Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Brillouin scattering in multi-core optical fibers for sensing applications

Identifieur interne : 000085 ( Pmc/Corpus ); précédent : 000084; suivant : 000086

Brillouin scattering in multi-core optical fibers for sensing applications

Auteurs : Yosuke Mizuno ; Neisei Hayashi ; Hiroki Tanaka ; Yuji Wada ; Kentaro Nakamura

Source :

RBID : PMC:4464328

Abstract

We measure the Brillouin gain spectra in two cores (the central core and one of the outer cores) of a ~3-m-long, silica-based, 7-core multi-core fiber (MCF) with incident light of 1.55 μm wavelength, and investigate the Brillouin frequency shift (BFS) and its dependence on strain and temperature. The BFSs of both the cores are ~10.92 GHz, and the strain- and temperature-dependence coefficients of the BFS in the central core are 484.8 MHz/% and 1.08 MHz/°C, respectively, whereas those in the outer core are 516.9 MHz/% and 1.03 MHz/°C. All of these values are not largely different from those in a silica single-mode fiber, which is expected because the cores are basically composed of the same material (silica). We then analyze the difference in structural deformation between the two cores when strain is applied to the fiber, and show that it does not explain the difference in the BFS dependence of strain in this case. The future prospect on distributed strain and temperature sensing based on Brillouin scattering in MCFs is finally presented.


Url:
DOI: 10.1038/srep11388
PubMed: 26065718
PubMed Central: 4464328

Links to Exploration step

PMC:4464328

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Brillouin scattering in multi-core optical fibers for sensing applications</title>
<author>
<name sortKey="Mizuno, Yosuke" sort="Mizuno, Yosuke" uniqKey="Mizuno Y" first="Yosuke" last="Mizuno">Yosuke Mizuno</name>
<affiliation>
<nlm:aff id="a1">
<institution>Precision and Intelligence Laboratory, Tokyo Institute of Technology</institution>
, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503,
<country>Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hayashi, Neisei" sort="Hayashi, Neisei" uniqKey="Hayashi N" first="Neisei" last="Hayashi">Neisei Hayashi</name>
<affiliation>
<nlm:aff id="a1">
<institution>Precision and Intelligence Laboratory, Tokyo Institute of Technology</institution>
, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503,
<country>Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tanaka, Hiroki" sort="Tanaka, Hiroki" uniqKey="Tanaka H" first="Hiroki" last="Tanaka">Hiroki Tanaka</name>
<affiliation>
<nlm:aff id="a1">
<institution>Precision and Intelligence Laboratory, Tokyo Institute of Technology</institution>
, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503,
<country>Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wada, Yuji" sort="Wada, Yuji" uniqKey="Wada Y" first="Yuji" last="Wada">Yuji Wada</name>
<affiliation>
<nlm:aff id="a2">
<institution>Faculty of Science and Technology, Seikei University</institution>
, 3-3-1 Kichijoji Kitamachi, Musashino-shi, Tokyo 180-8633,
<country>Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nakamura, Kentaro" sort="Nakamura, Kentaro" uniqKey="Nakamura K" first="Kentaro" last="Nakamura">Kentaro Nakamura</name>
<affiliation>
<nlm:aff id="a1">
<institution>Precision and Intelligence Laboratory, Tokyo Institute of Technology</institution>
, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503,
<country>Japan</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26065718</idno>
<idno type="pmc">4464328</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464328</idno>
<idno type="RBID">PMC:4464328</idno>
<idno type="doi">10.1038/srep11388</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000085</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000085</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Brillouin scattering in multi-core optical fibers for sensing applications</title>
<author>
<name sortKey="Mizuno, Yosuke" sort="Mizuno, Yosuke" uniqKey="Mizuno Y" first="Yosuke" last="Mizuno">Yosuke Mizuno</name>
<affiliation>
<nlm:aff id="a1">
<institution>Precision and Intelligence Laboratory, Tokyo Institute of Technology</institution>
, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503,
<country>Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hayashi, Neisei" sort="Hayashi, Neisei" uniqKey="Hayashi N" first="Neisei" last="Hayashi">Neisei Hayashi</name>
<affiliation>
<nlm:aff id="a1">
<institution>Precision and Intelligence Laboratory, Tokyo Institute of Technology</institution>
, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503,
<country>Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tanaka, Hiroki" sort="Tanaka, Hiroki" uniqKey="Tanaka H" first="Hiroki" last="Tanaka">Hiroki Tanaka</name>
<affiliation>
<nlm:aff id="a1">
<institution>Precision and Intelligence Laboratory, Tokyo Institute of Technology</institution>
, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503,
<country>Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wada, Yuji" sort="Wada, Yuji" uniqKey="Wada Y" first="Yuji" last="Wada">Yuji Wada</name>
<affiliation>
<nlm:aff id="a2">
<institution>Faculty of Science and Technology, Seikei University</institution>
, 3-3-1 Kichijoji Kitamachi, Musashino-shi, Tokyo 180-8633,
<country>Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nakamura, Kentaro" sort="Nakamura, Kentaro" uniqKey="Nakamura K" first="Kentaro" last="Nakamura">Kentaro Nakamura</name>
<affiliation>
<nlm:aff id="a1">
<institution>Precision and Intelligence Laboratory, Tokyo Institute of Technology</institution>
, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503,
<country>Japan</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific Reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>We measure the Brillouin gain spectra in two cores (the central core and one of the outer cores) of a ~3-m-long, silica-based, 7-core multi-core fiber (MCF) with incident light of 1.55 μm wavelength, and investigate the Brillouin frequency shift (BFS) and its dependence on strain and temperature. The BFSs of both the cores are ~10.92 GHz, and the strain- and temperature-dependence coefficients of the BFS in the central core are 484.8 MHz/% and 1.08 MHz/°C, respectively, whereas those in the outer core are 516.9 MHz/% and 1.03 MHz/°C. All of these values are not largely different from those in a silica single-mode fiber, which is expected because the cores are basically composed of the same material (silica). We then analyze the difference in structural deformation between the two cores when strain is applied to the fiber, and show that it does not explain the difference in the BFS dependence of strain in this case. The future prospect on distributed strain and temperature sensing based on Brillouin scattering in MCFs is finally presented.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakazawa, M" uniqKey="Nakazawa M">M. Nakazawa</name>
</author>
<author>
<name sortKey="Kikuchi, K" uniqKey="Kikuchi K">K. Kikuchi</name>
</author>
<author>
<name sortKey="Miyazaki, T" uniqKey="Miyazaki T">T. Miyazaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kahn, J M" uniqKey="Kahn J">J. M. Kahn</name>
</author>
<author>
<name sortKey="Ho, K P" uniqKey="Ho K">K. P. Ho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mitra, P P" uniqKey="Mitra P">P. P. Mitra</name>
</author>
<author>
<name sortKey="Stark, J B" uniqKey="Stark J">J. B. Stark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Todoroki, S" uniqKey="Todoroki S">S. Todoroki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizuno, Y" uniqKey="Mizuno Y">Y. Mizuno</name>
</author>
<author>
<name sortKey="Hayashi, N" uniqKey="Hayashi N">N. Hayashi</name>
</author>
<author>
<name sortKey="Tanaka, H" uniqKey="Tanaka H">H. Tanaka</name>
</author>
<author>
<name sortKey="Nakamura, K" uniqKey="Nakamura K">K. Nakamura</name>
</author>
<author>
<name sortKey="Todoroki, S" uniqKey="Todoroki S">S. Todoroki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizuno, Y" uniqKey="Mizuno Y">Y. Mizuno</name>
</author>
<author>
<name sortKey="Hayashi, N" uniqKey="Hayashi N">N. Hayashi</name>
</author>
<author>
<name sortKey="Tanaka, H" uniqKey="Tanaka H">H. Tanaka</name>
</author>
<author>
<name sortKey="Nakamura, K" uniqKey="Nakamura K">K. Nakamura</name>
</author>
<author>
<name sortKey="Todoroki, S" uniqKey="Todoroki S">S. Todoroki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koshiba, M" uniqKey="Koshiba M">M. Koshiba</name>
</author>
<author>
<name sortKey="Saitoh, K" uniqKey="Saitoh K">K. Saitoh</name>
</author>
<author>
<name sortKey="Takenaga, K" uniqKey="Takenaga K">K. Takenaga</name>
</author>
<author>
<name sortKey="Matsuo, S" uniqKey="Matsuo S">S. Matsuo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sakaguchi, J" uniqKey="Sakaguchi J">J. Sakaguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsuo, S" uniqKey="Matsuo S">S. Matsuo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Egorova, O N" uniqKey="Egorova O">O. N. Egorova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takahashi, H" uniqKey="Takahashi H">H. Takahashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koshiba, M" uniqKey="Koshiba M">M. Koshiba</name>
</author>
<author>
<name sortKey="Saitoh, K" uniqKey="Saitoh K">K. Saitoh</name>
</author>
<author>
<name sortKey="Kokubun, Y" uniqKey="Kokubun Y">Y. Kokubun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Imamura, K" uniqKey="Imamura K">K. Imamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takenaga, K" uniqKey="Takenaga K">K. Takenaga</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayashi, T" uniqKey="Hayashi T">T. Hayashi</name>
</author>
<author>
<name sortKey="Taru, T" uniqKey="Taru T">T. Taru</name>
</author>
<author>
<name sortKey="Shimakawa, O" uniqKey="Shimakawa O">O. Shimakawa</name>
</author>
<author>
<name sortKey="Sasaki, T" uniqKey="Sasaki T">T. Sasaki</name>
</author>
<author>
<name sortKey="Sasaoka, E" uniqKey="Sasaoka E">E. Sasaoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agrawal, G P" uniqKey="Agrawal G">G. P. Agrawal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horiguchi, T" uniqKey="Horiguchi T">T. Horiguchi</name>
</author>
<author>
<name sortKey="Kurashima, T" uniqKey="Kurashima T">T. Kurashima</name>
</author>
<author>
<name sortKey="Tateda, M" uniqKey="Tateda M">M. Tateda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kurashima, T" uniqKey="Kurashima T">T. Kurashima</name>
</author>
<author>
<name sortKey="Horiguchi, T" uniqKey="Horiguchi T">T. Horiguchi</name>
</author>
<author>
<name sortKey="Tateda, M" uniqKey="Tateda M">M. Tateda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yeniay, A" uniqKey="Yeniay A">A. Yeniay</name>
</author>
<author>
<name sortKey="Delavaux, J M" uniqKey="Delavaux J">J. M. Delavaux</name>
</author>
<author>
<name sortKey="Toulouse, J" uniqKey="Toulouse J">J. Toulouse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hotate, K" uniqKey="Hotate K">K. Hotate</name>
</author>
<author>
<name sortKey="Hasegawa, T" uniqKey="Hasegawa T">T. Hasegawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizuno, Y" uniqKey="Mizuno Y">Y. Mizuno</name>
</author>
<author>
<name sortKey="Zou, W" uniqKey="Zou W">W. Zou</name>
</author>
<author>
<name sortKey="He, Z" uniqKey="He Z">Z. He</name>
</author>
<author>
<name sortKey="Hotate, K" uniqKey="Hotate K">K. Hotate</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horiguchi, T" uniqKey="Horiguchi T">T. Horiguchi</name>
</author>
<author>
<name sortKey="Tateda, M" uniqKey="Tateda M">M. Tateda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kurashima, T" uniqKey="Kurashima T">T. Kurashima</name>
</author>
<author>
<name sortKey="Horiguchi, T" uniqKey="Horiguchi T">T. Horiguchi</name>
</author>
<author>
<name sortKey="Izumita, H" uniqKey="Izumita H">H. Izumita</name>
</author>
<author>
<name sortKey="Furukawa, S" uniqKey="Furukawa S">S. Furukawa</name>
</author>
<author>
<name sortKey="Koyamada, Y" uniqKey="Koyamada Y">Y. Koyamada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garus, D" uniqKey="Garus D">D. Garus</name>
</author>
<author>
<name sortKey="Krebber, K" uniqKey="Krebber K">K. Krebber</name>
</author>
<author>
<name sortKey="Schliep, F" uniqKey="Schliep F">F. Schliep</name>
</author>
<author>
<name sortKey="Gogolla, T" uniqKey="Gogolla T">T. Gogolla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizuno, Y" uniqKey="Mizuno Y">Y. Mizuno</name>
</author>
<author>
<name sortKey="He, Z" uniqKey="He Z">Z. He</name>
</author>
<author>
<name sortKey="Hotate, K" uniqKey="Hotate K">K. Hotate</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizuno, Y" uniqKey="Mizuno Y">Y. Mizuno</name>
</author>
<author>
<name sortKey="He, Z" uniqKey="He Z">Z. He</name>
</author>
<author>
<name sortKey="Hotate, K" uniqKey="Hotate K">K. Hotate</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abedin, K S" uniqKey="Abedin K">K. S. Abedin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, K Y" uniqKey="Song K">K. Y. Song</name>
</author>
<author>
<name sortKey="Abedin, K S" uniqKey="Abedin K">K. S. Abedin</name>
</author>
<author>
<name sortKey="Hotate, K" uniqKey="Hotate K">K. Hotate</name>
</author>
<author>
<name sortKey="Herraez, M G" uniqKey="Herraez M">M. G. Herráez</name>
</author>
<author>
<name sortKey="Thevenaz, L" uniqKey="Thevenaz L">L. Thévenaz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, J H" uniqKey="Lee J">J. H. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zou, L" uniqKey="Zou L">L. Zou</name>
</author>
<author>
<name sortKey="Bao, X" uniqKey="Bao X">X. Bao</name>
</author>
<author>
<name sortKey="Afshar, S" uniqKey="Afshar S">S. Afshar</name>
</author>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, M" uniqKey="Ding M">M. Ding</name>
</author>
<author>
<name sortKey="Hayashi, N" uniqKey="Hayashi N">N. Hayashi</name>
</author>
<author>
<name sortKey="Mizuno, Y" uniqKey="Mizuno Y">Y. Mizuno</name>
</author>
<author>
<name sortKey="Nakamura, K" uniqKey="Nakamura K">K. Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizuno, Y" uniqKey="Mizuno Y">Y. Mizuno</name>
</author>
<author>
<name sortKey="Hayashi, N" uniqKey="Hayashi N">N. Hayashi</name>
</author>
<author>
<name sortKey="Nakamura, K" uniqKey="Nakamura K">K. Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayashi, N" uniqKey="Hayashi N">N. Hayashi</name>
</author>
<author>
<name sortKey="Mizuno, Y" uniqKey="Mizuno Y">Y. Mizuno</name>
</author>
<author>
<name sortKey="Koyama, D" uniqKey="Koyama D">D. Koyama</name>
</author>
<author>
<name sortKey="Nakamura, K" uniqKey="Nakamura K">K. Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizuno, Y" uniqKey="Mizuno Y">Y. Mizuno</name>
</author>
<author>
<name sortKey="Nakamura, K" uniqKey="Nakamura K">K. Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mizuno, Y" uniqKey="Mizuno Y">Y. Mizuno</name>
</author>
<author>
<name sortKey="Nakamura, K" uniqKey="Nakamura K">K. Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, M" uniqKey="Ding M">M. Ding</name>
</author>
<author>
<name sortKey="Hayashi, N" uniqKey="Hayashi N">N. Hayashi</name>
</author>
<author>
<name sortKey="Mizuno, Y" uniqKey="Mizuno Y">Y. Mizuno</name>
</author>
<author>
<name sortKey="Nakamura, K" uniqKey="Nakamura K">K. Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayashi, N" uniqKey="Hayashi N">N. Hayashi</name>
</author>
<author>
<name sortKey="Mizuno, Y" uniqKey="Mizuno Y">Y. Mizuno</name>
</author>
<author>
<name sortKey="Nakamura, K" uniqKey="Nakamura K">K. Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zou, W" uniqKey="Zou W">W. Zou</name>
</author>
<author>
<name sortKey="He, Z" uniqKey="He Z">Z. He</name>
</author>
<author>
<name sortKey="Hotate, K" uniqKey="Hotate K">K. Hotate</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soto, M A" uniqKey="Soto M">M. A. Soto</name>
</author>
<author>
<name sortKey="Bolognini, G" uniqKey="Bolognini G">G. Bolognini</name>
</author>
<author>
<name sortKey="Pasquale, F D" uniqKey="Pasquale F">F. D. Pasquale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, D P" uniqKey="Zhou D">D. P. Zhou</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L. Chen</name>
</author>
<author>
<name sortKey="Bao, X" uniqKey="Bao X">X. Bao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, M" uniqKey="Ding M">M. Ding</name>
</author>
<author>
<name sortKey="Mizuno, Y" uniqKey="Mizuno Y">Y. Mizuno</name>
</author>
<author>
<name sortKey="Nakamura, K" uniqKey="Nakamura K">K. Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nikles, M" uniqKey="Nikles M">M. Nikles</name>
</author>
<author>
<name sortKey="Thevenaz, L" uniqKey="Thevenaz L">L. Thevenaz</name>
</author>
<author>
<name sortKey="Robert, P A" uniqKey="Robert P">P. A. Robert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coelho, J M P" uniqKey="Coelho J">J. M. P. Coelho</name>
</author>
<author>
<name sortKey="Nespereira, M" uniqKey="Nespereira M">M. Nespereira</name>
</author>
<author>
<name sortKey="Abreu, M" uniqKey="Abreu M">M. Abreu</name>
</author>
<author>
<name sortKey="Rebordao, J" uniqKey="Rebordao J">J. Rebordao</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Sci Rep</journal-id>
<journal-title-group>
<journal-title>Scientific Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-2322</issn>
<publisher>
<publisher-name>Nature Publishing Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26065718</article-id>
<article-id pub-id-type="pmc">4464328</article-id>
<article-id pub-id-type="pii">srep11388</article-id>
<article-id pub-id-type="doi">10.1038/srep11388</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Brillouin scattering in multi-core optical fibers for sensing applications</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Mizuno</surname>
<given-names>Yosuke</given-names>
</name>
<xref ref-type="corresp" rid="c1">a</xref>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hayashi</surname>
<given-names>Neisei</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tanaka</surname>
<given-names>Hiroki</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wada</surname>
<given-names>Yuji</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nakamura</surname>
<given-names>Kentaro</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<aff id="a1">
<label>1</label>
<institution>Precision and Intelligence Laboratory, Tokyo Institute of Technology</institution>
, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503,
<country>Japan</country>
</aff>
<aff id="a2">
<label>2</label>
<institution>Faculty of Science and Technology, Seikei University</institution>
, 3-3-1 Kichijoji Kitamachi, Musashino-shi, Tokyo 180-8633,
<country>Japan</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="c1">
<label>a</label>
<email>ymizuno@sonic.pi.titech.ac.jp</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>13</day>
<month>06</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>5</volume>
<elocation-id>11388</elocation-id>
<history>
<date date-type="received">
<day>05</day>
<month>12</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>27</day>
<month>04</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2015, Macmillan Publishers Limited</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>Macmillan Publishers Limited</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<pmc-comment>author-paid</pmc-comment>
<license-p>This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<p>We measure the Brillouin gain spectra in two cores (the central core and one of the outer cores) of a ~3-m-long, silica-based, 7-core multi-core fiber (MCF) with incident light of 1.55 μm wavelength, and investigate the Brillouin frequency shift (BFS) and its dependence on strain and temperature. The BFSs of both the cores are ~10.92 GHz, and the strain- and temperature-dependence coefficients of the BFS in the central core are 484.8 MHz/% and 1.08 MHz/°C, respectively, whereas those in the outer core are 516.9 MHz/% and 1.03 MHz/°C. All of these values are not largely different from those in a silica single-mode fiber, which is expected because the cores are basically composed of the same material (silica). We then analyze the difference in structural deformation between the two cores when strain is applied to the fiber, and show that it does not explain the difference in the BFS dependence of strain in this case. The future prospect on distributed strain and temperature sensing based on Brillouin scattering in MCFs is finally presented.</p>
</abstract>
</article-meta>
</front>
<body>
<p>There is a growing demand for optical fibers with high transmission capacities that can slake our seemingly insatiable appetite for data. Although the spectral efficiency of these fibers has been extensively enhanced by using a variety of techniques
<xref ref-type="bibr" rid="b1">1</xref>
, the information-transmission capacity of a standard silica-based single-mode fiber (SMF) is approaching its limit because of the nonlinear effects of optical fibers
<xref ref-type="bibr" rid="b2">2</xref>
<xref ref-type="bibr" rid="b3">3</xref>
<xref ref-type="bibr" rid="b4">4</xref>
<xref ref-type="bibr" rid="b5">5</xref>
<xref ref-type="bibr" rid="b6">6</xref>
. A recent solution to this ever-increasing demand is space-division multiplexing based on multi-core fibers (MCFs)
<xref ref-type="bibr" rid="b7">7</xref>
<xref ref-type="bibr" rid="b8">8</xref>
<xref ref-type="bibr" rid="b9">9</xref>
<xref ref-type="bibr" rid="b10">10</xref>
<xref ref-type="bibr" rid="b11">11</xref>
<xref ref-type="bibr" rid="b12">12</xref>
<xref ref-type="bibr" rid="b13">13</xref>
<xref ref-type="bibr" rid="b14">14</xref>
<xref ref-type="bibr" rid="b15">15</xref>
. By exploiting such multiple cores, researchers have been drastically enhancing the transmission capacity delivered over a single fiber.</p>
<p>In the meantime, Brillouin scattering in silica SMFs has attracted considerable interest
<xref ref-type="bibr" rid="b16">16</xref>
<xref ref-type="bibr" rid="b17">17</xref>
<xref ref-type="bibr" rid="b18">18</xref>
<xref ref-type="bibr" rid="b19">19</xref>
and has been applied to a number of devices and systems, including distributed strain and temperature sensors
<xref ref-type="bibr" rid="b20">20</xref>
<xref ref-type="bibr" rid="b21">21</xref>
<xref ref-type="bibr" rid="b22">22</xref>
<xref ref-type="bibr" rid="b23">23</xref>
<xref ref-type="bibr" rid="b24">24</xref>
. To improve the performance of these devices, Brillouin scattering properties in various special fibers have been investigated, and some of them have already been practically applied. Such special fibers include tellurite glass fibers
<xref ref-type="bibr" rid="b25">25</xref>
<xref ref-type="bibr" rid="b26">26</xref>
, chalcogenide glass fibers
<xref ref-type="bibr" rid="b27">27</xref>
<xref ref-type="bibr" rid="b28">28</xref>
, bismuth-oxide glass fibers
<xref ref-type="bibr" rid="b26">26</xref>
<xref ref-type="bibr" rid="b29">29</xref>
, photonic crystal fibers (PCFs)
<xref ref-type="bibr" rid="b30">30</xref>
, rare-earth-doped glass fibers (REDFs)
<xref ref-type="bibr" rid="b31">31</xref>
<xref ref-type="bibr" rid="b32">32</xref>
, polymethyl methacrylate (PMMA)-based polymer optical fibers (POFs)
<xref ref-type="bibr" rid="b33">33</xref>
, and perfluorinated graded-index (PFGI) POFs
<xref ref-type="bibr" rid="b34">34</xref>
<xref ref-type="bibr" rid="b35">35</xref>
. Each special fiber has its own unique advantage; for instance, the Brillouin-scattered Stokes powers in tellurite and chalcogenide fibers are much higher than those in silica SMFs, owing to their large Brillouin gain coefficients
<xref ref-type="bibr" rid="b25">25</xref>
<xref ref-type="bibr" rid="b26">26</xref>
<xref ref-type="bibr" rid="b27">27</xref>
<xref ref-type="bibr" rid="b28">28</xref>
; the Stokes powers in REDFs can be adjusted by controlling the pumping light power (at 980 nm in erbium-doped fibers (EDFs))
<xref ref-type="bibr" rid="b32">32</xref>
<xref ref-type="bibr" rid="b36">36</xref>
; and Brillouin scattering in POFs is potentially applicable to high-sensitivity temperature measurement
<xref ref-type="bibr" rid="b35">35</xref>
as well as large-strain measurement
<xref ref-type="bibr" rid="b37">37</xref>
. Similarly, if Brillouin-scattered signals from multiple cores of an MCF can be simultaneously exploited, a discriminative measurement of strain and temperature
<xref ref-type="bibr" rid="b38">38</xref>
<xref ref-type="bibr" rid="b39">39</xref>
<xref ref-type="bibr" rid="b40">40</xref>
<xref ref-type="bibr" rid="b41">41</xref>
will be feasible by using a single fiber, as discussed below. To the best of our knowledge, the Brillouin properties in MCFs have not been experimentally investigated yet. Therefore, clarifying these properties is the first step to explore their potentials in practical applications.</p>
<p>In this paper, the Brillouin gain spectra (BGS) in two cores (the central core and one of the outer cores) of a ~3-m-long, silica-based, 7-core MCF are measured at 1.55 μm, and the Brillouin frequency shift (BFS) and its dependence on strain and temperature are investigated. The BFSs of both the cores are ~10.92 GHz, which are higher than that of a standard silica SMF by over 50 MHz. The strain- and temperature-dependence coefficients of the BFS in the central core are 484.8 MHz/% and 1.08 MHz/°C, respectively, whereas those in the outer core are 516.9 MHz/% and 1.03 MHz/°C. All of these coefficients are nearly identical to the values in a silica SMF, as is expected considering that the cores are basically composed of the same material, i.e., silica. Subsequently, using finite element analysis (FEA), the difference in applied stress between the two cores when strain is applied to the fiber is calculated to be insufficiently large to cause the difference in the BFS dependence of strain. The future vision for MCF-based Brillouin sensors is finally discussed.</p>
<sec disp-level="1" sec-type="results">
<title>Results</title>
<sec disp-level="2">
<title>Principle</title>
<p>Owing to an interaction with acoustic phonons, a light beam propagating through an optical fiber is backscattered, generating so-called Stokes light. This nonlinear process is known as Brillouin scattering
<xref ref-type="bibr" rid="b16">16</xref>
, where the central frequency of the Stokes light spectrum (called the BGS) becomes lower than that of the incident light. The amount of this frequency shift is referred to as the BFS, which is, in optical fibers, given as
<xref ref-type="bibr" rid="b16">16</xref>
<disp-formula id="eq1">
<inline-graphic id="d33e194" xlink:href="srep11388-m1.jpg"></inline-graphic>
</disp-formula>
where
<italic>n</italic>
is the refractive index,
<italic>v</italic>
<sub>A</sub>
is the acoustic velocity in the fiber core, and
<italic>λ</italic>
is the wavelength of the incident light. As
<italic>n</italic>
and
<italic>v</italic>
<sub>A</sub>
are dependent on strain and temperature, the BFS also exhibits strain and temperature dependence, which serves as the operating principle of strain/temperature sensors. To date, the BFS dependence on strain and temperature has been investigated in a variety of special fibers. Table 1 summarizes the BFS and its dependence on strain and temperature, along with the refractive index, in silica SMFs
<xref ref-type="bibr" rid="b17">17</xref>
<xref ref-type="bibr" rid="b18">18</xref>
, tellurite fibers
<xref ref-type="bibr" rid="b25">25</xref>
<xref ref-type="bibr" rid="b26">26</xref>
, chalcogenide fibers
<xref ref-type="bibr" rid="b27">27</xref>
, bismuth-oxide fibers
<xref ref-type="bibr" rid="b26">26</xref>
<xref ref-type="bibr" rid="b29">29</xref>
, germanium-doped PCFs (main peak only)
<xref ref-type="bibr" rid="b30">30</xref>
, REDFs (erbium-
<xref ref-type="bibr" rid="b31">31</xref>
, neodymium-
<xref ref-type="bibr" rid="b32">32</xref>
, and thulium-doped)
<xref ref-type="bibr" rid="b32">32</xref>
, and PFGI-POFs
<xref ref-type="bibr" rid="b35">35</xref>
. Supposing that the wavelength of the incident light is 1.55 μm and that
<italic>n</italic>
is not dependent on the wavelength, all the values in
<xref ref-type="table" rid="t1">Table 1</xref>
have been calculated using
<xref ref-type="disp-formula" rid="eq1">Eq. (1)</xref>
. As can be seen, the BFS and its strain and temperature dependence drastically vary depending on the fiber materials and structures, which is extremely important in considering the applications of Brillouin scattering in MCFs.</p>
</sec>
<sec disp-level="2">
<title>Experimental setup</title>
<p>The experimental setup for investigating the BFS dependence on strain and temperature in the MCF is depicted in
<xref ref-type="fig" rid="f1">Fig. 1</xref>
, where self-heterodyne detection was used to observe the BGS with a high frequency resolution
<xref ref-type="bibr" rid="b34">34</xref>
. The output of a laser diode at 1.55 μm was divided into two, one of which was amplified with an erbium-doped fiber amplifier (EDFA) to 14 dBm and used as reference light. The other was also amplified with another EDFA to 30 dBm and injected into the MCF as pump light. The backscattered Brillouin Stokes light was then coupled with the reference light. The optical beat signal was then converted into an electrical signal with a photo detector (PD), and observed with an electrical spectrum analyzer (ESA) as BGS. Each BGS measurement was performed 20 times, with the average being calculated thereafter. The relative polarization state between the Stokes light and the reference light was adjusted with polarization controllers (PCs). The room temperature was ~28 °C.</p>
<p>We employed a ~3-m-long, silica-based, 7-core MCF as a fiber under test
<xref ref-type="bibr" rid="b11">11</xref>
, the cross-sectional micrograph of which is shown in
<xref ref-type="fig" rid="f2">Fig. 2(a)</xref>
. The cladding diameter was 197.0 μm, and the core pitch was, on average, 56.0 μm. At 1.55 μm, the mode-field diameter (MFD) and propagation loss of each core were 11.2 ± 0.1 μm and 0.198 ± 0.011 dB/km, respectively. When the Stokes light returned from the central core (#1 in
<xref ref-type="fig" rid="f2">Fig. 2(a)</xref>
) of the MCF was detected, as shown in
<xref ref-type="fig" rid="f2">Fig. 2(b)</xref>
, one end of the MCF was spliced to a ~1-m-long silica SMF (termed as SMF-1), which was connected to a circulator using an arc-fusion splicer (central cores were automatically aligned), and the other end of the MCF was cut on an angle and immersed into matching oil (
<italic>n </italic>
= 1.46) to suppress the Fresnel reflection. In contrast, when the Stokes light returned from one of the outer cores (#2 in
<xref ref-type="fig" rid="f2">Fig. 2(a)</xref>
) of the MCF was detected, as shown in
<xref ref-type="fig" rid="f2">Fig. 2(c)</xref>
, the outer core at one end of the MCF was spliced to one end of a ~1-m-long silica SMF (termed as SMF-2; manufactured by a company different from that of the SMF-1) using an arc-fusion splicer (accurate core alignment was required). The other end of the SMF-2 was spliced to a ~1-m-long SMF-1. The Fresnel reflection at the other end of the MCF was suppressed in the same way. Strain was applied to the whole length of the MCF, two parts near the ends of which were fixed on translation stages by epoxy glue to avoid slipping. The temperature of the entire MCF was manipulated via an external heater.</p>
</sec>
<sec disp-level="2">
<title>Central-core characterization</title>
<p>First, the experimental results on the central core of the MCF are presented. The blue curve in
<xref ref-type="fig" rid="f3">Fig. 3(a)</xref>
shows the BGS measured at room temperature. Two clear peaks (corresponding to BFSs) were observed at 10.87 and 10.92 GHz, which originate from the SMF-1 and the MCF, respectively. The BGS change when strain was applied only to the MCF is also shown in
<xref ref-type="fig" rid="f3">Fig. 3(a)</xref>
. With increasing strain, the BGS of the SMF-1 hardly changed, while the BGS of the MCF shifted to higher frequency. As the small peaks observed at 10.95 and 11.03 GHz did not exhibit strain dependence, they are the second- and third-order Brillouin peaks of the SMF-1, respectively
<xref ref-type="bibr" rid="b16">16</xref>
<xref ref-type="bibr" rid="b19">19</xref>
. The instability of the peak power of the MCF was caused by the spectral overlap with the higher-order peaks of the SMF-1 and by the polarization-dependent fluctuations. Using this result, we plotted the BFS of the central core of the MCF as a function of strain (
<xref ref-type="fig" rid="f3">Fig. 3(b)</xref>
). The dependence was almost linear with a proportionality constant of 484.8 MHz/% (with an error of ±~5 MHz/%; calculated from repetitive measurements), which is in agreement with the value (~493 MHz/%) in a standard silica SMF at 1.55 μm
<xref ref-type="bibr" rid="b17">17</xref>
.</p>
<p>We then measured the BGS dependence on temperature in the central core of the MCF (
<xref ref-type="fig" rid="f4">Fig. 4(a)</xref>
). With increasing temperature, only the BGS of the MCF shifted to higher frequency.
<xref ref-type="fig" rid="f4">Figure 4(b)</xref>
shows the BFS dependence on temperature, which was also linear with a proportionality constant of 1.08 MHz/°C (with a measurement error of ±~0.03 MHz/°C). This value was almost the same as that (1.00 MHz/°C) in a standard silica SMF at 1.55 μm
<xref ref-type="bibr" rid="b18">18</xref>
.</p>
</sec>
<sec disp-level="2">
<title>Outer-core characterization</title>
<p>Next, we present the measured results on the outer core of the MCF. The BGS measured at room temperature is shown in
<xref ref-type="fig" rid="f5">Fig. 5</xref>
, where the Brillouin peak of the MCF was not clearly detected, because it overlapped with not only the peaks of the SMF-1 but also the peaks of the SMF-2 (including their higher-order peaks). To resolve this problem, we employed a differential measurement technique, with which the BGS of the SMF-1 and SMF-2 can be removed from the measured spectrum. The procedure was as follows: (1) obtain the BGS when local bending was applied to the SMF-2 at the region around the MCF/SMF-2 interface to induce considerable loss of over 40 dB; (2) obtain the BGS after the bending was released; and (3) subtract the BGS obtained in (1) from that obtained in (2) in log units. With this procedure, slight spectral distortion might be induced but the BFS values can be more accurately measured than without subtraction. Note that the region to which bending was applied was so short (<1 cm) that its influence on the measured results was negligible.</p>
<p>The BGS measured at room temperature using the differential measurement technique is shown as the blue curve in
<xref ref-type="fig" rid="f6">Fig. 6(a)</xref>
. The BGS of the MCF was detected separately from those of the SMF-1 and SMF-2. The BFS of the outer core of the MCF was ~10.92 GHz, which is almost the same as that of the central core. These values are higher than any other reported value in a standard silica SMF by >50 MHz, indicating that the cores of this MCF have slightly higher degrees of hardness, and thus slightly higher acoustic velocities. This could also be explained as follows: the MFD of the MCF is 11.2 μm, whereas that of a standard silica SMF (G.652 series) is 10.5 μm at 1.55 μm. This indicates that the cores of the MCF are less doped with GeO
<sub>2</sub>
than that of a standard silica SMF. Considering that the BFS decreases with increasing GeO
<sub>2</sub>
doping concentration
<xref ref-type="bibr" rid="b42">42</xref>
, it is natural that higher BFS should be obtained in the MCF.</p>
<p>Subsequently, we measured the BGS dependence on strain in the outer core of the MCF, as also shown in
<xref ref-type="fig" rid="f6">Fig. 6(a)</xref>
. With increasing strain, the BGS of the MCF shifted to higher frequency. A dip independent of strain was generated at ~10.91 GHz by the differential measurement technique; along with the polarization-dependent fluctuations, this caused the instability of the peak power. The BFS dependence on strain in the outer core of the MCF is shown in
<xref ref-type="fig" rid="f6">Fig. 6(b)</xref>
. The proportionality constant was 516.9 MHz/%, which is ~30 MHz/% larger than that of the central core (484.8 MHz/%). This difference is not due to the measurement error (±~5 MHz/%). An extensive analysis on its origin is provided in the following section.</p>
<p>The BGS dependence on temperature in the outer core of the MCF is also shown in
<xref ref-type="fig" rid="f7">Fig. 7(a)</xref>
. With increasing temperature, the BGS of the MCF shifted to higher frequency. From the temperature dependence of the BFS (
<xref ref-type="fig" rid="f7">Fig. 7(b)</xref>
), the proportionality constant was calculated to be 1.03 MHz/°C, which was almost the same as those in the central core (1.08 MHz/°C) and a standard silica SMF (1.00 MHz/°C) at 1.55 μm
<xref ref-type="bibr" rid="b18">18</xref>
.</p>
</sec>
</sec>
<sec disp-level="1" sec-type="discussion">
<title>Discussion</title>
<p>We discuss whether the observed difference in the BFS dependence between the central core and the outer core is caused by their structural or material difference. To investigate the difference in structural deformation when strain is applied to the MCF, the stress distribution in the cross-sectional direction was calculated using a commercial FEA software, ANSYS 11.0 (ANSYS Inc.). A real-size cross section of the MCF was modeled. For core material, the Young’s modulus
<italic>E</italic>
of 71 GPa, Poisson’s ratio
<italic>ν</italic>
of 0.166, and mass density
<italic>ρ</italic>
of 2220 kg/m
<sup>3</sup>
were used, whereas for cladding material,
<italic>E</italic>
of 73 GPa,
<italic>ν</italic>
of 0.167, and
<italic>ρ</italic>
of 2220 kg/m
<sup>3</sup>
were used (all these values were extracted from
<xref ref-type="fig" rid="f2">Figs 2</xref>
and
<xref ref-type="fig" rid="f3">3</xref>
of Ref.
<xref ref-type="bibr" rid="b43">43</xref>
). A longitudinal strain of 0.2% was uniformly applied.</p>
<p>Before presenting the simulation result, we here provide concrete evidence for the fact that the non-uniform strain distribution on the cross-section of the MCF is not the main reason. Suppose that the >5% discrepancy (observed in experiment) originates from the non-uniform strain distribution on the cross-section, and that, when 0.2% strain is applied to a 3-m-long MCF (actual measurement condition; see
<xref ref-type="fig" rid="f3">Figs 3</xref>
(b) and
<xref ref-type="fig" rid="f6">6</xref>
(b)), the length of the central core has become 3.006 m. Then, the length of the outer core needs to be >3.0063 m, which means that one of the two strain-applied points should have a longitudinal displacement of >150 μm (=300 μm/2) between the central and outer cores. This situation is highly unlikely if we consider the core pitch of ~56 μm. Therefore, the non-uniform strain distribution on the cross-section is not the main reason for the discrepancy of the strain coefficients, and it is valid to assume that a longitudinal strain is uniformly distributed on the cross-section of the MCF.</p>
<p>The calculated stress distribution in the cross-sectional direction is shown in
<xref ref-type="fig" rid="f8">Fig. 8</xref>
. The asymmetric nature seems to be caused by the meshing algorithm of the software. The stress was relatively high on the circumferences of the cores, and the stress applied to the outer cores (especially on their outer sides; indicated in red) turned out to be higher than that applied to the central core. However, even the highest stress obtained in the cross-sectional direction was approximately 6.2 kPa, which is negligibly low compared to the calculated longitudinal stress of ~14 MPa. Thus, we speculate that the difference in structural deformation between the central and outer cores cannot explain the difference in the BFS dependence on strain, which probably originates from the practical difference in core material (detailed information is not available).</p>
<p>In summary, we measured the BFS and its dependence on strain and temperature in the central core and one of the outer cores of a 7-core MCF. Although the strain dependence between the two cores was not perfectly identical, the strain- and temperature-dependence coefficients differed only slightly, which is to be expected because the MCF used in this measurement was fabricated with the intention that all the cores should be identical in material and structure. However, the difference in the Brillouin properties among the cores is expected to be enhanced by fabricating an MCF using different materials (see
<xref ref-type="table" rid="t1">Table 1</xref>
) and structures (note that several schemes have been developed to suppress the inter-core crosstalk by inducing phase mismatch among the cores)
<xref ref-type="bibr" rid="b12">12</xref>
<xref ref-type="bibr" rid="b13">13</xref>
<xref ref-type="bibr" rid="b14">14</xref>
<xref ref-type="bibr" rid="b15">15</xref>
. If this difference is sufficiently large, by exploiting Brillouin scattering in multiple cores of the MCF, a discriminative measurement of strain and temperature distributions will be feasible only by use of a single fiber
<xref ref-type="bibr" rid="b38">38</xref>
<xref ref-type="bibr" rid="b39">39</xref>
<xref ref-type="bibr" rid="b40">40</xref>
<xref ref-type="bibr" rid="b41">41</xref>
. Another potential application of Brillouin scattering in MCFs is bending/torsion sensing, because each core experiences different strains when bending or torsion is applied to the fiber. We anticipate that this paper will be an important archive exploring a new field of research: MCF Brillouin sensing.</p>
</sec>
<sec disp-level="1">
<title>Additional Information</title>
<p>
<bold>How to cite this article</bold>
: Mizuno, Y.
<italic>et al</italic>
. Brillouin scattering in multi-core optical fibers for sensing applications.
<italic>Sci. Rep</italic>
.
<bold>5</bold>
, 11388; doi: 10.1038/srep11388 (2015).</p>
</sec>
</body>
<back>
<ack>
<p>The authors are indebted to Furukawa Electric Co., Ltd. for providing the MCF samples. They also thank Hideyuki Fukuda (Tokyo Institute of Technology, Japan) for his technical support in the simulation. This work was partially supported by Grants-in-Aid for Young Scientists (A) (No. 25709032) and for Challenging Exploratory Research (No. 26630180) from the Japan Society for the Promotion of Science (JSPS) and by research grants from the General Sekiyu Foundation, the Iwatani Naoji Foundation, and the SCAT Foundation. N.H. acknowledges a Grant-in-Aid for JSPS Fellows (No. 25007652).</p>
</ack>
<ref-list>
<ref id="b1">
<mixed-citation publication-type="journal">
<name>
<surname>Nakazawa</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Kikuchi</surname>
<given-names>K.</given-names>
</name>
&
<name>
<surname>Miyazaki</surname>
<given-names>T.</given-names>
</name>
<source>High Spectral Density Optical Communication Technologies</source>
(Springer, New York,
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b2">
<mixed-citation publication-type="journal">
<name>
<surname>Kahn</surname>
<given-names>J. M.</given-names>
</name>
&
<name>
<surname>Ho</surname>
<given-names>K. P.</given-names>
</name>
<article-title>A bottleneck for optical fibres</article-title>
.
<source>Nature</source>
<volume>411</volume>
,
<fpage>1007</fpage>
<lpage>1010</lpage>
(
<year>2001</year>
).
<pub-id pub-id-type="pmid">11429585</pub-id>
</mixed-citation>
</ref>
<ref id="b3">
<mixed-citation publication-type="journal">
<name>
<surname>Mitra</surname>
<given-names>P. P.</given-names>
</name>
&
<name>
<surname>Stark</surname>
<given-names>J. B.</given-names>
</name>
<article-title>Nonlinear limits to the information capacity of optical fibre communications</article-title>
.
<source>Nature</source>
<volume>411</volume>
,
<fpage>1027</fpage>
<lpage>1030</lpage>
(
<year>2001</year>
).
<pub-id pub-id-type="pmid">11429598</pub-id>
</mixed-citation>
</ref>
<ref id="b4">
<mixed-citation publication-type="journal">
<name>
<surname>Todoroki</surname>
<given-names>S.</given-names>
</name>
<source>Fiber Fuse – Light-Induced Continuous Breakdown of Silica Glass Optical Fiber</source>
(Springer, Tokyo,
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b5">
<mixed-citation publication-type="journal">
<name>
<surname>Mizuno</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Hayashi</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Tanaka</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Nakamura</surname>
<given-names>K.</given-names>
</name>
&
<name>
<surname>Todoroki</surname>
<given-names>S.</given-names>
</name>
<article-title>Observation of polymer optical fiber fuse</article-title>
.
<source>Appl. Phys. Lett.</source>
<volume>104</volume>
,
<fpage>043302</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b6">
<mixed-citation publication-type="journal">
<name>
<surname>Mizuno</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Hayashi</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Tanaka</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Nakamura</surname>
<given-names>K.</given-names>
</name>
&
<name>
<surname>Todoroki</surname>
<given-names>S.</given-names>
</name>
<article-title>Propagation mechanism of polymer optical fiber fuse</article-title>
.
<source>Sci. Rep.</source>
<volume>4</volume>
,
<fpage>4800</fpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">24762949</pub-id>
</mixed-citation>
</ref>
<ref id="b7">
<mixed-citation publication-type="journal">
<name>
<surname>Koshiba</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Saitoh</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Takenaga</surname>
<given-names>K.</given-names>
</name>
&
<name>
<surname>Matsuo</surname>
<given-names>S.</given-names>
</name>
<article-title>Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory</article-title>
.
<source>Opt. Express</source>
<volume>19</volume>
,
<fpage>B102</fpage>
<lpage>B111</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">22274004</pub-id>
</mixed-citation>
</ref>
<ref id="b8">
<mixed-citation publication-type="journal">
<name>
<surname>Sakaguchi</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
.
<article-title>305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber</article-title>
.
<source>J. Lightwave Technol.</source>
<volume>31</volume>
,
<fpage>554</fpage>
<lpage>562</lpage>
(
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b9">
<mixed-citation publication-type="journal">
<name>
<surname>Matsuo</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
.
<article-title>12-core fiber with one ring structure for extremely large capacity transmission</article-title>
.
<source>Opt. Express</source>
<volume>20</volume>
,
<fpage>28398</fpage>
<lpage>28408</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">23263075</pub-id>
</mixed-citation>
</ref>
<ref id="b10">
<mixed-citation publication-type="journal">
<name>
<surname>Egorova</surname>
<given-names>O. N.</given-names>
</name>
<etal></etal>
.
<article-title>Multicore fiber with rectangular cross-section</article-title>
.
<source>Opt. Lett.</source>
<volume>39</volume>
,
<fpage>2168</fpage>
<lpage>2170</lpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">24686702</pub-id>
</mixed-citation>
</ref>
<ref id="b11">
<mixed-citation publication-type="journal">
<name>
<surname>Takahashi</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
.
<article-title>First demonstration of MC-EDFA-repeatered SDM transmission of 40 × 128-Gbit/s PDM-QPSK signals per core over 6,160-km 7-core MCF</article-title>
.
<source>Opt. Express</source>
<volume>21</volume>
,
<fpage>789</fpage>
<lpage>795</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">23388971</pub-id>
</mixed-citation>
</ref>
<ref id="b12">
<mixed-citation publication-type="journal">
<name>
<surname>Koshiba</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Saitoh</surname>
<given-names>K.</given-names>
</name>
&
<name>
<surname>Kokubun</surname>
<given-names>Y.</given-names>
</name>
<article-title>Heterogeneous multi-core fibers: proposal and design principle</article-title>
.
<source>IEICE Electron. Express</source>
<volume>6</volume>
,
<fpage>98</fpage>
<lpage>103</lpage>
(
<year>2009</year>
).</mixed-citation>
</ref>
<ref id="b13">
<mixed-citation publication-type="journal">
<name>
<surname>Imamura</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
.
<article-title>Investigation on multi-core fibers with large Aeff and low micro bending loss</article-title>
.
<source>Opt. Express</source>
<volume>19</volume>
,
<fpage>10595</fpage>
<lpage>10603</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21643313</pub-id>
</mixed-citation>
</ref>
<ref id="b14">
<mixed-citation publication-type="journal">
<name>
<surname>Takenaga</surname>
<given-names>K.</given-names>
</name>
<etal></etal>
.
<article-title>An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction</article-title>
.
<source>IEICE Trans. Commun.</source>
<volume>E94-B</volume>
,
<fpage>409</fpage>
<lpage>416</lpage>
(
<year>2011</year>
).</mixed-citation>
</ref>
<ref id="b15">
<mixed-citation publication-type="journal">
<name>
<surname>Hayashi</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Taru</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Shimakawa</surname>
<given-names>O.</given-names>
</name>
,
<name>
<surname>Sasaki</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Sasaoka</surname>
<given-names>E.</given-names>
</name>
<article-title>Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber</article-title>
.
<source>Opt. Express</source>
<volume>19</volume>
,
<fpage>16576</fpage>
<lpage>16592</lpage>
(
<year>2011</year>
).
<pub-id pub-id-type="pmid">21935022</pub-id>
</mixed-citation>
</ref>
<ref id="b16">
<mixed-citation publication-type="journal">
<name>
<surname>Agrawal</surname>
<given-names>G. P.</given-names>
</name>
<source>Nonlinear Fiber Optics</source>
(Academic Press, California,
<year>1995</year>
).</mixed-citation>
</ref>
<ref id="b17">
<mixed-citation publication-type="journal">
<name>
<surname>Horiguchi</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Kurashima</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Tateda</surname>
<given-names>M.</given-names>
</name>
<article-title>Tensile strain dependence of Brillouin frequency shift in silica optical fibers</article-title>
.
<source>IEEE Photon. Technol. Lett.</source>
<volume>1</volume>
,
<fpage>107</fpage>
<lpage>108</lpage>
(
<year>1989</year>
).</mixed-citation>
</ref>
<ref id="b18">
<mixed-citation publication-type="journal">
<name>
<surname>Kurashima</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Horiguchi</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Tateda</surname>
<given-names>M.</given-names>
</name>
<article-title>Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers</article-title>
.
<source>Appl. Opt.</source>
<volume>29</volume>
,
<fpage>2219</fpage>
<lpage>2222</lpage>
(
<year>1990</year>
).
<pub-id pub-id-type="pmid">20563153</pub-id>
</mixed-citation>
</ref>
<ref id="b19">
<mixed-citation publication-type="journal">
<name>
<surname>Yeniay</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Delavaux</surname>
<given-names>J. M.</given-names>
</name>
&
<name>
<surname>Toulouse</surname>
<given-names>J.</given-names>
</name>
<article-title>Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers</article-title>
.
<source>J. Lightwave Technol.</source>
<volume>20</volume>
,
<fpage>1425</fpage>
<lpage>1432</lpage>
(
<year>2002</year>
).</mixed-citation>
</ref>
<ref id="b20">
<mixed-citation publication-type="journal">
<name>
<surname>Hotate</surname>
<given-names>K.</given-names>
</name>
&
<name>
<surname>Hasegawa</surname>
<given-names>T.</given-names>
</name>
<article-title>Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique – proposal, experiment and simulation−</article-title>
<source>IEICE Trans. Electron.</source>
<volume>E83-C</volume>
,
<fpage>405</fpage>
<lpage>412</lpage>
(
<year>2000</year>
).</mixed-citation>
</ref>
<ref id="b21">
<mixed-citation publication-type="journal">
<name>
<surname>Mizuno</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Zou</surname>
<given-names>W.</given-names>
</name>
,
<name>
<surname>He</surname>
<given-names>Z.</given-names>
</name>
&
<name>
<surname>Hotate</surname>
<given-names>K.</given-names>
</name>
<article-title>Proposal of Brillouin optical correlation-domain reflectometry (BOCDR)</article-title>
.
<source>Opt. Express</source>
<volume>16</volume>
,
<fpage>12148</fpage>
<lpage>12153</lpage>
(
<year>2008</year>
).
<pub-id pub-id-type="pmid">18679490</pub-id>
</mixed-citation>
</ref>
<ref id="b22">
<mixed-citation publication-type="journal">
<name>
<surname>Horiguchi</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Tateda</surname>
<given-names>M.</given-names>
</name>
<article-title>BOTDA – nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory</article-title>
.
<source>J. Lightwave Technol.</source>
<volume>7</volume>
,
<fpage>1170</fpage>
<lpage>1176</lpage>
(
<year>1989</year>
).</mixed-citation>
</ref>
<ref id="b23">
<mixed-citation publication-type="journal">
<name>
<surname>Kurashima</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Horiguchi</surname>
<given-names>T.</given-names>
</name>
,
<name>
<surname>Izumita</surname>
<given-names>H.</given-names>
</name>
,
<name>
<surname>Furukawa</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>Koyamada</surname>
<given-names>Y.</given-names>
</name>
<article-title>Brillouin optical-fiber time domain reflectometry</article-title>
.
<source>IEICE Trans. Commun.</source>
<volume>E76-B</volume>
,
<fpage>382</fpage>
<lpage>390</lpage>
(
<year>1993</year>
).</mixed-citation>
</ref>
<ref id="b24">
<mixed-citation publication-type="journal">
<name>
<surname>Garus</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Krebber</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Schliep</surname>
<given-names>F.</given-names>
</name>
&
<name>
<surname>Gogolla</surname>
<given-names>T.</given-names>
</name>
<article-title>Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis</article-title>
.
<source>Opt. Lett.</source>
<volume>21</volume>
,
<fpage>1402</fpage>
<lpage>1404</lpage>
(
<year>1996</year>
).
<pub-id pub-id-type="pmid">19876366</pub-id>
</mixed-citation>
</ref>
<ref id="b25">
<mixed-citation publication-type="journal">
<name>
<surname>Mizuno</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>He</surname>
<given-names>Z.</given-names>
</name>
&
<name>
<surname>Hotate</surname>
<given-names>K.</given-names>
</name>
<article-title>Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry</article-title>
.
<source>Opt. Commun.</source>
<volume>283</volume>
,
<fpage>2438</fpage>
<lpage>2441</lpage>
(
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b26">
<mixed-citation publication-type="journal">
<name>
<surname>Mizuno</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>He</surname>
<given-names>Z.</given-names>
</name>
&
<name>
<surname>Hotate</surname>
<given-names>K.</given-names>
</name>
<article-title>Dependence of the Brillouin frequency shift on temperature in a tellurite glass fiber and a bismuth-oxide highly-nonlinear fiber</article-title>
.
<source>Appl. Phys. Express</source>
<volume>2</volume>
,
<fpage>112402</fpage>
(
<year>2009</year>
).</mixed-citation>
</ref>
<ref id="b27">
<mixed-citation publication-type="journal">
<name>
<surname>Abedin</surname>
<given-names>K. S.</given-names>
</name>
<article-title>Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber</article-title>
.
<source>Opt. Express</source>
<volume>13</volume>
,
<fpage>10266</fpage>
<lpage>10271</lpage>
(
<year>2005</year>
).
<pub-id pub-id-type="pmid">19503241</pub-id>
</mixed-citation>
</ref>
<ref id="b28">
<mixed-citation publication-type="journal">
<name>
<surname>Song</surname>
<given-names>K. Y.</given-names>
</name>
,
<name>
<surname>Abedin</surname>
<given-names>K. S.</given-names>
</name>
,
<name>
<surname>Hotate</surname>
<given-names>K.</given-names>
</name>
,
<name>
<surname>Herráez</surname>
<given-names>M. G.</given-names>
</name>
&
<name>
<surname>Thévenaz</surname>
<given-names>L.</given-names>
</name>
<article-title>Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber</article-title>
.
<source>Opt. Express</source>
<volume>14</volume>
,
<fpage>5860</fpage>
<lpage>5865</lpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">19516755</pub-id>
</mixed-citation>
</ref>
<ref id="b29">
<mixed-citation publication-type="journal">
<name>
<surname>Lee</surname>
<given-names>J. H.</given-names>
</name>
<etal></etal>
.
<article-title>Experimental comparison of a Kerr nonlinearity figure of merit including the stimulated Brillouin scattering threshold for state-of-the-art nonlinear optical fibers</article-title>
.
<source>Opt. Lett.</source>
<volume>30</volume>
,
<fpage>1698</fpage>
<lpage>1700</lpage>
(
<year>2005</year>
).
<pub-id pub-id-type="pmid">16075542</pub-id>
</mixed-citation>
</ref>
<ref id="b30">
<mixed-citation publication-type="journal">
<name>
<surname>Zou</surname>
<given-names>L.</given-names>
</name>
,
<name>
<surname>Bao</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Afshar</surname>
<given-names>S.</given-names>
</name>
&
<name>
<surname>Chen</surname>
<given-names>L.</given-names>
</name>
<article-title>Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber</article-title>
.
<source>Opt. Lett.</source>
<volume>29</volume>
,
<fpage>1485</fpage>
<lpage>1487</lpage>
(
<year>2004</year>
).
<pub-id pub-id-type="pmid">15259721</pub-id>
</mixed-citation>
</ref>
<ref id="b31">
<mixed-citation publication-type="journal">
<name>
<surname>Ding</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Hayashi</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Mizuno</surname>
<given-names>Y.</given-names>
</name>
&
<name>
<surname>Nakamura</surname>
<given-names>K.</given-names>
</name>
<article-title>Brillouin gain spectrum dependences on temperature and strain in erbium-doped optical fibers with different erbium concentrations</article-title>
.
<source>Appl. Phys. Lett.</source>
<volume>102</volume>
,
<fpage>191906</fpage>
(
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b32">
<mixed-citation publication-type="journal">
<name>
<surname>Mizuno</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Hayashi</surname>
<given-names>N.</given-names>
</name>
&
<name>
<surname>Nakamura</surname>
<given-names>K.</given-names>
</name>
<article-title>Dependences of Brillouin frequency shift on strain and temperature in optical fibers doped with rare-earth ions</article-title>
.
<source>J. Appl. Phys.</source>
<volume>112</volume>
,
<fpage>043109</fpage>
(
<year>2012</year>
).</mixed-citation>
</ref>
<ref id="b33">
<mixed-citation publication-type="journal">
<name>
<surname>Hayashi</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Mizuno</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Koyama</surname>
<given-names>D.</given-names>
</name>
&
<name>
<surname>Nakamura</surname>
<given-names>K.</given-names>
</name>
<article-title>Dependence of Brillouin frequency shift on temperature and strain in poly(methyl methacrylate)-based polymer optical fibers estimated by acoustic velocity measurement</article-title>
.
<source>Appl. Phys. Express</source>
<volume>5</volume>
,
<fpage>032502</fpage>
(
<year>2012</year>
).</mixed-citation>
</ref>
<ref id="b34">
<mixed-citation publication-type="journal">
<name>
<surname>Mizuno</surname>
<given-names>Y.</given-names>
</name>
&
<name>
<surname>Nakamura</surname>
<given-names>K.</given-names>
</name>
<article-title>Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength</article-title>
.
<source>Appl. Phys. Lett.</source>
<volume>97</volume>
,
<fpage>021103</fpage>
(
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b35">
<mixed-citation publication-type="journal">
<name>
<surname>Mizuno</surname>
<given-names>Y.</given-names>
</name>
&
<name>
<surname>Nakamura</surname>
<given-names>K.</given-names>
</name>
<article-title>Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing</article-title>
.
<source>Opt. Lett.</source>
<volume>35</volume>
,
<fpage>3985</fpage>
<lpage>3987</lpage>
(
<year>2010</year>
).
<pub-id pub-id-type="pmid">21124587</pub-id>
</mixed-citation>
</ref>
<ref id="b36">
<mixed-citation publication-type="journal">
<name>
<surname>Ding</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Hayashi</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Mizuno</surname>
<given-names>Y.</given-names>
</name>
&
<name>
<surname>Nakamura</surname>
<given-names>K.</given-names>
</name>
<article-title>Brillouin signal amplification in pumped erbium-doped optical fiber</article-title>
.
<source>IEICE Electron. Express</source>
<volume>11</volume>
,
<fpage>20140627</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b37">
<mixed-citation publication-type="journal">
<name>
<surname>Hayashi</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Mizuno</surname>
<given-names>Y.</given-names>
</name>
&
<name>
<surname>Nakamura</surname>
<given-names>K.</given-names>
</name>
<article-title>Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber</article-title>
.
<source>Opt. Express</source>
<volume>20</volume>
,
<fpage>21101</fpage>
<lpage>21106</lpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">23037233</pub-id>
</mixed-citation>
</ref>
<ref id="b38">
<mixed-citation publication-type="journal">
<name>
<surname>Zou</surname>
<given-names>W.</given-names>
</name>
,
<name>
<surname>He</surname>
<given-names>Z.</given-names>
</name>
&
<name>
<surname>Hotate</surname>
<given-names>K.</given-names>
</name>
<article-title>Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber</article-title>
.
<source>Opt. Express</source>
<volume>17</volume>
,
<fpage>1248</fpage>
<lpage>1255</lpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19188952</pub-id>
</mixed-citation>
</ref>
<ref id="b39">
<mixed-citation publication-type="journal">
<name>
<surname>Soto</surname>
<given-names>M. A.</given-names>
</name>
,
<name>
<surname>Bolognini</surname>
<given-names>G.</given-names>
</name>
&
<name>
<surname>Pasquale</surname>
<given-names>F. D.</given-names>
</name>
<article-title>Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous Brillouin scattering and optical pulse coding</article-title>
.
<source>IEEE Photon. Technol. Lett.</source>
<volume>21</volume>
,
<fpage>450</fpage>
<lpage>452</lpage>
(
<year>2009</year>
).</mixed-citation>
</ref>
<ref id="b40">
<mixed-citation publication-type="journal">
<name>
<surname>Zhou</surname>
<given-names>D. P.</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>L.</given-names>
</name>
&
<name>
<surname>Bao</surname>
<given-names>X.</given-names>
</name>
<article-title>Distributed temperature and strain discrimination with stimulated Brillouin scattering and Rayleigh backscatter in an optical fiber</article-title>
.
<source>Sensors</source>
<volume>13</volume>
,
<fpage>1836</fpage>
<lpage>1845</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">23385406</pub-id>
</mixed-citation>
</ref>
<ref id="b41">
<mixed-citation publication-type="journal">
<name>
<surname>Ding</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Mizuno</surname>
<given-names>Y.</given-names>
</name>
&
<name>
<surname>Nakamura</surname>
<given-names>K.</given-names>
</name>
<article-title>Discriminative strain and temperature measurement using Brillouin scattering and fluorescence in erbium-doped optical fiber</article-title>
.
<source>Opt. Express</source>
<volume>22</volume>
,
<fpage>24706</fpage>
<lpage>24712</lpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">25322045</pub-id>
</mixed-citation>
</ref>
<ref id="b42">
<mixed-citation publication-type="journal">
<name>
<surname>Nikles</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Thevenaz</surname>
<given-names>L.</given-names>
</name>
, &
<name>
<surname>Robert</surname>
<given-names>P. A.</given-names>
</name>
<article-title>Brillouin gain spectrum characterization in single-mode optical fibers</article-title>
.
<source>J. Lightwave Technol.</source>
<volume>15</volume>
,
<fpage>1842</fpage>
<lpage>1851</lpage>
(
<year>1997</year>
).</mixed-citation>
</ref>
<ref id="b43">
<mixed-citation publication-type="journal">
<name>
<surname>Coelho</surname>
<given-names>J. M. P.</given-names>
</name>
,
<name>
<surname>Nespereira</surname>
<given-names>M.</given-names>
</name>
,
<name>
<surname>Abreu</surname>
<given-names>M.</given-names>
</name>
&
<name>
<surname>Rebordao</surname>
<given-names>J.</given-names>
</name>
<article-title>3D finite element model for writing long-period fiber gratings by CO2 laser radiation</article-title>
.
<source>Sensors</source>
<volume>13</volume>
,
<fpage>10333</fpage>
<lpage>10347</lpage>
(
<year>2013</year>
).
<pub-id pub-id-type="pmid">23941908</pub-id>
</mixed-citation>
</ref>
</ref-list>
<fn-group>
<fn>
<p>
<bold>Author Contributions</bold>
Y.M. and N.H. designed and performed the experiments. Y.M. and K.N. performed the experimental data analysis. H.T. and Y.W. performed the simulation. Y.M. wrote the manuscript with input from all co-authors.</p>
</fn>
</fn-group>
</back>
<floats-group>
<fig id="f1">
<label>Figure 1</label>
<caption>
<title>Schematic of the experimental setup for Brillouin measurement.</title>
</caption>
<graphic xlink:href="srep11388-f1"></graphic>
</fig>
<fig id="f2">
<label>Figure 2</label>
<caption>
<p>(
<bold>a</bold>
) Cross-sectional micrograph of the 7-core MCF. Structures of the fiber under test for detecting Brillouin scattering in (
<bold>b</bold>
) the central core and (
<bold>c</bold>
) one of the outer cores of the MCF.</p>
</caption>
<graphic xlink:href="srep11388-f2"></graphic>
</fig>
<fig id="f3">
<label>Figure 3</label>
<caption>
<p>(
<bold>a</bold>
) BGS dependence on strain (0, 0.067, 0.135, 0.202, and 0.270%) and (
<bold>b</bold>
) BFS dependence on strain in the central core of the MCF.</p>
</caption>
<graphic xlink:href="srep11388-f3"></graphic>
</fig>
<fig id="f4">
<label>Figure 4</label>
<caption>
<p>(
<bold>a</bold>
) BGS dependence on temperature (28, 40, 50, 60, 70, 80, 90 °C) and (
<bold>b</bold>
) BFS dependence on temperature in the central core of the MCF.</p>
</caption>
<graphic xlink:href="srep11388-f4"></graphic>
</fig>
<fig id="f5">
<label>Figure 5</label>
<caption>
<title>Measured BGS in the outer core of the MCF, overlapped with those in the SMF-1 and SMF-2.</title>
</caption>
<graphic xlink:href="srep11388-f5"></graphic>
</fig>
<fig id="f6">
<label>Figure 6</label>
<caption>
<p>(
<bold>a</bold>
) BGS dependence on strain (0, 0.040, 0.069, 0.098, 0.126, 0.156, 0.184%) and (
<bold>b</bold>
) BFS dependence on strain in the outer core of the MCF.</p>
</caption>
<graphic xlink:href="srep11388-f6"></graphic>
</fig>
<fig id="f7">
<label>Figure 7</label>
<caption>
<p>(
<bold>a</bold>
) BGS dependence on temperature (28, 40, 50, 60, 70, 80, 90 °C) and (
<bold>b</bold>
) BFS dependence on temperature in the outer core of the MCF.</p>
</caption>
<graphic xlink:href="srep11388-f7"></graphic>
</fig>
<fig id="f8">
<label>Figure 8</label>
<caption>
<title>Simulated stress distribution in the cross-sectional direction.</title>
</caption>
<graphic xlink:href="srep11388-f8"></graphic>
</fig>
<table-wrap position="float" id="t1">
<label>Table 1</label>
<caption>
<title>BFS at Room Temperature and its Strain and Temperature Coefficients in Silica SMF, Tellurite Fibers, Chalcogenide Fibers, Bismuth-Oxide Fibers, Germanium-Doped PCFs, Erbium-Doped Fibers, Neodymium-Doped Fibers, Thulium-Doped Fibers, and PFGI-POFs at 1.55 μm.</title>
</caption>
<table frame="hsides" rules="groups" border="1">
<colgroup>
<col align="left"></col>
<col align="center"></col>
<col align="char" char="."></col>
<col align="char" char="."></col>
<col align="char" char="."></col>
</colgroup>
<thead valign="bottom">
<tr>
<th align="left" valign="top" charoff="50">Fiber</th>
<th align="center" valign="top" charoff="50">BFS (GHz)</th>
<th align="center" valign="top" char="." charoff="50">
<italic>n</italic>
</th>
<th align="center" valign="top" char="." charoff="50">Strain coefficient (MHz/%)</th>
<th align="center" valign="top" char="." charoff="50">Temperature coefficient (MHz/K)</th>
</tr>
</thead>
<tbody valign="top">
<tr>
<td align="left" valign="top" charoff="50">Silica SMF
<xref ref-type="fn" rid="t1-fn2">a</xref>
</td>
<td align="center" valign="top" charoff="50">~10.85</td>
<td align="char" valign="top" char="." charoff="50">~1.46</td>
<td align="char" valign="top" char="." charoff="50">+580</td>
<td align="char" valign="top" char="." charoff="50">+1.18</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Tellurite
<xref ref-type="fn" rid="t1-fn3">b</xref>
</td>
<td align="center" valign="top" charoff="50">~7.95</td>
<td align="char" valign="top" char="." charoff="50">~2.03</td>
<td align="char" valign="top" char="." charoff="50">–230</td>
<td align="char" valign="top" char="." charoff="50">–1.14</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Chalcogenide
<xref ref-type="fn" rid="t1-fn4">c</xref>
</td>
<td align="center" valign="top" charoff="50">~7.95</td>
<td align="char" valign="top" char="." charoff="50">~2.81</td>
<td align="center" valign="top" char="." charoff="50"></td>
<td align="center" valign="top" char="." charoff="50"></td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Bismuth-oxide
<xref ref-type="fn" rid="t1-fn5">d</xref>
</td>
<td align="center" valign="top" charoff="50">~8.83</td>
<td align="char" valign="top" char="." charoff="50">~2.22</td>
<td align="center" valign="top" char="." charoff="50"></td>
<td align="char" valign="top" char="." charoff="50">−0.88</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Ge-doped PCF
<xref ref-type="fn" rid="t1-fn6">e</xref>
</td>
<td align="center" valign="top" charoff="50">~10.29</td>
<td align="char" valign="top" char="." charoff="50">~1.46</td>
<td align="char" valign="top" char="." charoff="50">+409</td>
<td align="char" valign="top" char="." charoff="50">+0.82</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Er-doped
<xref ref-type="fn" rid="t1-fn7">f</xref>
</td>
<td align="center" valign="top" charoff="50">~11.42</td>
<td align="char" valign="top" char="." charoff="50">~1.46</td>
<td align="char" valign="top" char="." charoff="50">+479</td>
<td align="char" valign="top" char="." charoff="50">+0.87</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Nd-doped
<xref ref-type="fn" rid="t1-fn8">g</xref>
</td>
<td align="center" valign="top" charoff="50">~10.82</td>
<td align="char" valign="top" char="." charoff="50">~1.46</td>
<td align="char" valign="top" char="." charoff="50">+466</td>
<td align="char" valign="top" char="." charoff="50">+0.73</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">Tm-doped
<xref ref-type="fn" rid="t1-fn8">g</xref>
</td>
<td align="center" valign="top" charoff="50">~10.90</td>
<td align="char" valign="top" char="." charoff="50">~1.46</td>
<td align="char" valign="top" char="." charoff="50">+433</td>
<td align="char" valign="top" char="." charoff="50">+0.90</td>
</tr>
<tr>
<td align="left" valign="top" charoff="50">PFGI-POF
<xref ref-type="fn" rid="t1-fn9">h</xref>
</td>
<td align="center" valign="top" charoff="50">~2.83</td>
<td align="char" valign="top" char="." charoff="50">~1.35</td>
<td align="char" valign="top" char="." charoff="50">–122</td>
<td align="char" valign="top" char="." charoff="50">–4.09</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="t1-fn1">
<p>The Refractive Index n of Each Fiber is Also Presented.</p>
</fn>
<fn id="t1-fn2">
<p>
<sup>a</sup>
Refs
<xref ref-type="bibr" rid="b17">17</xref>
,
<xref ref-type="bibr" rid="b18">18</xref>
.</p>
</fn>
<fn id="t1-fn3">
<p>
<sup>b</sup>
Refs
<xref ref-type="bibr" rid="b25">25</xref>
,
<xref ref-type="bibr" rid="b26">26</xref>
.</p>
</fn>
<fn id="t1-fn4">
<p>
<sup>c</sup>
Ref
<xref ref-type="bibr" rid="b27">27.</xref>
</p>
</fn>
<fn id="t1-fn5">
<p>
<sup>d</sup>
Refs
<xref ref-type="bibr" rid="b26">26</xref>
,
<xref ref-type="bibr" rid="b29">29</xref>
.</p>
</fn>
<fn id="t1-fn6">
<p>
<sup>e</sup>
Ref
<xref ref-type="bibr" rid="b30">30</xref>
.</p>
</fn>
<fn id="t1-fn7">
<p>
<sup>f</sup>
Ref
<xref ref-type="bibr" rid="b31">31</xref>
.</p>
</fn>
<fn id="t1-fn8">
<p>
<sup>g</sup>
Ref
<xref ref-type="bibr" rid="b32">32</xref>
.</p>
</fn>
<fn id="t1-fn9">
<p>
<sup>h</sup>
Ref
<xref ref-type="bibr" rid="b35">35</xref>
.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000085 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000085 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4464328
   |texte=   Brillouin scattering in multi-core optical fibers for sensing applications
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26065718" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024