char">−6.42 ± 3.78</td>
</tr>
<tr>
<td align="left">Right</td>
<td char="±" align="char">−6.58 ± 3.37</td>
<td char="±" align="char">− 5.12 ± 3.34</td>
<td char="±" align="char">−6.76 ± 3.00</td>
<td char="±" align="char">−4.80 ± 3.26</td>
<td char="±" align="char">−6.52 ± 3.59</td>
<td char="±" align="char">−4.24 ± 2.72</td>
<td char="±" align="char">−5.82 ± 2.74</td>
<td char="±" align="char">−6.00 ± 3.99 </td>
</tr>
<tr>
<td align="left" rowspan="3">P2</td>
<td align="left">Central</td>
<td char="±" align="char">14.30 ± 6.56</td>
<td char="±" align="char">11.62 ± 5.93</td>
<td char="±" align="char">14.52 ± 7.14</td>
<td char="±" align="char">10.90 ± 5.49</td>
<td char="±" align="char">14.04 ± 7.79</td>
<td char="±" align="char">10.74 ± 7.13</td>
<td char="±" align="char">11.37 ± 6.38</td>
<td char="±" align="char">10.75 ± 5.73</td>
</tr>
<tr>
<td align="left">Left</td>
<td char="±" align="char">8.47 ± 3.87</td>
<td char="±" align="char">6.95 ± 3.03</td>
<td char="±" align="char">8.90 ± 4.14</td>
<td char="±" align="char">7.00 ± 2.91</td>
<td char="±" align="char">8.65 ± 4.79</td>
<td char="±" align="char">6.64 ± 3.37</td>
<td char="±" align="char">6.21 ± 3.45</td>
<td char="±" align="char">6.62 ± 3.22</td>
</tr>
<tr>
<td align="left">Right</td>
<td char="±" align="char">8.52 ± 3.83</td>
<td char="±" align="char">6.73 ± 2.75</td>
<td char="±" align="char">8.29 ± 4.17</td>
<td char="±" align="char">6.41 ± 3.32</td>
<td char="±" align="char">8.75 ± 4.29</td>
<td char="±" align="char">6.90 ± 3.76</td>
<td char="±" align="char">6.84 ± 4.44</td>
<td char="±" align="char">6.67 ± 4.04</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>The mean amplitudes of the LEP components before and after stimulation in all four conditions. (mean ± standard deviation)</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
</sec>
</sec>
<sec id="Sec17" sec-type="discussion">
<title>Discussion</title>
<p>The main finding of our study is that all theta burst paradigms over the SI were able to diminish the amplitude of the N2 component of LEPs significantly when compared to sham stimulation. Surprisingly, the imTBS condition, that is suggested to be used as a placebo condition, when it applied over the M1 (Huang et al.
<xref ref-type="bibr" rid="CR21">2005</xref>
), also caused a strong amplitude decrease. The N1 and P2 components and the subjective pain rating scores were not significantly influenced by any type of TBS.</p>
<p>Recent studies using the theta burst paradigm have concentrated on the effects of continuous (cTBS) and intermittent theta burst stimulation (iTBS) (Franca et al.
<xref ref-type="bibr" rid="CR14">2006</xref>
; Andoh et al.
<xref ref-type="bibr" rid="CR1">2007</xref>
; Ishikawa et al.
<xref ref-type="bibr" rid="CR24">2007</xref>
; Koch et al.
<xref ref-type="bibr" rid="CR30">2007</xref>
; Mochizuki et al.
<xref ref-type="bibr" rid="CR37">2007</xref>
). None of them investigated the intermediate (imTBS) pattern since Huang and et al. published that it has no effect over the M1 as revealed by MEPs and could thus be used as a sham condition (Huang et al.
<xref ref-type="bibr" rid="CR21">2005</xref>
).</p>
<p>According to our knowledge, only five studies applied TBS over non-motor cortical areas. First Franca et al. (
<xref ref-type="bibr" rid="CR14">2006</xref>
) used the theta burst pattern of rTMS over the visual cortex. They found that cTBS increased phosphene thresholds whilst iTBS was found to be ineffective. In another study, both cTBS and iTBS over the left dorsal premotor cortex decreased the transcallosal inhibition revealed by pairs of transcranial magnetic stimuli (Koch et al.
<xref ref-type="bibr" rid="CR30">2007</xref>
). In a recent study, Wernicke’s area was stimulated with iTBS while the reaction time of auditory word detection was measured (Andoh et al.
<xref ref-type="bibr" rid="CR1">2007</xref>
). In this work, iTBS facilitated the detection of foreign words when compared with native words.</p>
<p>Concerning the SI, a shorter form of the iTBS (300 pulses) over the left SI resulted in a significant oxy-hemoglobin decrease at the contralateral SI and M1, detected by near infrared spectroscopy (Mochizuki et al.
<xref ref-type="bibr" rid="CR37">2007</xref>
). In another study cTBS of the SI resulted in a temporary decrease (13 min), whereas stimulation of the M1 caused a long-lasting increase (up to 53 min) of the amplitudes of cortical components of the median nerve SEPs (Ishikawa et al.
<xref ref-type="bibr" rid="CR24">2007</xref>
). In summary, these results suggest that cTBS has an inhibitory effect on non-motor areas; whereas the effect of iTBS is more facilitatory, but clearer results have still to emerge. Our results are the first demonstrating that all three TBS paradigms, but not by sham stimulation over the SI resulted in similar after-effects regarding the amplitude of the N2 component of LEPs evoked by the laser stimulation of the contralateral hand.</p>
<p>The N2 component (peaking around 160–220 ms), is generated bilaterally in the operculoinsular region and in the anterior cingulate cortex (ACC) (Garcia-Larrea et al.
<xref ref-type="bibr" rid="CR18">2003</xref>
) and reflects sensory, discriminatory processes (Garcia-Larrea et al.
<xref ref-type="bibr" rid="CR17">1997</xref>
; Iannetti et al. 2005); whilst the P2 component (peaking around 300–360 ms) arose mostly from the ACC and represents attentional, cognitive and affective factors of pain perception and processing (Treede
<xref ref-type="bibr" rid="CR63">2003</xref>
). However, other studies did not find significantly different brain sources for N2 and P2, revealing both parasylvian and ACC contributions for the N2–P2 components (Raij et al.
<xref ref-type="bibr" rid="CR51">2003</xref>
; Ohara et al.
<xref ref-type="bibr" rid="CR43">2004</xref>
). Thus, LEP changes in N2 or P2 component might result from changes in either sensory-discriminative or cognitive aspects of pain. Studies using subdural recordings (Kanda et al.
<xref ref-type="bibr" rid="CR27">2000</xref>
; Ohara et al.
<xref ref-type="bibr" rid="CR43">2004</xref>
) or MEG (Kanda et al.
<xref ref-type="bibr" rid="CR27">2000</xref>
) demonstrated that the LEP components can be recorded over the SI and SII simultaneously, and the N2 peak may indicate the arrival of input originating from nociceptors.</p>
<p>With regard to the N1 component which is an early LEP potential (peaking around 140–170 ms) and reflecting the early sensory-discriminative processing of pain perception (Iannetti et al. 2005), we did not find any significant change in amplitude. According to scalp topography (maximum near T3 and T4), the N1 is generated near to the SII in the fronto-parietal operculum (Treede et al.
<xref ref-type="bibr" rid="CR62">2003</xref>
). The participation of operculoinsular cortex in coding the pain intensity was recently suggested by using LEP measurements (Ianetti et al. 2005). However, another study (Gracia-Larrea et al.
<xref ref-type="bibr" rid="CR17">1997</xref>
) did not find any significant correlation between the amplitude of the N1 component and subjective pain rating.</p>
<p>The fact that we found a decrement of both the N2 and P2 amplitudes in the sham condition as well, should be discussed. This phenomenon is known as habituation and has been described in previous LEP studies (Spiegel et al.
<xref ref-type="bibr" rid="CR53">2000</xref>
; Tamura et al.
<xref ref-type="bibr" rid="CR56">2004a</xref>
). Still, the effects of real TBS conditions on N2 amplitudes were greater than that of the sham condition and it was significant above the stimulated left, the neighboring central and the contralateral area as well when the right hand was laser stimulated. Attention can also directly influence the N2–P2 components of LEPs as well as subjective pain rating as it was suggested by previous experimental results (Gracia-Larrea et al.
<xref ref-type="bibr" rid="CR17">1997</xref>
; Ohara et al.
<xref ref-type="bibr" rid="CR44">2006</xref>
). In our experiment the subjects were asked to pay attention to each laser stimuli and since the TBS and sham condition were applied in a randomized order and the subjects were blinded as to the type of magnetic stimulation, the significant difference between sham and the other three TBS on the N2 amplitude is more than simply habituation or the effect of the different attentional states.</p>
<p>The possible origin of the N2 component is mainly the bilateral operculoinsular region and the ACC (Garcia-Larrea et al.
<xref ref-type="bibr" rid="CR18">2003</xref>
). Therefore, when we inhibited the left SI, the activity of the pain related cortical network decreased due to the widespread cortical connections between SI and other cortical areas. However, the involvement of the contralateral SI and bilateral SII—parasylvian region in the N2 component generation was also reported (Kakigi et al.
<xref ref-type="bibr" rid="CR26">2005</xref>
; Kanda et al.
<xref ref-type="bibr" rid="CR27">2000</xref>
; Ohara et al.
<xref ref-type="bibr" rid="CR43">2004</xref>
). According to this, it is also possible that the inhibition of the SI itself may cause direct effects on LEP components. In this study we found no significant difference between the stimulation conditions with regard to subjective pain perception (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
), however, the subjective pain rating decreased during the experimental sessions after every type of TBS including the sham condition. It is important to mention that the placebo effect is high in almost every pain perception study, regardless of the paradigm used (Khedr et al.
<xref ref-type="bibr" rid="CR29">2005</xref>
; Lefaucheur et al.
<xref ref-type="bibr" rid="CR32">2004</xref>
). The explanation of this discrepancy between the electrophysiological and psychophysical changes is rather speculative, because the relationship between the anatomical origin of the N2–P2 components and their psychophysical correlates controversially discussed in the literature. In a PET study different cortical activations for pain threshold, intensity and unpleasantness have been found (Tölle et al.
<xref ref-type="bibr" rid="CR61">1999</xref>
). One possibility is that modulation the excitability of the left SI by TBS activated some elements of the pain related network that caused a decrease in the N2 amplitude. However, this stimulation intensity or duration was not strong or adequate enough to modify the subjective pain rating.</p>
<p>In our previous study (Antal et al.
<xref ref-type="bibr" rid="CR2">2007</xref>
), we found that cathodal tDCS over the SI, similarly to the present findings, significantly decreased the N2 component of LEPs. In contrast to the present findings the subjective pain perception in healthy subjects was also diminished. TDCS is a method that modifies the resting membrane potentials of cortical neurons intracortically (Nitsche and Paulus
<xref ref-type="bibr" rid="CR41">2000</xref>
,
<xref ref-type="bibr" rid="CR42">2001</xref>
). Cathodal stimulation decreases, whilst anodal stimulation increases cortical excitability (Nitsche and Paulus
<xref ref-type="bibr" rid="CR41">2000</xref>
,
<xref ref-type="bibr" rid="CR42">2001</xref>
). However, in that study we have used a large electrode size (5 × 7 cm) in order to optimize stimulation’s parameters (Nitsche and Paulus
<xref ref-type="bibr" rid="CR41">2000</xref>
) and therefore we might have covered a large part of the SI. It is possible that we have stimulated one part of the somatosensory association cortex (BA 5/7) that is posterior to the SI. Activation of human BA5/7 has also been linked to pain perception (Apkarian et al.
<xref ref-type="bibr" rid="CR3">1999</xref>
; Forss et al.
<xref ref-type="bibr" rid="CR13">2005</xref>
). BA 5/7 is anatomically connected to other nociceptive brain areas such as the ACC, insula, thalamus and primary motor cortices (Friedman et al.
<xref ref-type="bibr" rid="CR16">1986</xref>
). In order to increase the focality of the transcranial stimulation in the present study we used a neuronavigation system to determine the hand area over the SI.</p>
<p>Many of the previous pain-related studies stimulated the M1. The effects of low and high frequency rTMS of M1 on experimentally induced acute pain perception seem to depend on the type of noxious stimulation. C-fiber mediated acute pain as induced by intradermal capsaicin administration could be attenuated by 1 Hz rTMS over the M1 (Tamura et al.
<xref ref-type="bibr" rid="CR57">2004b</xref>
), whereas it increased Aδ-fiber mediated laser-induced pain in another study (Tamura et al.
<xref ref-type="bibr" rid="CR56">2004a</xref>
). Similarly, controversial effects were observed after 20 Hz rTMS (Johnson et al.
<xref ref-type="bibr" rid="CR25">2006</xref>
; Summers et al.
<xref ref-type="bibr" rid="CR54">2004</xref>
). In contrast 10 Hz rTMS over M1 increased electrically induced Aδ-fiber mediated pain threshold (Yoo et al.
<xref ref-type="bibr" rid="CR67">2006</xref>
), but others found that 10 Hz rTMS has only an effect on the unpleasantness of the pain without any effect on pain threshold (Mylius et al.
<xref ref-type="bibr" rid="CR38">2007</xref>
). In case of chronic pain the high frequency rTMS seems to more effective than the application of low frequencies (Leo and Latif
<xref ref-type="bibr" rid="CR33">2007</xref>
).</p>
<p>The neuronal mechanism of the theta burst paradigm is highly speculative. The results of the experiments with single trains of TBS suggest that in the human M1 TBS produces a mixture of facilitatory and inhibitory effects on synaptic transmission (Huang and Rothwell
<xref ref-type="bibr" rid="CR20">2004</xref>
). Huang and Rothwell proposed, that facilitation develops faster than inhibition, thus in case of the inhibitory cTBS, several seconds after an initial facilitation the inhibition overrides this effect. ITBS uses only the early excitatory effect in the initial 2 s and after this the stimulation is interrupted for 8 s. Most likely, the underlying mechanisms will involve many of the basic elementary mechanisms described previously in the LTP/LTD literature (Paulus
<xref ref-type="bibr" rid="CR45">2005</xref>
). Recently Huang et al. (
<xref ref-type="bibr" rid="CR22">2007</xref>
) have demonstrated that the after-effects produced by both iTBS or cTBS are NMDA-receptor dependent and hence they are more likely to involve plasticity-like changes at the synapse in the M1. More recently, it was found that the excitatory effects of iTBS were reversed after NMDA receptor activation by D-cycloserin (Teo et al.
<xref ref-type="bibr" rid="CR59">2007</xref>
). This is in contrast with the findings of tDCS induced LTP where the excitatory effects are prolonged by D-cycloserin (Nitsche et al.
<xref ref-type="bibr" rid="CR40">2004</xref>
). However, it is important to note that these observations were done on the M1. It is possible that the different effectiveness observed between TBS protocols on motor and sensory cortices could be due to differences in the physiological and functional states of the stimulated cortex.</p>
<p>In summary, in our study we found a significant decrease of the N2 component of the LEPs after cTBS, iTBS, and imTBS when compared to sham stimulation over the SI. In addition we found, that the subjective pain perception did not show significant differences among the stimulation conditions suggesting that this method is probably not the most effective in decreasing subjective pain perception. Further findings show that imTBS resulted in more impressive modification of the LEPs, than were found in previous TMS-studies over the M1 using MEP measures (Huang et al.
<xref ref-type="bibr" rid="CR21">2005</xref>
), implying that it should not be used in further studies as ‘sham’ condition, at least with regard to LEPs and when it is applied over the SI. However these results are not directly comparable with the effects of TBS on M1, thus further studies are needed to clarify the effects of imTBS on different cortical areas. Future studies should also clarify the effectiveness of the different TBS paradigms applied over the M1 and non-motor cortical areas, such as the SII on acute pain perception and in chronic pain.</p>
</sec>
</body>
<back>
<ack>
<p>We would like to thank Leila Chaieb for the English corrections and Prof. RD. Treede for his useful suggestions with regard to the technical details. This study was supported by the German Ministry of Research and Education within the “Kompetenznetz Schmerz” (FKZ: 01EM0117) and by Waler und Ilse Rose-Stiftung.</p>
<p>
<bold>Open Access</bold>
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.</p>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<citation citation-type="other">Andoh J, Artiges E, Pallier C, Riviere D, Mangin JF, Paillere-Martinot ML, Martinot JL (2007) Priming frequencies of transcranial magnetic stimulation over Wernicke’s area modulate word detection. Cereb Cortex (in press). doi:10.1093/cercor/bhm047</citation>
</ref>
<ref id="CR2">
<citation citation-type="other">Antal A, Brepohl N, Poreisz Cs, Boros K, Csifcsák G, Paulus W (2007) Transcranial direct current stimulation over somatosensory cortex decreases experimentally induced acute pain perception. Clin J Pain (in press)</citation>
</ref>
<ref id="CR3">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Apkarian</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Darbar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Krauss</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Gelnar</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Szeverenyi</surname>
<given-names>NM</given-names>
</name>
</person-group>
<article-title>Differentiating cortical areas related to pain perception from stimulus identification: temporal analysis of fMRI activity</article-title>
<source>J Neurophysiol</source>
<year>1999</year>
<volume>81</volume>
<fpage>2956</fpage>
<lpage>2963</lpage>
</citation>
<citation citation-type="display-unstructured">Apkarian AV, Darbar A, Krauss BR, Gelnar PA, Szeverenyi NM (1999) Differentiating cortical areas related to pain perception from stimulus identification: temporal analysis of fMRI activity. J Neurophysiol 81:2956–2963
<pub-id pub-id-type="pmid">10368412</pub-id>
</citation>
</ref>
<ref id="CR4">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Apkarian</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Bushnell</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Treede</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Zubieta</surname>
<given-names>JK</given-names>
</name>
</person-group>
<article-title>Human brain mechanisms of pain perception and regulation in health and disease</article-title>
<source>Eur J Pain</source>
<year>2005</year>
<volume>9</volume>
<fpage>463</fpage>
<lpage>484</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejpain.2004.11.001</pub-id>
</citation>
<citation citation-type="display-unstructured">Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9:463–484
<pub-id pub-id-type="pmid">15979027</pub-id>
</citation>
</ref>
<ref id="CR5">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Blankenburg</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ruben</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Schwiemann</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Villringer</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Evidence for a rostral-to-caudal somatotopic organization in human primary somatosensory cortex with mirror-reversal in areas 3b and 1</article-title>
<source>Cereb Cortex</source>
<year>2003</year>
<volume>13</volume>
<fpage>987</fpage>
<lpage>993</lpage>
<pub-id pub-id-type="doi">10.1093/cercor/13.9.987</pub-id>
</citation>
<citation citation-type="display-unstructured">Blankenburg F, Ruben J, Meyer R, Schwiemann J, Villringer A (2003) Evidence for a rostral-to-caudal somatotopic organization in human primary somatosensory cortex with mirror-reversal in areas 3b and 1. Cereb Cortex 13:987–993
<pub-id pub-id-type="pmid">12902398</pub-id>
</citation>
</ref>
<ref id="CR6">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bushnell</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Duncan</surname>
<given-names>GH</given-names>
</name>
<name>
<surname>Hofbauer</surname>
<given-names>RK</given-names>
</name>
<name>
<surname>Ha</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>JI</given-names>
</name>
<name>
<surname>Carrier</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Pain perception: is there a role for primary somatosensory cortex?</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1999</year>
<volume>96</volume>
<fpage>7705</fpage>
<lpage>7709</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.96.14.7705</pub-id>
</citation>
<citation citation-type="display-unstructured">Bushnell MC, Duncan GH, Hofbauer RK, Ha B, Chen JI, Carrier B (1999) Pain perception: is there a role for primary somatosensory cortex? Proc Natl Acad Sci USA 96:7705–7709
<pub-id pub-id-type="pmid">10393884</pub-id>
</citation>
</ref>
<ref id="CR7">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Casey</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Minoshima</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Berger</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Koeppe</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Morrow</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Frey</surname>
<given-names>KA</given-names>
</name>
</person-group>
<article-title>Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli</article-title>
<source>J Neurophysiol</source>
<year>1994</year>
<volume>71</volume>
<fpage>802</fpage>
<lpage>807</lpage>
</citation>
<citation citation-type="display-unstructured">Casey KL, Minoshima S, Berger KL, Koeppe RA, Morrow TJ, Frey KA (1994) Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli. J Neurophysiol 71:802–807
<pub-id pub-id-type="pmid">8176441</pub-id>
</citation>
</ref>
<ref id="CR8">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>JI</given-names>
</name>
<name>
<surname>Ha</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bushnell</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Pike</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Duncan</surname>
<given-names>GH</given-names>
</name>
</person-group>
<article-title>Differentiating noxious- and innocuous-related activation of human somatosensory cortices using temporal analysis of fMRI</article-title>
<source>J Neurophysiol</source>
<year>2002</year>
<volume>88</volume>
<fpage>464</fpage>
<lpage>474</lpage>
<pub-id pub-id-type="doi">10.1152/jn.00057.2002</pub-id>
</citation>
<citation citation-type="display-unstructured">Chen JI, Ha B, Bushnell MC, Pike B, Duncan GH (2002) Differentiating noxious- and innocuous-related activation of human somatosensory cortices using temporal analysis of fMRI. J Neurophysiol 88:464–474
<pub-id pub-id-type="pmid">12091568</pub-id>
</citation>
</ref>
<ref id="CR9">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coghill</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Sang</surname>
<given-names>CN</given-names>
</name>
<name>
<surname>Maisog</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Iadarola</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Pain intensity processing within the human brain: a bilateral, distributed mechanism</article-title>
<source>J Neurophysiol</source>
<year>1999</year>
<volume>82</volume>
<fpage>1934</fpage>
<lpage>1943</lpage>
</citation>
<citation citation-type="display-unstructured">Coghill RC, Sang CN, Maisog JM, Iadarola MJ (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 82:1934–1943
<pub-id pub-id-type="pmid">10515983</pub-id>
</citation>
</ref>
<ref id="CR10">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Di Lazzaro</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Pilato</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Saturno</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Oliviero</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dileone</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mazzone</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Insola</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tonali</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Ranieri</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>YZ</given-names>
</name>
<name>
<surname>Rothwell</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex</article-title>
<source>J Physiol</source>
<year>2005</year>
<volume>565</volume>
<fpage>945</fpage>
<lpage>950</lpage>
<pub-id pub-id-type="doi">10.1113/jphysiol.2005.087288</pub-id>
</citation>
<citation citation-type="display-unstructured">Di Lazzaro V, Pilato F, Saturno E, Oliviero A, Dileone M, Mazzone P, Insola A, Tonali PA, Ranieri F, Huang YZ, Rothwell JC (2005) Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. J Physiol 565:945–950
<pub-id pub-id-type="pmid">15845575</pub-id>
</citation>
</ref>
<ref id="CR11">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dieckhofer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Waberski</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Nitsche</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Paulus</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Buchner</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Gobbele</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Transcranial direct current stimulation applied over the somatosensory cortex—differential effect on low and high frequency SEPs</article-title>
<source>Clin Neurophysiol</source>
<year>2006</year>
<volume>117</volume>
<fpage>2221</fpage>
<lpage>2227</lpage>
<pub-id pub-id-type="doi">10.1016/j.clinph.2006.07.136</pub-id>
</citation>
<citation citation-type="display-unstructured">Dieckhofer A, Waberski TD, Nitsche M, Paulus W, Buchner H, Gobbele R (2006) Transcranial direct current stimulation applied over the somatosensory cortex—differential effect on low and high frequency SEPs. Clin Neurophysiol 117:2221–2227
<pub-id pub-id-type="pmid">16931142</pub-id>
</citation>
</ref>
<ref id="CR12">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Enomoto</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ugawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hanajima</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yuasa</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Mochizuki</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Terao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shiio</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Furubayashi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Iwata</surname>
<given-names>NK</given-names>
</name>
<name>
<surname>Kanazawa</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Decreased sensory cortical excitability after 1 Hz rTMS over the ipsilateral primary motor cortex</article-title>
<source>Clin Neuropysiol</source>
<year>2001</year>
<volume>112</volume>
<fpage>2154</fpage>
<lpage>2158</lpage>
<pub-id pub-id-type="doi">10.1016/S1388-2457(01)00667-8</pub-id>
</citation>
<citation citation-type="display-unstructured">Enomoto H, Ugawa Y, Hanajima R, Yuasa K, Mochizuki H, Terao Y, Shiio Y, Furubayashi T, Iwata NK, Kanazawa I (2001) Decreased sensory cortical excitability after 1 Hz rTMS over the ipsilateral primary motor cortex. Clin Neuropysiol 112:2154–2158 </citation>
</ref>
<ref id="CR13">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Forss</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Raij</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Seppa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hari</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Common cortical network for first and second pain</article-title>
<source>Neuroimage</source>
<year>2005</year>
<volume>24</volume>
<fpage>132</fpage>
<lpage>142</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuroimage.2004.09.032</pub-id>
</citation>
<citation citation-type="display-unstructured">Forss N, Raij TT, Seppa M, Hari R (2005) Common cortical network for first and second pain. Neuroimage 24:132–142
<pub-id pub-id-type="pmid">15588604</pub-id>
</citation>
</ref>
<ref id="CR14">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Franca</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Koch</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Mochizuki</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>YZ</given-names>
</name>
<name>
<surname>Rothwell</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Effects of theta burst stimulation protocols on phosphene threshold</article-title>
<source>Clin Neurophysiol</source>
<year>2006</year>
<volume>117</volume>
<fpage>1808</fpage>
<lpage>1813</lpage>
<pub-id pub-id-type="doi">10.1016/j.clinph.2006.03.019</pub-id>
</citation>
<citation citation-type="display-unstructured">Franca M, Koch G, Mochizuki H, Huang YZ, Rothwell JC (2006) Effects of theta burst stimulation protocols on phosphene threshold. Clin Neurophysiol 117:1808–1813
<pub-id pub-id-type="pmid">16797230</pub-id>
</citation>
</ref>
<ref id="CR15">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fregni</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Freedman</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pascual-Leone</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques</article-title>
<source>Lancet Neurol</source>
<year>2007</year>
<volume>6</volume>
<fpage>188</fpage>
<lpage>191</lpage>
<pub-id pub-id-type="doi">10.1016/S1474-4422(07)70032-7</pub-id>
</citation>
<citation citation-type="display-unstructured">Fregni F, Freedman S, Pascual-Leone A (2007) Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques. Lancet Neurol 6:188–191
<pub-id pub-id-type="pmid">17239806</pub-id>
</citation>
</ref>
<ref id="CR16">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Friedman</surname>
<given-names>DP</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>O’Neill</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Mishkin</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence for a corticolimbic pathway for touch</article-title>
<source>J Comp Neurol</source>
<year>1986</year>
<volume>252</volume>
<fpage>323</fpage>
<lpage>347</lpage>
<pub-id pub-id-type="doi">10.1002/cne.902520304</pub-id>
</citation>
<citation citation-type="display-unstructured">Friedman DP, Murray EA, O’Neill JB, Mishkin M (1986) Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence for a corticolimbic pathway for touch. J Comp Neurol 252:323–347
<pub-id pub-id-type="pmid">3793980</pub-id>
</citation>
</ref>
<ref id="CR17">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garcia-Larrea</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Peyron</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Laurent</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mauguiere</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Association and dissociation between laser-evoked potentials and pain perception</article-title>
<source>Neuroreport</source>
<year>1997</year>
<volume>8</volume>
<fpage>3785</fpage>
<lpage>3789</lpage>
</citation>
<citation citation-type="display-unstructured">Garcia-Larrea L, Peyron R, Laurent B, Mauguiere F (1997) Association and dissociation between laser-evoked potentials and pain perception. Neuroreport 8:3785–3789
<pub-id pub-id-type="pmid">9427371</pub-id>
</citation>
</ref>
<ref id="CR18">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garcia-Larrea</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Frot</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Valeriani</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Brain generators of laser-evoked potentials: from dipoles to functional significance</article-title>
<source>Neurophysiol Clin</source>
<year>2003</year>
<volume>33</volume>
<fpage>279</fpage>
<lpage>292</lpage>
<pub-id pub-id-type="doi">10.1016/j.neucli.2003.10.008</pub-id>
</citation>
<citation citation-type="display-unstructured">Garcia-Larrea L, Frot M, Valeriani M (2003) Brain generators of laser-evoked potentials: from dipoles to functional significance. Neurophysiol Clin 33:279–292
<pub-id pub-id-type="pmid">14678842</pub-id>
</citation>
</ref>
<ref id="CR19">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gelnar</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Krauss</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Sheehe</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Szeverenyi</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Apkarian</surname>
<given-names>AV</given-names>
</name>
</person-group>
<article-title>A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks</article-title>
<source>Neuroimage</source>
<year>1999</year>
<volume>10</volume>
<fpage>460</fpage>
<lpage>482</lpage>
<pub-id pub-id-type="doi">10.1006/nimg.1999.0482</pub-id>
</citation>
<citation citation-type="display-unstructured">Gelnar PA, Krauss BR, Sheehe PR, Szeverenyi NM, Apkarian AV (1999) A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. Neuroimage 10:460–482
<pub-id pub-id-type="pmid">10493903</pub-id>
</citation>
</ref>
<ref id="CR20">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>YZ</given-names>
</name>
<name>
<surname>Rothwell</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>The effect of short-duration bursts of high-frequency, low-intensity transcranial magnetic stimulation on the human motor cortex</article-title>
<source>Clin Neurophysiol</source>
<year>2004</year>
<volume>115</volume>
<fpage>1069</fpage>
<lpage>1075</lpage>
<pub-id pub-id-type="doi">10.1016/j.clinph.2003.12.026</pub-id>
</citation>
<citation citation-type="display-unstructured">Huang YZ, Rothwell JC (2004) The effect of short-duration bursts of high-frequency, low-intensity transcranial magnetic stimulation on the human motor cortex. Clin Neurophysiol 115:1069–1075
<pub-id pub-id-type="pmid">15066532</pub-id>
</citation>
</ref>
<ref id="CR21">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>YZ</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Rounis</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bhatia</surname>
<given-names>KP</given-names>
</name>
<name>
<surname>Rothwell</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Theta burst stimulation of the human motor cortex</article-title>
<source>Neuron</source>
<year>2005</year>
<volume>45</volume>
<fpage>201</fpage>
<lpage>206</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuron.2004.12.033</pub-id>
</citation>
<citation citation-type="display-unstructured">Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206
<pub-id pub-id-type="pmid">15664172</pub-id>
</citation>
</ref>
<ref id="CR22">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>YZ</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Rothwell</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Wen</surname>
<given-names>HY</given-names>
</name>
</person-group>
<article-title>The after-effect of human theta burst stimulation is NMDA receptor dependent</article-title>
<source>Clin Neurophysiol</source>
<year>2007</year>
<volume>118</volume>
<fpage>1028</fpage>
<lpage>1032</lpage>
<pub-id pub-id-type="doi">10.1016/j.clinph.2007.01.021</pub-id>
</citation>
<citation citation-type="display-unstructured">Huang YZ, Chen RS, Rothwell JC, Wen HY (2007) The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol 118:1028–1032
<pub-id pub-id-type="pmid">17368094</pub-id>
</citation>
</ref>
<ref id="CR23">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Inui</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>BT</given-names>
</name>
<name>
<surname>Ojima</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tamura</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Nakata</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wasaka</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tran</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Kakigi</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Pain processing within the primary somatosensory cortex in humans</article-title>
<source>Eur J Neurosci</source>
<year>2003</year>
<volume>18</volume>
<fpage>2859</fpage>
<lpage>2866</lpage>
<pub-id pub-id-type="doi">10.1111/j.1460-9568.2003.02995.x</pub-id>
</citation>
<citation citation-type="display-unstructured">Inui K, Wang X, Qiu Y, Nguyen BT, Ojima S, Tamura Y, Nakata H, Wasaka T, Tran TD, Kakigi R (2003) Pain processing within the primary somatosensory cortex in humans. Eur J Neurosci 18:2859–2866
<pub-id pub-id-type="pmid">14656335</pub-id>
</citation>
</ref>
<ref id="CR24">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ishikawa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Matsunaga</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nakanishi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kawahira</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Murayama</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tsuji</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>YZ</given-names>
</name>
<name>
<surname>Rothwell</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials</article-title>
<source>Clin Neurophysiol</source>
<year>2007</year>
<volume>118</volume>
<fpage>1033</fpage>
<lpage>1043</lpage>
<pub-id pub-id-type="doi">10.1016/j.clinph.2007.02.003</pub-id>
</citation>
<citation citation-type="display-unstructured">Ishikawa S, Matsunaga K, Nakanishi R, Kawahira K, Murayama N, Tsuji S, Huang YZ, Rothwell JC (2007) Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials. Clin Neurophysiol 118:1033–1043
<pub-id pub-id-type="pmid">17382582</pub-id>
</citation>
</ref>
<ref id="CR25">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Summers</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Pridmore</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Changes to somatosensory detection and pain thresholds following high frequency repetitive TMS of the motor cortex in individuals suffering from chronic pain</article-title>
<source>Pain</source>
<year>2006</year>
<volume>123</volume>
<fpage>187</fpage>
<lpage>192</lpage>
<pub-id pub-id-type="doi">10.1016/j.pain.2006.02.030</pub-id>
</citation>
<citation citation-type="display-unstructured">Johnson S, Summers J, Pridmore S (2006) Changes to somatosensory detection and pain thresholds following high frequency repetitive TMS of the motor cortex in individuals suffering from chronic pain. Pain 123:187–192
<pub-id pub-id-type="pmid">16616419</pub-id>
</citation>
</ref>
<ref id="CR26">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kakigi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Inui</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tamura</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Electrophysiological studies on human pain perception</article-title>
<source>Clin Neurophysiol</source>
<year>2005</year>
<volume>116</volume>
<fpage>743</fpage>
<lpage>763</lpage>
<pub-id pub-id-type="doi">10.1016/j.clinph.2004.11.016</pub-id>
</citation>
<citation citation-type="display-unstructured">Kakigi R, Inui K, Tamura Y (2005) Electrophysiological studies on human pain perception. Clin Neurophysiol 116:743–763
<pub-id pub-id-type="pmid">15792883</pub-id>
</citation>
</ref>
<ref id="CR27">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kanda</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nagamine</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ikeda</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ohara</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kunieda</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Fujiwara</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Yazawa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sawamoto</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Matsumoto</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Taki</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Shibasaki</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Primary somatosensory cortex is actively involved in pain processing in human</article-title>
<source>Brain Res</source>
<year>2000</year>
<volume>853</volume>
<fpage>282</fpage>
<lpage>289</lpage>
<pub-id pub-id-type="doi">10.1016/S0006-8993(99)02274-X</pub-id>
</citation>
<citation citation-type="display-unstructured">Kanda M, Nagamine T, Ikeda A, Ohara S, Kunieda T, Fujiwara N, Yazawa S, Sawamoto N, Matsumoto R, Taki W, Shibasaki H (2000) Primary somatosensory cortex is actively involved in pain processing in human. Brain Res 853:282–289
<pub-id pub-id-type="pmid">10640625</pub-id>
</citation>
</ref>
<ref id="CR28">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kanda</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mima</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Oga</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Matsuhashi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Toma</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hara</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Satow</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nagamine</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Rothwell</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Shibasaki</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Transcranial magnetic stimulation (TMS) of the sensorimotor cortex and medial frontal cortex modifies human pain perception</article-title>
<source>Clin Neurophysiol</source>
<year>2003</year>
<volume>114</volume>
<fpage>860</fpage>
<lpage>866</lpage>
<pub-id pub-id-type="doi">10.1016/S1388-2457(03)00034-8</pub-id>
</citation>
<citation citation-type="display-unstructured">Kanda M, Mima T, Oga T, Matsuhashi M, Toma K, Hara H, Satow T, Nagamine T, Rothwell JC, Shibasaki H (2003) Transcranial magnetic stimulation (TMS) of the sensorimotor cortex and medial frontal cortex modifies human pain perception. Clin Neurophysiol 114:860–866
<pub-id pub-id-type="pmid">12738431</pub-id>
</citation>
</ref>
<ref id="CR29">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khedr</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Kotb</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kamel</surname>
<given-names>NF</given-names>
</name>
<name>
<surname>Ahmed</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Sadek</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Rothwell</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Longlasting antalgic effects of daily sessions of repetitive transcranial magnetic stimulation in central and peripheral neuropathic pain</article-title>
<source>J Neurol Neurosurg Psychiatry</source>
<year>2005</year>
<volume>76</volume>
<fpage>833</fpage>
<lpage>838</lpage>
<pub-id pub-id-type="doi">10.1136/jnnp.2004.055806</pub-id>
</citation>
<citation citation-type="display-unstructured">Khedr EM, Kotb H, Kamel NF, Ahmed MA, Sadek R, Rothwell JC (2005) Longlasting antalgic effects of daily sessions of repetitive transcranial magnetic stimulation in central and peripheral neuropathic pain. J Neurol Neurosurg Psychiatry 76:833–838
<pub-id pub-id-type="pmid">15897507</pub-id>
</citation>
</ref>
<ref id="CR30">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koch</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Franca</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mochizuki</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Marconi</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Caltagirone</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rothwell</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Interactions between pairs of transcranial magnetic stimuli over the human left dorsal premotor cortex differ from those seen in primary motor cortex</article-title>
<source>J Physiol</source>
<year>2007</year>
<volume>15</volume>
<fpage>551</fpage>
<lpage>562</lpage>
</citation>
<citation citation-type="display-unstructured">Koch G, Franca M, Mochizuki H, Marconi B, Caltagirone C, Rothwell JC (2007) Interactions between pairs of transcranial magnetic stimuli over the human left dorsal premotor cortex differ from those seen in primary motor cortex. J Physiol 15:551–562
<pub-id pub-id-type="pmid">17124263</pub-id>
</citation>
</ref>
<ref id="CR31">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kujirai</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rothwell</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Cohen</surname>
<given-names>LG</given-names>
</name>
</person-group>
<article-title>The effect of transcranial magnetic stimulation on median nerve somatosensory evoked potentials</article-title>
<source>Electroencephalogr Clin Neurophysiol</source>
<year>1993</year>
<volume>89</volume>
<fpage>227</fpage>
<lpage>234</lpage>
<pub-id pub-id-type="doi">10.1016/0168-5597(93)90100-4</pub-id>
</citation>
<citation citation-type="display-unstructured">Kujirai T, Sato M, Rothwell JC, Cohen LG (1993) The effect of transcranial magnetic stimulation on median nerve somatosensory evoked potentials. Electroencephalogr Clin Neurophysiol 89:227–234
<pub-id pub-id-type="pmid">7688685</pub-id>
</citation>
</ref>
<ref id="CR32">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lefaucheur</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Drouot</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Menard-Lefaucheur</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Zerah</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Bendib</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Cesaro</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Keravel</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>JP</given-names>
</name>
</person-group>
<article-title>Neurogenic pain relief by repetitive transcranial magnetic cortical stimulation depends on the origin and the site of pain</article-title>
<source>J Neurol Neurosurg Psychiatry</source>
<year>2004</year>
<volume>75</volume>
<fpage>612</fpage>
<lpage>616</lpage>
<pub-id pub-id-type="doi">10.1136/jnnp.2003.022236</pub-id>
</citation>
<citation citation-type="display-unstructured">Lefaucheur JP, Drouot X, Menard-Lefaucheur I, Zerah F, Bendib B, Cesaro P, Keravel Y, Nguyen JP (2004) Neurogenic pain relief by repetitive transcranial magnetic cortical stimulation depends on the origin and the site of pain. J Neurol Neurosurg Psychiatry 75:612–616
<pub-id pub-id-type="pmid">15026508</pub-id>
</citation>
</ref>
<ref id="CR33">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leo</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Latif</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Repetitive transcranial magnetic stimulation (rTMS) in experimentally induced and chronic neuropathic pain: a review</article-title>
<source>J Pain</source>
<year>2007</year>
<volume>8</volume>
<fpage>453</fpage>
<lpage>459</lpage>
<pub-id pub-id-type="doi">10.1016/j.jpain.2007.01.009</pub-id>
</citation>
<citation citation-type="display-unstructured">Leo RJ, Latif T (2007) Repetitive transcranial magnetic stimulation (rTMS) in experimentally induced and chronic neuropathic pain: a review. J Pain 8:453–459
<pub-id pub-id-type="pmid">17434804</pub-id>
</citation>
</ref>
<ref id="CR34">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lisanby</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Gutman</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Luber</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Schroeder</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sackeim</surname>
<given-names>HA</given-names>
</name>
</person-group>
<article-title>Sham TMS: intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials</article-title>
<source>Biol Psychiatry</source>
<year>2001</year>
<volume>49</volume>
<fpage>460</fpage>
<lpage>463</lpage>
<pub-id pub-id-type="doi">10.1016/S0006-3223(00)01110-0</pub-id>
</citation>
<citation citation-type="display-unstructured">Lisanby SH, Gutman D, Luber B, Schroeder C, Sackeim HA (2001) Sham TMS: intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biol Psychiatry 49:460–463
<pub-id pub-id-type="pmid">11274658</pub-id>
</citation>
</ref>
<ref id="CR35">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsunaga</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nitsche</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Tsuji</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rothwell</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans</article-title>
<source>Clin Neurophysiol</source>
<year>2004</year>
<volume>115</volume>
<fpage>456</fpage>
<lpage>460</lpage>
<pub-id pub-id-type="doi">10.1016/S1388-2457(03)00362-6</pub-id>
</citation>
<citation citation-type="display-unstructured">Matsunaga K, Nitsche MA, Tsuji S, Rothwell JC (2004) Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol 115:456–460
<pub-id pub-id-type="pmid">14744588</pub-id>
</citation>
</ref>
<ref id="CR36">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mochizuki</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Franca</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>YZ</given-names>
</name>
<name>
<surname>Rothwell</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>The role of dorsal premotor area in reaction task: comparing the “virtual lesion” effect of paired pulse or theta burst transcranial magnetic stimulation</article-title>
<source>Exp Brain Res</source>
<year>2005</year>
<volume>167</volume>
<fpage>414</fpage>
<lpage>421</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-005-0047-5</pub-id>
</citation>
<citation citation-type="display-unstructured">Mochizuki H, Franca M, Huang YZ, Rothwell JC (2005) The role of dorsal premotor area in reaction task: comparing the “virtual lesion” effect of paired pulse or theta burst transcranial magnetic stimulation. Exp Brain Res 167:414–421
<pub-id pub-id-type="pmid">16047176</pub-id>
</citation>
</ref>
<ref id="CR37">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mochizuki</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Furubayashi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hanajima</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Terao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mizuno</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Okabe</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ugawa</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Hemoglobin concentration changes in the contralateral hemisphere during and after theta burst stimulation of the human sensorimotor cortices</article-title>
<source>Exp Brain Res</source>
<year>2007</year>
<volume>180</volume>
<fpage>667</fpage>
<lpage>675</lpage>
<pub-id pub-id-type="doi">10.1007/s00221-007-0884-5</pub-id>
</citation>
<citation citation-type="display-unstructured">Mochizuki H, Furubayashi T, Hanajima R, Terao Y, Mizuno Y, Okabe S, Ugawa Y (2007) Hemoglobin concentration changes in the contralateral hemisphere during and after theta burst stimulation of the human sensorimotor cortices. Exp Brain Res 180:667–675
<pub-id pub-id-type="pmid">17297550</pub-id>
</citation>
</ref>
<ref id="CR38">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mylius</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Reis</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Knaack</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Haag</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Oertel</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Rosenow</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Schepelmann</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>High-frequency rTMS of the motor cortex does not influence the nociceptive flexion reflex but increases the unpleasantness of electrically induced pain</article-title>
<source>Neurosci Lett</source>
<year>2007</year>
<volume>415</volume>
<fpage>49</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="doi">10.1016/j.neulet.2006.12.042</pub-id>
</citation>
<citation citation-type="display-unstructured">Mylius V, Reis J, Knaack A, Haag A, Oertel WH, Rosenow F, Schepelmann K (2007) High-frequency rTMS of the motor cortex does not influence the nociceptive flexion reflex but increases the unpleasantness of electrically induced pain. Neurosci Lett 415:49–54
<pub-id pub-id-type="pmid">17258394</pub-id>
</citation>
</ref>
<ref id="CR39">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakata</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Inui</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wasaka</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tamura</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tran</surname>
<given-names>TD</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>BT</given-names>
</name>
<name>
<surname>Kakigi</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Movements modulate cortical activities evoked by noxious stimulation</article-title>
<source>Pain</source>
<year>2004</year>
<volume>107</volume>
<fpage>91</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="doi">10.1016/j.pain.2003.10.001</pub-id>
</citation>
<citation citation-type="display-unstructured">Nakata H, Inui K, Wasaka T, Tamura Y, Tran TD, Qiu Y, Wang X, Nguyen BT, Kakigi R (2004) Movements modulate cortical activities evoked by noxious stimulation. Pain 107:91–98
<pub-id pub-id-type="pmid">14715394</pub-id>
</citation>
</ref>
<ref id="CR40">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nitsche</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Jaussi</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Liebetanz</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tergau</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Paulus</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Consolidation of human motor cortical neuroplasticity by D-cycloserine</article-title>
<source>Neuropsychopharmacology</source>
<year>2004</year>
<volume>29</volume>
<fpage>1573</fpage>
<lpage>1578</lpage>
<pub-id pub-id-type="doi">10.1038/sj.npp.1300517</pub-id>
</citation>
<citation citation-type="display-unstructured">Nitsche MA, Jaussi W, Liebetanz D, Lang N, Tergau F, Paulus W (2004) Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology 29:1573–1578
<pub-id pub-id-type="pmid">15199378</pub-id>
</citation>
</ref>
<ref id="CR41">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nitsche</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Paulus</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation</article-title>
<source>J Physiol</source>
<year>2000</year>
<volume>527</volume>
<fpage>633</fpage>
<lpage>639</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-7793.2000.t01-1-00633.x</pub-id>
</citation>
<citation citation-type="display-unstructured">Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527:633–639
<pub-id pub-id-type="pmid">10990547</pub-id>
</citation>
</ref>
<ref id="CR42">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nitsche</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Paulus</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans</article-title>
<source>Neurology</source>
<year>2001</year>
<volume>57</volume>
<fpage>1899</fpage>
<lpage>1901</lpage>
</citation>
<citation citation-type="display-unstructured">Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:1899–1901
<pub-id pub-id-type="pmid">11723286</pub-id>
</citation>
</ref>
<ref id="CR43">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ohara</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Crone</surname>
<given-names>NE</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Treede</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Lenz</surname>
<given-names>FA</given-names>
</name>
</person-group>
<article-title>Cutaneous painful laser stimuli evoke responses recorded directly from primary somatosensory cortex in awake humans</article-title>
<source>J Neurophysiol</source>
<year>2004</year>
<volume>91</volume>
<fpage>2734</fpage>
<lpage>2746</lpage>
<pub-id pub-id-type="doi">10.1152/jn.00912.2003</pub-id>
</citation>
<citation citation-type="display-unstructured">Ohara S, Crone NE, Weiss N, Treede RD, Lenz FA (2004) Cutaneous painful laser stimuli evoke responses recorded directly from primary somatosensory cortex in awake humans. J Neurophysiol 91:2734–2746
<pub-id pub-id-type="pmid">14602841</pub-id>
</citation>
</ref>
<ref id="CR44">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ohara</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>WS</given-names>
</name>
<name>
<surname>Lawson</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>HT</given-names>
</name>
<name>
<surname>Lenz</surname>
<given-names>FA</given-names>
</name>
</person-group>
<article-title>Endogenous and exogenous modulators of potentials evoked by a painful cutaneous laser (LEPs)</article-title>
<source>Acta Neurochir Suppl</source>
<year>2006</year>
<volume>99</volume>
<fpage>77</fpage>
<lpage>79</lpage>
</citation>
<citation citation-type="display-unstructured">Ohara S, Anderson WS, Lawson HC, Lee HT, Lenz FA (2006) Endogenous and exogenous modulators of potentials evoked by a painful cutaneous laser (LEPs). Acta Neurochir Suppl 99:77–79
<pub-id pub-id-type="pmid">17370769</pub-id>
</citation>
</ref>
<ref id="CR45">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Paulus</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Toward establishing a therapeutic window for rTMS by theta burst stimulation</article-title>
<source>Neuron</source>
<year>2005</year>
<volume>45</volume>
<fpage>181</fpage>
<lpage>183</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuron.2005.01.008</pub-id>
</citation>
<citation citation-type="display-unstructured">Paulus W (2005) Toward establishing a therapeutic window for rTMS by theta burst stimulation. Neuron 45:181–183
<pub-id pub-id-type="pmid">15664167</pub-id>
</citation>
</ref>
<ref id="CR46">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peyron</surname>
<given-names>R</given-names>
</name>
<name>
<surname>García-Larrea</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Grégoire</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Costes</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Convers</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lavenne</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Mauguière</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Michel</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Laurent</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Haemodynamic brain responses to acute pain in humans: sensory and attentional networks</article-title>
<source>Brain</source>
<year>1999</year>
<volume>122</volume>
<fpage>1765</fpage>
<lpage>1779</lpage>
<pub-id pub-id-type="doi">10.1093/brain/122.9.1765</pub-id>
</citation>
<citation citation-type="display-unstructured">Peyron R, García-Larrea L, Grégoire MC, Costes N, Convers P, Lavenne F, Mauguière F, Michel D, Laurent B (1999) Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 122:1765–1779
<pub-id pub-id-type="pmid">10468515</pub-id>
</citation>
</ref>
<ref id="CR47">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peyron</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Laurent</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Garcia-Larrea</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Functional imaging of brain responses to pain. A review and meta-analysis</article-title>
<source>Neurophysiol Clin</source>
<year>2000</year>
<volume>30</volume>
<fpage>263</fpage>
<lpage>288</lpage>
<pub-id pub-id-type="doi">10.1016/S0987-7053(00)00227-6</pub-id>
</citation>
<citation citation-type="display-unstructured">Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol Clin 30:263–288
<pub-id pub-id-type="pmid">11126640</pub-id>
</citation>
</ref>
<ref id="CR48">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ploner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Schmitz</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Freund</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Schnitzler</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Parallel activation of primary and secondary somatosensory cortices in human pain processing</article-title>
<source>J Neurophysiol</source>
<year>1999</year>
<volume>81</volume>
<fpage>3100</fpage>
<lpage>3104</lpage>
</citation>
<citation citation-type="display-unstructured">Ploner M, Schmitz F, Freund HJ, Schnitzler A (1999) Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 81:3100–3104
<pub-id pub-id-type="pmid">10368426</pub-id>
</citation>
</ref>
<ref id="CR49">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ploner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Schmitz</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Freund</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Schnitzler</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Differential organization of touch and pain in human primary somatosensory cortex</article-title>
<source>J Neurophysiol</source>
<year>2000</year>
<volume>83</volume>
<fpage>1770</fpage>
<lpage>1776</lpage>
</citation>
<citation citation-type="display-unstructured">Ploner M, Schmitz F, Freund HJ, Schnitzler A (2000) Differential organization of touch and pain in human primary somatosensory cortex. J Neurophysiol 83:1770–1776
<pub-id pub-id-type="pmid">10712498</pub-id>
</citation>
</ref>
<ref id="CR50">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ploner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gross</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Timmermann</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Schnitzler</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Cortical representation of first and second pain sensation in humans</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2002</year>
<volume>99</volume>
<fpage>12444</fpage>
<lpage>12448</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.182272899</pub-id>
</citation>
<citation citation-type="display-unstructured">Ploner M, Gross J, Timmermann L, Schnitzler A (2002) Cortical representation of first and second pain sensation in humans. Proc Natl Acad Sci USA 99:12444–12448
<pub-id pub-id-type="pmid">12209003</pub-id>
</citation>
</ref>
<ref id="CR51">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raij</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Vartiainen</surname>
<given-names>NV</given-names>
</name>
<name>
<surname>Jousmaki</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Hari</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Effects of interstimulus interval on cortical responses to painful laser stimulation</article-title>
<source>J Clin Neurophysiol</source>
<year>2003</year>
<volume>20</volume>
<fpage>73</fpage>
<lpage>79</lpage>
<pub-id pub-id-type="doi">10.1097/00004691-200302000-00010</pub-id>
</citation>
<citation citation-type="display-unstructured">Raij TT, Vartiainen NV, Jousmaki V, Hari R (2003) Effects of interstimulus interval on cortical responses to painful laser stimulation. J Clin Neurophysiol 20:73–79
<pub-id pub-id-type="pmid">12684562</pub-id>
</citation>
</ref>
<ref id="CR52">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rogalewski</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Breitenstein</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Nitsche</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Paulus</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Knecht</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Transcranial direct current stimulation disrupts tactile perception</article-title>
<source>Eur J Neurosci</source>
<year>2004</year>
<volume>20</volume>
<fpage>313</fpage>
<lpage>316</lpage>
<pub-id pub-id-type="doi">10.1111/j.0953-816X.2004.03450.x</pub-id>
</citation>
<citation citation-type="display-unstructured">Rogalewski A, Breitenstein C, Nitsche MA, Paulus W, Knecht S (2004) Transcranial direct current stimulation disrupts tactile perception. Eur J Neurosci 20:313–316
<pub-id pub-id-type="pmid">15245504</pub-id>
</citation>
</ref>
<ref id="CR53">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spiegel</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hansen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Treede</surname>
<given-names>RD</given-names>
</name>
</person-group>
<article-title>Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser evoked potentials</article-title>
<source>Clin Neurophysiol</source>
<year>2000</year>
<volume>111</volume>
<fpage>725</fpage>
<lpage>735</lpage>
<pub-id pub-id-type="doi">10.1016/S1388-2457(99)00297-7</pub-id>
</citation>
<citation citation-type="display-unstructured">Spiegel J, Hansen C, Treede RD (2000) Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser evoked potentials. Clin Neurophysiol 111:725–735
<pub-id pub-id-type="pmid">10727924</pub-id>
</citation>
</ref>
<ref id="CR54">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Summers</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pridmore</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Oberoi</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Changes to cold detection and pain thresholds following low and high frequency transcranial magnetic stimulation of the motor cortex</article-title>
<source>Neurosci Lett</source>
<year>2004</year>
<volume>368</volume>
<fpage>197</fpage>
<lpage>200</lpage>
<pub-id pub-id-type="doi">10.1016/j.neulet.2004.07.008</pub-id>
</citation>
<citation citation-type="display-unstructured">Summers J, Johnson S, Pridmore S, Oberoi G (2004) Changes to cold detection and pain thresholds following low and high frequency transcranial magnetic stimulation of the motor cortex. Neurosci Lett 368:197–200
<pub-id pub-id-type="pmid">15351448</pub-id>
</citation>
</ref>
<ref id="CR55">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Talbot</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Marrett</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bushnell</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Duncan</surname>
<given-names>GH</given-names>
</name>
</person-group>
<article-title>Multiple representations of pain in human cerebral cortex</article-title>
<source>Science</source>
<year>1991</year>
<volume>251</volume>
<fpage>1355</fpage>
<lpage>1358</lpage>
<pub-id pub-id-type="doi">10.1126/science.2003220</pub-id>
</citation>
<citation citation-type="display-unstructured">Talbot JD, Marrett S, Evans AC, Meyer E, Bushnell MC, Duncan GH (1991) Multiple representations of pain in human cerebral cortex. Science 251:1355–1358
<pub-id pub-id-type="pmid">2003220</pub-id>
</citation>
</ref>
<ref id="CR56">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tamura</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hoshiyama</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Inui</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nakata</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Qiu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ugawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kakigi</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Facilitation of A[delta]-fiber-mediated acute pain by repetitive transcranial magnetic stimulation</article-title>
<source>Neurology</source>
<year>2004</year>
<volume>62</volume>
<fpage>2176</fpage>
<lpage>2181</lpage>
</citation>
<citation citation-type="display-unstructured">Tamura Y, Hoshiyama M, Inui K, Nakata H, Qiu Y, Ugawa Y, Inoue K, Kakigi R (2004a) Facilitation of A[delta]-fiber-mediated acute pain by repetitive transcranial magnetic stimulation. Neurology 62:2176–2181
<pub-id pub-id-type="pmid">15210878</pub-id>
</citation>
</ref>
<ref id="CR57">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tamura</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Okabe</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ohnishi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Saito</surname>
<given-names>N D</given-names>
</name>
<name>
<surname>Arai</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Mochio</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ugawa</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Effects of 1-Hz repetitive transcranial magnetic stimulation on acute pain induced by capsaicin</article-title>
<source>Pain</source>
<year>2004</year>
<volume>107</volume>
<fpage>107</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="doi">10.1016/j.pain.2003.10.011</pub-id>
</citation>
<citation citation-type="display-unstructured">Tamura Y, Okabe S, Ohnishi T, N Saito D, Arai N, Mochio S, Inoue K, Ugawa Y (2004b) Effects of 1-Hz repetitive transcranial magnetic stimulation on acute pain induced by capsaicin. Pain 107:107–115
<pub-id pub-id-type="pmid">14715396</pub-id>
</citation>
</ref>
<ref id="CR58">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tarkka</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Treede</surname>
<given-names>RD</given-names>
</name>
</person-group>
<article-title>Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser</article-title>
<source>J Clin Neurophysiol</source>
<year>1993</year>
<volume>10</volume>
<fpage>513</fpage>
<lpage>519</lpage>
<pub-id pub-id-type="doi">10.1097/00004691-199310000-00009</pub-id>
</citation>
<citation citation-type="display-unstructured">Tarkka IM, Treede RD (1993) Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J Clin Neurophysiol 10:513–519
<pub-id pub-id-type="pmid">8308146</pub-id>
</citation>
</ref>
<ref id="CR59">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teo</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Swayne</surname>
<given-names>OB</given-names>
</name>
<name>
<surname>Rothwell</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Further evidence for NMDA-dependence of the after-effects of human theta burst stimulation</article-title>
<source>Clin Neurophysiol</source>
<year>2007</year>
<volume>118</volume>
<fpage>1649</fpage>
<lpage>1651</lpage>
<pub-id pub-id-type="doi">10.1016/j.clinph.2007.04.010</pub-id>
</citation>
<citation citation-type="display-unstructured">Teo JT, Swayne OB, Rothwell JC (2007) Further evidence for NMDA-dependence of the after-effects of human theta burst stimulation. Clin Neurophysiol 118:1649–1651
<pub-id pub-id-type="pmid">17502166</pub-id>
</citation>
</ref>
<ref id="CR60">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Timmermann</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ploner</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Haucke</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Schmitz</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Baltissen</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Schnitzler</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Differential coding of pain intensity in the human primary and secondary somatosensory cortex</article-title>
<source>J Neurophysiol</source>
<year>2001</year>
<volume>86</volume>
<fpage>1499</fpage>
<lpage>1503</lpage>
</citation>
<citation citation-type="display-unstructured">Timmermann L, Ploner M, Haucke K, Schmitz F, Baltissen R, Schnitzler A (2001) Differential coding of pain intensity in the human primary and secondary somatosensory cortex. J Neurophysiol 86:1499–1503
<pub-id pub-id-type="pmid">11535693</pub-id>
</citation>
</ref>
<ref id="CR61">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tölle</surname>
<given-names>TR</given-names>
</name>
<name>
<surname>Kaufmann</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Siessmeier</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Lautenbacher</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Berthele</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Munz</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Zieglgansberger</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Willoch</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Schwaiger</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Conrad</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bartenstein</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis</article-title>
<source>Ann Neurol</source>
<year>1999</year>
<volume>45</volume>
<fpage>40</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="doi">10.1002/1531-8249(199901)45:1<40::AID-ART8>3.0.CO;2-L</pub-id>
</citation>
<citation citation-type="display-unstructured">Tölle TR, Kaufmann T, Siessmeier T, Lautenbacher S, Berthele A, Munz F, Zieglgansberger W, Willoch F, Schwaiger M, Conrad B, Bartenstein P (1999) Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Ann Neurol 45:40–47
<pub-id pub-id-type="pmid">9894875</pub-id>
</citation>
</ref>
<ref id="CR62">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Treede</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Lorenz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Baumgartner</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Clinical usefulness of laser-evoked potentials</article-title>
<source>Neurophysiol Clin</source>
<year>2003</year>
<volume>33</volume>
<fpage>303</fpage>
<lpage>331</lpage>
<pub-id pub-id-type="doi">10.1016/j.neucli.2003.10.009</pub-id>
</citation>
<citation citation-type="display-unstructured">Treede RD, Lorenz J, Baumgartner U (2003) Clinical usefulness of laser-evoked potentials. Neurophysiol Clin 33:303–331
<pub-id pub-id-type="pmid">14678844</pub-id>
</citation>
</ref>
<ref id="CR63">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Treede</surname>
<given-names>RD</given-names>
</name>
</person-group>
<article-title>Neurophysiological studies of pain pathways in peripheral and central nervous system disorders</article-title>
<source>J Neurol</source>
<year>2003</year>
<volume>250</volume>
<fpage>1152</fpage>
<lpage>1161</lpage>
<pub-id pub-id-type="doi">10.1007/s00415-003-0237-7</pub-id>
</citation>
<citation citation-type="display-unstructured">Treede RD (2003) Neurophysiological studies of pain pathways in peripheral and central nervous system disorders. J Neurol 250:1152–1161
<pub-id pub-id-type="pmid">14586594</pub-id>
</citation>
</ref>
<ref id="CR64">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsuji</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Rothwell</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Long lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans</article-title>
<source>J Physiol</source>
<year>2002</year>
<volume>540</volume>
<fpage>367</fpage>
<lpage>376</lpage>
<pub-id pub-id-type="doi">10.1113/jphysiol.2001.013504</pub-id>
</citation>
<citation citation-type="display-unstructured">Tsuji T, Rothwell JC (2002) Long lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans. J Physiol 540:367–376
<pub-id pub-id-type="pmid">11927693</pub-id>
</citation>
</ref>
<ref id="CR65">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Valeriani</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Barba</surname>
<given-names>C</given-names>
</name>
<name>
<surname>le Pera</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Restuccia</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Colicchio</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Tonali</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Gagliardo</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Treede</surname>
<given-names>RD</given-names>
</name>
</person-group>
<article-title>Different neuronal contribution to N20 somatosensory evoked potential and to CO2 laser evoked potentials: an intracerebral recording study</article-title>
<source>Clin Neurophysiol</source>
<year>2004</year>
<volume>115</volume>
<fpage>211</fpage>
<lpage>216</lpage>
<pub-id pub-id-type="doi">10.1016/S1388-2457(03)00287-6</pub-id>
</citation>
<citation citation-type="display-unstructured">Valeriani M, Barba C, le Pera D, Restuccia D, Colicchio G, Tonali P, Gagliardo O, Treede RD (2004) Different neuronal contribution to N20 somatosensory evoked potential and to CO2 laser evoked potentials: an intracerebral recording study. Clin Neurophysiol 115:211–216
<pub-id pub-id-type="pmid">14706490</pub-id>
</citation>
</ref>
<ref id="CR66">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolters</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schramm</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zeller</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Naumann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kunesch</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Benecke</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Reiners</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Classen</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Timing-dependent plasticity in human primary somatosensory cortex</article-title>
<source>J Physiol</source>
<year>2005</year>
<volume>565</volume>
<fpage>1039</fpage>
<lpage>1052</lpage>
<pub-id pub-id-type="doi">10.1113/jphysiol.2005.084954</pub-id>
</citation>
<citation citation-type="display-unstructured">Wolters A, Schmidt A, Schramm A, Zeller D, Naumann M, Kunesch E, Benecke R, Reiners K, Classen J (2005) Timing-dependent plasticity in human primary somatosensory cortex. J Physiol 565:1039–1052
<pub-id pub-id-type="pmid">15845584</pub-id>
</citation>
</ref>
<ref id="CR67">
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yoo</surname>
<given-names>WK</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Doh</surname>
<given-names>WS</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>KI</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>ES</given-names>
</name>
</person-group>
<article-title>Dissociable modulating effect of repetitive transcranial magnetic stimulation on sensory and pain perception</article-title>
<source>Neuroreport</source>
<year>2006</year>
<volume>17</volume>
<fpage>141</fpage>
<lpage>144</lpage>
<pub-id pub-id-type="doi">10.1097/01.wnr.0000198438.37012.d6</pub-id>
</citation>
<citation citation-type="display-unstructured">Yoo WK, Kim YH, Doh WS, Lee JH, Jung KI, Park DS, Park ES (2006) Dissociable modulating effect of repetitive transcranial magnetic stimulation on sensory and pain perception. Neuroreport 17:141–144
<pub-id pub-id-type="pmid">16407760</pub-id>
</citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000189  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000189  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024