Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0000789 ( Pmc/Corpus ); précédent : 0000788; suivant : 0000790 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W</title>
<author>
<name sortKey="Wang, Longfei" sort="Wang, Longfei" uniqKey="Wang L" first="Longfei" last="Wang">Longfei Wang</name>
<affiliation>
<nlm:aff id="a1">
<institution>Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics</institution>
, Chinese Academy of Sciences, Shanghai 201800,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>University of Chinese Academy of Sciences</institution>
, Beijing 100049,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="He, Dongbing" sort="He, Dongbing" uniqKey="He D" first="Dongbing" last="He">Dongbing He</name>
<affiliation>
<nlm:aff id="a1">
<institution>Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics</institution>
, Chinese Academy of Sciences, Shanghai 201800,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>University of Chinese Academy of Sciences</institution>
, Beijing 100049,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Feng, Suya" sort="Feng, Suya" uniqKey="Feng S" first="Suya" last="Feng">Suya Feng</name>
<affiliation>
<nlm:aff id="a1">
<institution>Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics</institution>
, Chinese Academy of Sciences, Shanghai 201800,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>University of Chinese Academy of Sciences</institution>
, Beijing 100049,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yu, Chunlei" sort="Yu, Chunlei" uniqKey="Yu C" first="Chunlei" last="Yu">Chunlei Yu</name>
<affiliation>
<nlm:aff id="a1">
<institution>Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics</institution>
, Chinese Academy of Sciences, Shanghai 201800,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>University of Chinese Academy of Sciences</institution>
, Beijing 100049,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Lili" sort="Hu, Lili" uniqKey="Hu L" first="Lili" last="Hu">Lili Hu</name>
<affiliation>
<nlm:aff id="a1">
<institution>Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics</institution>
, Chinese Academy of Sciences, Shanghai 201800,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>University of Chinese Academy of Sciences</institution>
, Beijing 100049,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Jianrong" sort="Qiu, Jianrong" uniqKey="Qiu J" first="Jianrong" last="Qiu">Jianrong Qiu</name>
<affiliation>
<nlm:aff id="a3">
<institution>Institute of Optical Communication Materials, South China University of Technology</institution>
, Guangzhou 510641,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Danping" sort="Chen, Danping" uniqKey="Chen D" first="Danping" last="Chen">Danping Chen</name>
<affiliation>
<nlm:aff id="a1">
<institution>Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics</institution>
, Chinese Academy of Sciences, Shanghai 201800,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>University of Chinese Academy of Sciences</institution>
, Beijing 100049,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25684731</idno>
<idno type="pmc">4329557</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329557</idno>
<idno type="RBID">PMC:4329557</idno>
<idno type="doi">10.1038/srep08490</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000078</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000078</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W</title>
<author>
<name sortKey="Wang, Longfei" sort="Wang, Longfei" uniqKey="Wang L" first="Longfei" last="Wang">Longfei Wang</name>
<affiliation>
<nlm:aff id="a1">
<institution>Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics</institution>
, Chinese Academy of Sciences, Shanghai 201800,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>University of Chinese Academy of Sciences</institution>
, Beijing 100049,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="He, Dongbing" sort="He, Dongbing" uniqKey="He D" first="Dongbing" last="He">Dongbing He</name>
<affiliation>
<nlm:aff id="a1">
<institution>Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics</institution>
, Chinese Academy of Sciences, Shanghai 201800,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>University of Chinese Academy of Sciences</institution>
, Beijing 100049,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Feng, Suya" sort="Feng, Suya" uniqKey="Feng S" first="Suya" last="Feng">Suya Feng</name>
<affiliation>
<nlm:aff id="a1">
<institution>Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics</institution>
, Chinese Academy of Sciences, Shanghai 201800,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>University of Chinese Academy of Sciences</institution>
, Beijing 100049,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yu, Chunlei" sort="Yu, Chunlei" uniqKey="Yu C" first="Chunlei" last="Yu">Chunlei Yu</name>
<affiliation>
<nlm:aff id="a1">
<institution>Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics</institution>
, Chinese Academy of Sciences, Shanghai 201800,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>University of Chinese Academy of Sciences</institution>
, Beijing 100049,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hu, Lili" sort="Hu, Lili" uniqKey="Hu L" first="Lili" last="Hu">Lili Hu</name>
<affiliation>
<nlm:aff id="a1">
<institution>Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics</institution>
, Chinese Academy of Sciences, Shanghai 201800,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>University of Chinese Academy of Sciences</institution>
, Beijing 100049,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Jianrong" sort="Qiu, Jianrong" uniqKey="Qiu J" first="Jianrong" last="Qiu">Jianrong Qiu</name>
<affiliation>
<nlm:aff id="a3">
<institution>Institute of Optical Communication Materials, South China University of Technology</institution>
, Guangzhou 510641,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Danping" sort="Chen, Danping" uniqKey="Chen D" first="Danping" last="Chen">Danping Chen</name>
<affiliation>
<nlm:aff id="a1">
<institution>Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics</institution>
, Chinese Academy of Sciences, Shanghai 201800,
<country>China</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="a2">
<institution>University of Chinese Academy of Sciences</institution>
, Beijing 100049,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific Reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Single-mode ytterbium-doped phosphate all-solid photonic crystal fiber (AS-PCF) with 13.8 W output power and 32% slope efficiency was reported. By altering the diameter of the rods around the doped core and thus breaking the symmetry of the fiber, a polarization-maintaining AS-PCF with degree of polarization of >85% was also achieved, for the first time to knowledge, in a phosphate PCF.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Jauregui, C" uniqKey="Jauregui C">C. Jauregui</name>
</author>
<author>
<name sortKey="Limpert, J" uniqKey="Limpert J">J. Limpert</name>
</author>
<author>
<name sortKey="Tunnermann, A" uniqKey="Tunnermann A">A. Tünnermann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lucianetti, A" uniqKey="Lucianetti A">A. Lucianetti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tan, S J" uniqKey="Tan S">S. J. Tan</name>
</author>
<author>
<name sortKey="Harun, S W" uniqKey="Harun S">S. W. Harun</name>
</author>
<author>
<name sortKey="Arof, H" uniqKey="Arof H">H. Arof</name>
</author>
<author>
<name sortKey="Ahmad, H" uniqKey="Ahmad H">H. Ahmad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kasim, N" uniqKey="Kasim N">N. Kasim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Su, R" uniqKey="Su R">R. Su</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, X" uniqKey="Ma X">X. Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dasgupta, S" uniqKey="Dasgupta S">S. Dasgupta</name>
</author>
<author>
<name sortKey="Hayes, J R" uniqKey="Hayes J">J. R. Hayes</name>
</author>
<author>
<name sortKey="Richardson, D J" uniqKey="Richardson D">D. J. Richardson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sudesh, V" uniqKey="Sudesh V">V. Sudesh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gu, G" uniqKey="Gu G">G. Gu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jain, D" uniqKey="Jain D">D. Jain</name>
</author>
<author>
<name sortKey="Jung, Y" uniqKey="Jung Y">Y. Jung</name>
</author>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J. Kim</name>
</author>
<author>
<name sortKey="Sahu, J K" uniqKey="Sahu J">J. K. Sahu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="J Rgensen, M M" uniqKey="J Rgensen M">M. M. Jørgensen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Limpert, J" uniqKey="Limpert J">J. Limpert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brooks, C D" uniqKey="Brooks C">C. D. Brooks</name>
</author>
<author>
<name sortKey="Di Teodoro, F" uniqKey="Di Teodoro F">F. Di Teodoro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, L" uniqKey="Han L">L. Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Qureshi, K K" uniqKey="Qureshi K">K. K. Qureshi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liang, W" uniqKey="Liang W">W. Liang</name>
</author>
<author>
<name sortKey="Liu, N" uniqKey="Liu N">N. Liu</name>
</author>
<author>
<name sortKey="Li, Z" uniqKey="Li Z">Z. Li</name>
</author>
<author>
<name sortKey="Lu, P" uniqKey="Lu P">P. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaida, C" uniqKey="Gaida C">C. Gaida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, C" uniqKey="Huang C">C. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Q" uniqKey="Xu Q">Q. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burshtein, Z" uniqKey="Burshtein Z">Z. Burshtein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, W" uniqKey="Li W">W. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sulaiman, A" uniqKey="Sulaiman A">A. Sulaiman</name>
</author>
<author>
<name sortKey="Harun, S W" uniqKey="Harun S">S. W. Harun</name>
</author>
<author>
<name sortKey="Ahmad, H" uniqKey="Ahmad H">H. Ahmad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X. Yang</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Zhao, C" uniqKey="Zhao C">C. Zhao</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Y W" uniqKey="Lee Y">Y. W. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Franczyk, M" uniqKey="Franczyk M">M. Franczyk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stepien, R" uniqKey="Stepien R">R. Stepien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, F" uniqKey="Huang F">F. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fang, J" uniqKey="Fang J">J. Fang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wan, R" uniqKey="Wan R">R. Wan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, J" uniqKey="Hu J">J. Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schulzgen, A" uniqKey="Schulzgen A">A. Schulzgen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q. Wang</name>
</author>
<author>
<name sortKey="Geng, J" uniqKey="Geng J">J. Geng</name>
</author>
<author>
<name sortKey="Luo, T" uniqKey="Luo T">T. Luo</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S. Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ortac, B" uniqKey="Ortac B">B. Ortaç</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thapa, R" uniqKey="Thapa R">R. Thapa</name>
</author>
<author>
<name sortKey="Nguyen, D" uniqKey="Nguyen D">D. Nguyen</name>
</author>
<author>
<name sortKey="Zong, J" uniqKey="Zong J">J. Zong</name>
</author>
<author>
<name sortKey="Chavez Pirson, A" uniqKey="Chavez Pirson A">A. Chavez-Pirson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akbulut, M" uniqKey="Akbulut M">M. Akbulut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, G" uniqKey="Zhang G">G. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, L F" uniqKey="Wang L">L. F. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, L F" uniqKey="Wang L">L. F. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Y W" uniqKey="Lee Y">Y. W. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kubota, H" uniqKey="Kubota H">H. Kubota</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, D J J" uniqKey="Hu D">D. J. J. Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tiu, Z C" uniqKey="Tiu Z">Z. C. Tiu</name>
</author>
<author>
<name sortKey="Tan, S J" uniqKey="Tan S">S. J. Tan</name>
</author>
<author>
<name sortKey="Ahmad, H" uniqKey="Ahmad H">H. Ahmad</name>
</author>
<author>
<name sortKey="Harun, S W" uniqKey="Harun S">S. W. Harun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hansen, T P" uniqKey="Hansen T">T. P. Hansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ulrich, R" uniqKey="Ulrich R">R. Ulrich</name>
</author>
<author>
<name sortKey="Simon, A" uniqKey="Simon A">A. Simon</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Sci Rep</journal-id>
<journal-title-group>
<journal-title>Scientific Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-2322</issn>
<publisher>
<publisher-name>Nature Publishing Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25684731</article-id>
<article-id pub-id-type="pmc">4329557</article-id>
<article-id pub-id-type="pii">srep08490</article-id>
<article-id pub-id-type="doi">10.1038/srep08490</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Phosphate ytterbium-doped single-mode all-solid photonic crystal fiber with output power of 13.8 W</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Longfei</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>He</surname>
<given-names>Dongbing</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Feng</surname>
<given-names>Suya</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yu</surname>
<given-names>Chunlei</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hu</surname>
<given-names>Lili</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Qiu</surname>
<given-names>Jianrong</given-names>
</name>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Danping</given-names>
</name>
<xref ref-type="corresp" rid="c1">a</xref>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<aff id="a1">
<label>1</label>
<institution>Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics</institution>
, Chinese Academy of Sciences, Shanghai 201800,
<country>China</country>
</aff>
<aff id="a2">
<label>2</label>
<institution>University of Chinese Academy of Sciences</institution>
, Beijing 100049,
<country>China</country>
</aff>
<aff id="a3">
<label>3</label>
<institution>Institute of Optical Communication Materials, South China University of Technology</institution>
, Guangzhou 510641,
<country>China</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="c1">
<label>a</label>
<email>dpchen2008@aliyun.com</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>16</day>
<month>02</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>5</volume>
<elocation-id>8490</elocation-id>
<history>
<date date-type="received">
<day>05</day>
<month>08</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>16</day>
<month>01</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2015, Macmillan Publishers Limited. All rights reserved</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>Macmillan Publishers Limited. All rights reserved</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc-nd/4.0/">
<pmc-comment>author-paid</pmc-comment>
<license-p>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc-nd/4.0/">http://creativecommons.org/licenses/by-nc-nd/4.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<p>Single-mode ytterbium-doped phosphate all-solid photonic crystal fiber (AS-PCF) with 13.8 W output power and 32% slope efficiency was reported. By altering the diameter of the rods around the doped core and thus breaking the symmetry of the fiber, a polarization-maintaining AS-PCF with degree of polarization of >85% was also achieved, for the first time to knowledge, in a phosphate PCF.</p>
</abstract>
</article-meta>
</front>
<body>
<p>Rare-earth (RE) doped double-clad fibers have been investigated for many years
<xref ref-type="bibr" rid="b1">1</xref>
<xref ref-type="bibr" rid="b2">2</xref>
; one of the primary objectives is to enlarge their core diameter and shorten the length, which is especially important in single-frequency fiber laser
<xref ref-type="bibr" rid="b3">3</xref>
and pulsed laser
<xref ref-type="bibr" rid="b4">4</xref>
<xref ref-type="bibr" rid="b5">5</xref>
<xref ref-type="bibr" rid="b6">6</xref>
. Many solutions have been suggested to break the limitation of the core diameter in a traditional silica step-index fiber, including chirally-coupled-core (CCC) fibers
<xref ref-type="bibr" rid="b7">7</xref>
, leaky channel fibers
<xref ref-type="bibr" rid="b8">8</xref>
, gain-guiding fibers
<xref ref-type="bibr" rid="b9">9</xref>
, photonic bandgap fiber
<xref ref-type="bibr" rid="b10">10</xref>
, multi-trench fiber
<xref ref-type="bibr" rid="b11">11</xref>
, distributed modal filtering rod fiber
<xref ref-type="bibr" rid="b12">12</xref>
, large pitch fiber
<xref ref-type="bibr" rid="b13">13</xref>
, photonic crystal fibers (PCF)
<xref ref-type="bibr" rid="b14">14</xref>
<xref ref-type="bibr" rid="b15">15</xref>
<xref ref-type="bibr" rid="b16">16</xref>
<xref ref-type="bibr" rid="b17">17</xref>
, and so forth. To date, a single-mode large mode area (LMA) PCF with a core diameter up to 100 µm
<xref ref-type="bibr" rid="b14">14</xref>
, a large pitch fiber (LPF), modified version of PCF, with core diameter of ~135 µm
<xref ref-type="bibr" rid="b13">13</xref>
, and a LPF with 100 W output power and a short length of 40 cm were demonstrated
<xref ref-type="bibr" rid="b18">18</xref>
. However, typical LMA-PCFs are made of silica, and the photonic crystal cladding (PCC) contains hollows
<xref ref-type="bibr" rid="b19">19</xref>
<xref ref-type="bibr" rid="b20">20</xref>
<xref ref-type="bibr" rid="b21">21</xref>
<xref ref-type="bibr" rid="b22">22</xref>
that limit the further improvement of PCF performance. On one hand, although PCF with heavily doped core contributes to increase the pump absorption efficiency and thus shorten the fiber, the rare-earth-solubility (RES) in silica is at a low level
<xref ref-type="bibr" rid="b23">23</xref>
<xref ref-type="bibr" rid="b24">24</xref>
<xref ref-type="bibr" rid="b25">25</xref>
<xref ref-type="bibr" rid="b26">26</xref>
<xref ref-type="bibr" rid="b27">27</xref>
. In addition, although using the Ge-doped background glass contributes to enhance the refractivity of the background and thereby increase the doping level in silica glass
<xref ref-type="bibr" rid="b18">18</xref>
, the enhanced RE increases the difficulty in handling the refractive indices of the core, which leads to index-mismatching between the core and the background glass, restricting the core diameter scalability of the PCF
<xref ref-type="bibr" rid="b18">18</xref>
. By contrast, the RES of a phosphate glass is almost ten times higher than silica
<xref ref-type="bibr" rid="b28">28</xref>
<xref ref-type="bibr" rid="b29">29</xref>
<xref ref-type="bibr" rid="b30">30</xref>
<xref ref-type="bibr" rid="b31">31</xref>
, and adjusting the indices of the glasses is remarkably convenient
<xref ref-type="bibr" rid="b32">32</xref>
<xref ref-type="bibr" rid="b33">33</xref>
<xref ref-type="bibr" rid="b34">34</xref>
<xref ref-type="bibr" rid="b35">35</xref>
<xref ref-type="bibr" rid="b36">36</xref>
<xref ref-type="bibr" rid="b37">37</xref>
. The high doping level contributes to remarkably increase the pump absorption of the fiber with length of several millimeters
<xref ref-type="bibr" rid="b30">30</xref>
<xref ref-type="bibr" rid="b38">38</xref>
, which is of importance in high power single frequency fiber with low noise and narrow laser linewidth and ultrafast fiber laser and amplifier with high stability, high repetition rate, low timing jitter, and low nonlinear effects
<xref ref-type="bibr" rid="b39">39</xref>
<xref ref-type="bibr" rid="b40">40</xref>
<xref ref-type="bibr" rid="b41">41</xref>
<xref ref-type="bibr" rid="b42">42</xref>
. On the other hand, the hollows in the PCC in a traditional silica and phosphate PCF
<xref ref-type="bibr" rid="b14">14</xref>
<xref ref-type="bibr" rid="b30">30</xref>
<xref ref-type="bibr" rid="b43">43</xref>
complicate the splice process of the PCF with the commercially pigtailed optical devices such as the fiber-coupled pump source, thereby weakening the application potential of this kind of fiber in industry
<xref ref-type="bibr" rid="b7">7</xref>
. Fortunately, the all-solid (AS)
<xref ref-type="bibr" rid="b44">44</xref>
PCF was suggested to solve this issue and make the splice process convenient, as in step-index fiber. Consequently, a high absorption, short length, and rigid LMA-PCF can be expected by adopting the soft glass and the AS structure. After the suggestion of the first Nd
<sup>3+</sup>
-doped phosphate multimode AS-PCF
<xref ref-type="bibr" rid="b44">44</xref>
, the Nd
<sup>3+</sup>
-doped silicate AS-PCF
<xref ref-type="bibr" rid="b45">45</xref>
, and Nd
<sup>3+</sup>
-doped phosphate single mode AS-PCF with core diameter up to 40 µm
<xref ref-type="bibr" rid="b46">46</xref>
were obtained.</p>
<p>In this paper, we demonstrate an Yb
<sup>3+</sup>
-doped phosphate single mode all-solid photonic crystal fiber with output power of 13.8 W and core diameter of 17 µm. By breaking the symmetry of the fiber, a polarization-maintaining PCF with polarization extinction ratio of 11 dB was obtained for the first time in a phosphate PCF.</p>
<p>
<xref ref-type="fig" rid="f1">Figure 1 (a)</xref>
shows the end-face of the fiber. The fiber is composed of three kinds of phosphate glasses. The 1-cell core is composed of Yb
<sup>3+</sup>
- doped phosphate glass (G0) with active dopant level of 6 wt.%. The inner cladding consists of glasses G1 (light grey area) and G2 (dark grey dots). The outer cladding was formed by G2. The compositions of G0, G1, and G2 are P
<sub>2</sub>
O
<sub>5</sub>
-Al
<sub>2</sub>
O
<sub>3</sub>
-K
<sub>2</sub>
O-BaO-Nb
<sub>2</sub>
O
<sub>5</sub>
-Sb
<sub>2</sub>
O
<sub>3</sub>
-La
<sub>2</sub>
O
<sub>3</sub>
-Yb
<sub>2</sub>
O
<sub>3</sub>
, P
<sub>2</sub>
O
<sub>5</sub>
-Al
<sub>2</sub>
O
<sub>3</sub>
-K
<sub>2</sub>
O-BaO-Nb
<sub>2</sub>
O
<sub>5</sub>
-Sb
<sub>2</sub>
O
<sub>3</sub>
-La
<sub>2</sub>
O
<sub>3</sub>
-Y
<sub>2</sub>
O
<sub>3</sub>
, and P
<sub>2</sub>
O
<sub>5</sub>
-Al
<sub>2</sub>
O
<sub>3</sub>
-Na
<sub>2</sub>
O-MgO-B
<sub>2</sub>
O
<sub>3</sub>
-La
<sub>2</sub>
O
<sub>3</sub>
-Y
<sub>2</sub>
O
<sub>3</sub>
, respectively. The refractive indices of G0, G1, and G2 are 1.5385, 1.5378, and 1.5143 at 1053 nm, respectively, measured by V prism method with accuracy of 5 × 10
<sup>−5</sup>
. The considerably large glass-forming region ensures a larger refractive index difference in the glasses, compared with silica, without the addition of any other dopants, such as germanium and fluorine
<xref ref-type="bibr" rid="b37">37</xref>
<xref ref-type="bibr" rid="b38">38</xref>
. The glasses were all provided by the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences. Stack-and-draw method was used to prepare the fiber preform
<xref ref-type="bibr" rid="b44">44</xref>
. A G0 rod with diameter of 20 mm, a G1 tube with inner diameter of 12 mm and outer diameter of 20 mm, and two G2 rods with 12 mm and 20 mm in diameter, respectively, are fabricated. All of the rods and tube are made of the bulk glasses and have length of ~20 cm. Then, after appropriate acid treatment, the G1 tube and the G2 rod with 12 mm diameter are drawn into rods with 1 mm in diameter by the rod-in-tube method. The G0 rod and the G2 rod with 20 mm-diameter are also drawn into 1 mm rods. After this, the rods were closed packed in a die and then the acquired fiber perform was fed into the fiber fabrication tower and drawn into fibers with desired outer diameters. The ratio of the rod diameter, d, and the center-to-center distance between two nearest rods, Λ, is 0.6. A relatively large value of d/Λ and thereby a smaller core diameter of 17 µm was chose here because a larger core diameter, resulting from a small d/Λ value, necessitates a lower numerical aperture (NA) which induces a larger bend loss in our present 40-cm fiber. Further increasing the pump absorption, through raising the doping level and so forth, can contribute to shorten the fiber length and thus make the fiber with a larger core diameter immune to bend and other disturbance.</p>
<p>A fiber with 40 cm in length and an outer diameter of ~235 µm was used to build the laser. The NA and the normalized diameter of the inner cladding were 0.27 and ~115 µm, respectively. The doped core of the fiber was 17 µm in diameter, with a calculated effective NA of ~0.06 at around 1 µm. The core diameter is 1.7 times larger than that reported in Ref.
<xref ref-type="bibr" rid="b24">24</xref>
,
<xref ref-type="bibr" rid="b25">25</xref>
. Furthermore, the doped part has a loss of 2.3 dB/m at ~1330 nm and a pumping absorption coefficient (PAC) of ~27 dB/m at 970 nm. Both properties were measured using the cutback method. Please note that the PAC and the propagation loss of the fiber here are not optimal, which will weaken fiber performance, including the fiber length, slope efficiency, and maximum output power. Nevertheless, by optimizing pump wavelength, using a heavily doped core (>12 wt.%), which can be easily realized for phosphate glass
<xref ref-type="bibr" rid="b29">29</xref>
<xref ref-type="bibr" rid="b47">47</xref>
, and improving the fiber fabrication technology to decrease the propagation loss, the performance of our AS-PCF will considerably improve. A fiber-coupled laser diode operating at 970 nm was used as the pumping source. The maximum output power and the diameter of the spot size of the pump source is 80 W and 100 µm, respectively. A collimating lens was utilized to align the pumping beam, and a coupling lens with NA of 0.3 served as the laser input couple. Please note that the NA of the coupling lens is larger than that of inner cladding in the fiber, resulting in a relatively low pump coupling efficiency of ~65%. But the coupling efficiency can be easily improved by using a low NA coupling lens or by using a lower-index G3 glass to increase the NA of pump waveguide. The cavity was composed of a butt-coupled dichroic mirror with high reflectivity at around 1 µm, and a cleaved fiber end with ~4.5% Fresnel reflectivity.</p>
<p>The laser performance is shown in
<xref ref-type="fig" rid="f2">Figure 2</xref>
and the spectrum is shown in
<xref ref-type="fig" rid="f3">Figure 3</xref>
. A maximum output power of ~13.8 W was extracted with the slope efficiency of 32% from the fiber. No rollover was found at the highest output power, implying that the maximum power of the laser is only limited by the maximum available pump power. Please note that both the output power and slope efficiency were lower than the results reported in Ref.
<xref ref-type="bibr" rid="b24">24</xref>
.To further figure out the performance of our fiber, an AS-PCF without doped core is used to measure the propagation loss of the pump power in the inner cladding to be as large as 10 dB/m, leading to an effective pump absorption of 17 dB/m for the doped core. Such high loss is ascribed to the impurity introduced when preparing the low-index rods in the PCC by rod-in-tube method and the fiber preform, and is the main reason reducing the output power as well as the slope efficiency. However, by improving the fabrication technology, such as processing the glass rods and the tube more sophisticatedly, the loss of the inner cladding can be reduced and thus the laser performance can be improved. The laser spectrum has a full width at half maximum (FWHM) of ~3 nm with the central wavelength at 1047 nm. The beam quality factor (M
<sup>2</sup>
) of the laser is measured to be 1.07. The M
<sup>2</sup>
factor and the far-field intensity profile of the laser are shown in
<xref ref-type="fig" rid="f4">Figure 4</xref>
.</p>
<p>By changing the diameter of two rods around the doped core of the non-PM-AS-PCF (
<xref ref-type="fig" rid="f1">Figure 1 (a)</xref>
)
<xref ref-type="bibr" rid="b48">48</xref>
<xref ref-type="bibr" rid="b49">49</xref>
to make the fiber asymmetrical
<xref ref-type="bibr" rid="b50">50</xref>
, the PM-AS-PCF was realized for the first time to knowledge in a phosphate PCF. The ratio of diameter of the larger rod d
<sub>2</sub>
and Λ is 1, as shown in
<xref ref-type="fig" rid="f1">Figure 1 (b)</xref>
. Furthermore, based on
<xref ref-type="fig" rid="f1">Figure 1 (b)</xref>
the presence of these two larger rods can be observed to make the core elliptical, which is also beneficial for improving the form birefringence
<xref ref-type="bibr" rid="b51">51</xref>
<xref ref-type="bibr" rid="b52">52</xref>
. The PM property was characterized through the setup shown in
<xref ref-type="fig" rid="f5">Figure 5</xref>
. The output power is characterized by a Glan-Taylor Calcite Polarizer using the definition of the degree of polarization DOP = |P
<sub>1</sub>
− P
<sub>2</sub>
|/(P
<sub>1</sub>
+ P
<sub>2</sub>
) where P
<sub>1</sub>
is the maximum and P
<sub>2</sub>
the minimum power obtained by rotation the polarizer. The DOP for this fiber of 40 cm in length was measured at different pump powers, as shown in
<xref ref-type="fig" rid="f6">Figure 6</xref>
in which the DOP of the non-PM-AS-PCF was also plotted. According to
<xref ref-type="fig" rid="f6">Figure 6</xref>
, the PM-AS-PCF has a stable and high DOP (>85%, equivalent to a polarization extinction ratio of >11 dB) in every pump power. By contrast, the DOP of the Non-PM-AS-PCF is low (<20% in general) and unstable, confirming the satisfactory PM property of the PM-AS-PCF.</p>
<p>In conclusion, a phosphate single mode Yb-doped all-solid photonic crystal fiber with 13.8 W output power and core diameter of 17 µm is reported. The polarization-maintaining PCF with degree of polarization of >85% was also, for the first time to knowledge, fabricated and characterized in a phosphate PCF. By developing the PAC and the propagation loss of the fiber, a shortened fiber with higher slope efficiency and output power can be obtained.</p>
<sec disp-level="1">
<title>Author Contributions</title>
<p>L.W. wrote the main manuscript text, co-authors D.C., J.Q. and L.H. checked the paper, and D.H., S.F. and C.Y. are responsible for the experiment. All authors reviewed the manuscript.</p>
</sec>
</body>
<back>
<ack>
<p>This research was supported by the Chinese National Natural Science Foundation (No. 51272262).</p>
</ack>
<ref-list>
<ref id="b1">
<mixed-citation publication-type="journal">
<name>
<surname>Jauregui</surname>
<given-names>C.</given-names>
</name>
,
<name>
<surname>Limpert</surname>
<given-names>J.</given-names>
</name>
&
<name>
<surname>Tünnermann</surname>
<given-names>A.</given-names>
</name>
<article-title>High-power fibre lasers</article-title>
.
<source>Nat. photonics</source>
<volume>7</volume>
,
<fpage>861</fpage>
(
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b2">
<mixed-citation publication-type="journal">
<name>
<surname>Lucianetti</surname>
<given-names>A.</given-names>
</name>
<italic>et al.</italic>
<article-title>Design of a kJ-class HiLASE laser as a driver for inertial fusion energy</article-title>
.
<source>High Power Laser Sci Eng</source>
<volume>2</volume>
,
<fpage>e13</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b3">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<italic>et al.</italic>
<article-title>51.5 W monolithic single frequency 1.97 μm Tm-doped fiber amplifier</article-title>
.
<source>High Power Laser Sci Eng</source>
<volume>1</volume>
,
<fpage>123</fpage>
(
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b4">
<mixed-citation publication-type="journal">
<name>
<surname>Tan</surname>
<given-names>S. J.</given-names>
</name>
,
<name>
<surname>Harun</surname>
<given-names>S. W.</given-names>
</name>
,
<name>
<surname>Arof</surname>
<given-names>H.</given-names>
</name>
&
<name>
<surname>Ahmad</surname>
<given-names>H.</given-names>
</name>
<article-title>Switchable Q-switched and mode-locked erbium-doped fiber laser operating in the L-band region</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>11</volume>
,
<fpage>73201</fpage>
(
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b5">
<mixed-citation publication-type="journal">
<name>
<surname>Kasim</surname>
<given-names>N.</given-names>
</name>
<italic>et al.</italic>
<article-title>Q-switched ytterbium doped fiber laser using multi-walled carbon nanotubes saturable absorber</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>12</volume>
,
<fpage>31403</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b6">
<mixed-citation publication-type="journal">
<name>
<surname>Su</surname>
<given-names>R.</given-names>
</name>
<italic>et al.</italic>
<article-title>Kilowatt high average power narrow-linewidth nanosecond all-fiber laser</article-title>
.
<source>High Power Laser Sci Eng</source>
<volume>2</volume>
,
<fpage>e3</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b7">
<mixed-citation publication-type="journal">
<name>
<surname>Ma</surname>
<given-names>X.</given-names>
</name>
<italic>et al.</italic>
<article-title>Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores</article-title>
.
<source>Opt Express</source>
<volume>22</volume>
,
<fpage>9206</fpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">24787810</pub-id>
</mixed-citation>
</ref>
<ref id="b8">
<mixed-citation publication-type="journal">
<name>
<surname>Dasgupta</surname>
<given-names>S.</given-names>
</name>
,
<name>
<surname>Hayes</surname>
<given-names>J. R.</given-names>
</name>
&
<name>
<surname>Richardson</surname>
<given-names>D. J.</given-names>
</name>
<article-title>Leakage channel fibers with microstuctured cladding elements: A unique LMA platform</article-title>
.
<source>Opt Express</source>
<volume>22</volume>
,
<fpage>8574</fpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">24718229</pub-id>
</mixed-citation>
</ref>
<ref id="b9">
<mixed-citation publication-type="journal">
<name>
<surname>Sudesh</surname>
<given-names>V.</given-names>
</name>
<italic>et al.</italic>
<article-title>Diode-pumped 200 μm diameter core, gain-guided, index-antiguided single mode fiber laser</article-title>
.
<source>Applied Physics B</source>
<volume>90</volume>
,
<fpage>369</fpage>
(
<year>2008</year>
).</mixed-citation>
</ref>
<ref id="b10">
<mixed-citation publication-type="journal">
<name>
<surname>Gu</surname>
<given-names>G.</given-names>
</name>
<italic>et al.</italic>
<article-title>Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers</article-title>
.
<source>Opt Express</source>
<volume>22</volume>
,
<fpage>13962</fpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">24921587</pub-id>
</mixed-citation>
</ref>
<ref id="b11">
<mixed-citation publication-type="journal">
<name>
<surname>Jain</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Jung</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Kim</surname>
<given-names>J.</given-names>
</name>
&
<name>
<surname>Sahu</surname>
<given-names>J. K.</given-names>
</name>
<article-title>Robust single-mode all-solid multi-trench fiber with large effective mode area</article-title>
.
<source>Opt Lett</source>
<volume>39</volume>
,
<fpage>5200</fpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">25166109</pub-id>
</mixed-citation>
</ref>
<ref id="b12">
<mixed-citation publication-type="journal">
<name>
<surname>Jørgensen</surname>
<given-names>M. M.</given-names>
</name>
<italic>et al.</italic>
<article-title>Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier</article-title>
.
<source>Opt Express</source>
<volume>20</volume>
,
<fpage>7263</fpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22453408</pub-id>
</mixed-citation>
</ref>
<ref id="b13">
<mixed-citation publication-type="journal">
<name>
<surname>Limpert</surname>
<given-names>J.</given-names>
</name>
<italic>et al.</italic>
<article-title>Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation</article-title>
.
<source>Light-Sci Appl</source>
<volume>1</volume>
,
<fpage>e8</fpage>
(
<year>2012</year>
).</mixed-citation>
</ref>
<ref id="b14">
<mixed-citation publication-type="journal">
<name>
<surname>Brooks</surname>
<given-names>C. D.</given-names>
</name>
&
<name>
<surname>Di Teodoro</surname>
<given-names>F.</given-names>
</name>
<article-title>Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier</article-title>
.
<source>Appl Phys Lett</source>
<volume>89</volume>
,
<fpage>111119</fpage>
(
<year>2006</year>
).</mixed-citation>
</ref>
<ref id="b15">
<mixed-citation publication-type="journal">
<name>
<surname>Han</surname>
<given-names>L.</given-names>
</name>
<italic>et al.</italic>
<article-title>Dispersion compensation properties of dual-concentric core photonic crystal fibers</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>12</volume>
,
<fpage>10603</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b16">
<mixed-citation publication-type="journal">
<name>
<surname>Qureshi</surname>
<given-names>K. K.</given-names>
</name>
<article-title>Switchable dual-wavelength fiber ring laser featuring twin-core photonic crystal fiber-based filter</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>12</volume>
,
<fpage>20605</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b17">
<mixed-citation publication-type="journal">
<name>
<surname>Liang</surname>
<given-names>W.</given-names>
</name>
,
<name>
<surname>Liu</surname>
<given-names>N.</given-names>
</name>
,
<name>
<surname>Li</surname>
<given-names>Z.</given-names>
</name>
&
<name>
<surname>Lu</surname>
<given-names>P.</given-names>
</name>
<article-title>Octagonal dual-concentric-core photonic crystal fiber for C-band dispersion compensation with low confinement loss</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>11</volume>
,
<fpage>S20604</fpage>
(
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b18">
<mixed-citation publication-type="journal">
<name>
<surname>Gaida</surname>
<given-names>C.</given-names>
</name>
<italic>et al.</italic>
<article-title>Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems</article-title>
.
<source>Opt. Lett</source>
<volume>39</volume>
,
<fpage>209</fpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">24562108</pub-id>
</mixed-citation>
</ref>
<ref id="b19">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<italic>et al.</italic>
<article-title>Hollow-core photonic crystal fibre for high power laser beam delivery</article-title>
.
<source>High Power Laser Sci Eng</source>
<volume>1</volume>
,
<fpage>17</fpage>
(
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b20">
<mixed-citation publication-type="journal">
<name>
<surname>Zhao</surname>
<given-names>J.</given-names>
</name>
<italic>et al.</italic>
<article-title>Large mode area and nearly zero flattened dispersion photonic crystal fiber by diminishing the pitch of the innermost air-holes-ring</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>12</volume>
,
<fpage>S10607</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b21">
<mixed-citation publication-type="journal">
<name>
<surname>Huang</surname>
<given-names>C.</given-names>
</name>
<italic>et al.</italic>
<article-title>Transmission characteristics of photonic crystal fiber gas cell used in frequency stabilized laser</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>12</volume>
,
<fpage>80602</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b22">
<mixed-citation publication-type="journal">
<name>
<surname>Xu</surname>
<given-names>Q.</given-names>
</name>
<article-title>Simulation on Dispersion and Birefringence Properties of Photonic Crystal Fiber</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>12</volume>
,
<fpage>S11302</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b23">
<mixed-citation publication-type="journal">
<name>
<surname>Burshtein</surname>
<given-names>Z.</given-names>
</name>
<italic>et al.</italic>
<article-title>Impurity local phonon nonradiative quenching of Yb
<sup>3+</sup>
fluorescence in ytterbium-doped silicate glasses</article-title>
.
<source>IEEE J. Quantum Electron</source>
<volume>36</volume>
,
<fpage>1000</fpage>
(
<year>2000</year>
).</mixed-citation>
</ref>
<ref id="b24">
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>W.</given-names>
</name>
<italic>et al.</italic>
<article-title>Watt-level Yb-doped silica glass fiber laser with a core made by sol-gel method</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>11</volume>
,
<fpage>91601</fpage>
(
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b25">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>C.</given-names>
</name>
<italic>et al.</italic>
<article-title>Spectral evolution of NIR luminescence in a Yb
<sup>3+</sup>
-doped photonic crystal fiber prepared bynon-chemical vapor deposition</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>11</volume>
,
<fpage>61601</fpage>
(
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b26">
<mixed-citation publication-type="journal">
<name>
<surname>Sulaiman</surname>
<given-names>A.</given-names>
</name>
,
<name>
<surname>Harun</surname>
<given-names>S. W.</given-names>
</name>
&
<name>
<surname>Ahmad</surname>
<given-names>H.</given-names>
</name>
<article-title>Ring microfiber coupler erbium-doped fiber laser analysis</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>12</volume>
,
<fpage>21403</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b27">
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>X.</given-names>
</name>
,
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
,
<name>
<surname>Zhao</surname>
<given-names>C.</given-names>
</name>
&
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<article-title>Pulse dynamics controlled by saturable absorber in a dispersion-managed normal dispersion Tm-doped mode-locked fiber laser</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>12</volume>
,
<fpage>31405</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b28">
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
<italic>et al.</italic>
<article-title>Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power</article-title>
.
<source>Appl Phys Lett</source>
<volume>88</volume>
,
<fpage>101106</fpage>
(
<year>2006</year>
).</mixed-citation>
</ref>
<ref id="b29">
<mixed-citation publication-type="journal">
<name>
<surname>Lee</surname>
<given-names>Y. W.</given-names>
</name>
<italic>et al.</italic>
<article-title>High-Power Yb3+-Doped Phosphate Fiber Amplifier</article-title>
.
<source>IEEE J Sel Top Quant</source>
<volume>15</volume>
,
<fpage>93</fpage>
(
<year>2009</year>
).</mixed-citation>
</ref>
<ref id="b30">
<mixed-citation publication-type="journal">
<name>
<surname>Franczyk</surname>
<given-names>M.</given-names>
</name>
<italic>et al.</italic>
<article-title>Phosphate Yb
<sup>3+</sup>
photonic crystal fiber single-mode laser with enormous high pump absorption</article-title>
.
<source>Laser Phys. Lett</source>
<volume>11</volume>
,
<fpage>085104</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b31">
<mixed-citation publication-type="journal">
<name>
<surname>Stepien</surname>
<given-names>R.</given-names>
</name>
<italic>et al.</italic>
<article-title>Ytterbium-Phosphate Glass for Microstructured Fiber Laser</article-title>
.
<source>Materials</source>
<volume>7</volume>
,
<fpage>4723</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b32">
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<italic>et al.</italic>
<article-title>Emission enhancement in Er
<sup>3+</sup>
/Pr
<sup>3+</sup>
-codoped germanate glasses and their use as a 2.7-µm laser material</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>11</volume>
,
<fpage>121601</fpage>
(
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b33">
<mixed-citation publication-type="journal">
<name>
<surname>Huang</surname>
<given-names>F.</given-names>
</name>
<italic>et al.</italic>
<article-title>Energy transfer mechanism in Er
<sup>3+</sup>
doped fluoride glass sensitized by Tm
<sup>3+</sup>
or Ho
<sup>3+</sup>
for 2.7-µm emission</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>12</volume>
,
<fpage>51601</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b34">
<mixed-citation publication-type="journal">
<name>
<surname>Fang</surname>
<given-names>J.</given-names>
</name>
<italic>et al.</italic>
<article-title>Doping transition metal ions as a method for enhancement of ablation rate in femtosecond laser irradiation of silicate glass</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>12</volume>
,
<fpage>121402</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b35">
<mixed-citation publication-type="journal">
<name>
<surname>Wan</surname>
<given-names>R.</given-names>
</name>
<italic>et al.</italic>
<article-title>Influence of alkali metal ions on thermal stability of Bi-activated NIR-emitting alkali-aluminoborosilicate glasses</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>12</volume>
,
<fpage>111601</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b36">
<mixed-citation publication-type="journal">
<name>
<surname>Hu</surname>
<given-names>J.</given-names>
</name>
<italic>et al.</italic>
<article-title>Effect of temperature on refractive index match of laser glass edge cladding</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>12</volume>
,
<fpage>101401</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b37">
<mixed-citation publication-type="journal">
<name>
<surname>Xu</surname>
<given-names>Y.</given-names>
</name>
<italic>et al.</italic>
<article-title>Nanocrystal-enhanced near-IR emission in the bismuth-doped chalcogenide glasses</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>11</volume>
,
<fpage>41601</fpage>
(
<year>2013</year>
).</mixed-citation>
</ref>
<ref id="b38">
<mixed-citation publication-type="journal">
<name>
<surname>Schulzgen</surname>
<given-names>A.</given-names>
</name>
<italic>et al.</italic>
<article-title>Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber</article-title>
.
<source>Opt Express</source>
<volume>14</volume>
,
<fpage>7087</fpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">19529079</pub-id>
</mixed-citation>
</ref>
<ref id="b39">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>Q.</given-names>
</name>
,
<name>
<surname>Geng</surname>
<given-names>J.</given-names>
</name>
,
<name>
<surname>Luo</surname>
<given-names>T.</given-names>
</name>
&
<name>
<surname>Jiang</surname>
<given-names>S.</given-names>
</name>
<article-title>Mode-locked 2 μm laser with highly thulium-doped silicate fiber</article-title>
.
<source>Opt Lett</source>
<volume>34</volume>
,
<fpage>3616</fpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19953138</pub-id>
</mixed-citation>
</ref>
<ref id="b40">
<mixed-citation publication-type="journal">
<name>
<surname>Ortaç</surname>
<given-names>B.</given-names>
</name>
<italic>et al.</italic>
<article-title>High-energy soliton pulse generation with a passively mode-locked Er/Yb-doped multifilament-core fiber laser</article-title>
.
<source>Applied Physics B</source>
<volume>98</volume>
,
<fpage>27</fpage>
(
<year>2010</year>
).</mixed-citation>
</ref>
<ref id="b41">
<mixed-citation publication-type="journal">
<name>
<surname>Thapa</surname>
<given-names>R.</given-names>
</name>
,
<name>
<surname>Nguyen</surname>
<given-names>D.</given-names>
</name>
,
<name>
<surname>Zong</surname>
<given-names>J.</given-names>
</name>
&
<name>
<surname>Chavez-Pirson</surname>
<given-names>A.</given-names>
</name>
<article-title>All-fiber fundamentally mode-locked 12 GHz laser oscillator based on an Er/Yb-doped phosphate glass fiber</article-title>
.
<source>Opt Lett</source>
<volume>39</volume>
,
<fpage>1418</fpage>
(
<year>2014</year>
).
<pub-id pub-id-type="pmid">24690802</pub-id>
</mixed-citation>
</ref>
<ref id="b42">
<mixed-citation publication-type="journal">
<name>
<surname>Akbulut</surname>
<given-names>M.</given-names>
</name>
<italic>et al.</italic>
<article-title>High energy, high average and peak power Phosphate-Glass fiber amplifiers for 1micron band</article-title>
.
<source>Fiber Lasers XI: Technology, Systems, and Applications</source>
<volume>8961</volume>
,
<fpage>89611X</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b43">
<mixed-citation publication-type="journal">
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
<italic>et al.</italic>
<article-title>Short cladding-pumped Er/Yb phosphate fiber laser with 1.5 W output power</article-title>
.
<source>Appl Phys Lett</source>
<volume>85</volume>
,
<fpage>2721</fpage>
(
<year>2004</year>
).</mixed-citation>
</ref>
<ref id="b44">
<mixed-citation publication-type="journal">
<name>
<surname>Zhang</surname>
<given-names>G.</given-names>
</name>
<italic>et al.</italic>
<article-title>Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding</article-title>
.
<source>Opt Lett</source>
<volume>37</volume>
,
<fpage>2259</fpage>
(
<year>2012</year>
).
<pub-id pub-id-type="pmid">22739874</pub-id>
</mixed-citation>
</ref>
<ref id="b45">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>L. F.</given-names>
</name>
<italic>et al.</italic>
<article-title>All-Solid Silicate Photonic Crystal Fiber Laser With 13.1 W Output Power and 64.5% Slope Efficiency</article-title>
.
<source>J. Lightwave Technol.</source>
<volume>32</volume>
,
<fpage>1116</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b46">
<mixed-citation publication-type="journal">
<name>
<surname>Wang</surname>
<given-names>L. F.</given-names>
</name>
<italic>et al.</italic>
<article-title>Phosphate single mode large mode area all-solid photonic crystal fiber with multi-watt output power</article-title>
.
<source>Appl Phys Lett</source>
<volume>104</volume>
,
<fpage>131111</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b47">
<mixed-citation publication-type="journal">
<name>
<surname>Lee</surname>
<given-names>Y. W.</given-names>
</name>
<italic>et al.</italic>
<article-title>20 W single-mode Yb
<sup>3+</sup>
-doped phosphate fiber laser</article-title>
.
<source>Opt. Lett.</source>
<volume>31</volume>
,
<fpage>3255</fpage>
(
<year>2006</year>
).
<pub-id pub-id-type="pmid">17072388</pub-id>
</mixed-citation>
</ref>
<ref id="b48">
<mixed-citation publication-type="journal">
<name>
<surname>Kubota</surname>
<given-names>H.</given-names>
</name>
<italic>et al.</italic>
<article-title>Absolutely Single Polarization Photonic Crystal Fiber</article-title>
.
<source>IEEE Photonic Tech L</source>
<volume>16</volume>
,
<fpage>182</fpage>
(
<year>2004</year>
).</mixed-citation>
</ref>
<ref id="b49">
<mixed-citation publication-type="journal">
<name>
<surname>Hu</surname>
<given-names>D. J. J.</given-names>
</name>
<italic>et al.</italic>
<article-title>Holey fiber design for single-polarization single-mode guidance</article-title>
.
<source>Appl. Opt.</source>
<volume>48</volume>
,
<fpage>4038</fpage>
(
<year>2009</year>
).
<pub-id pub-id-type="pmid">19593358</pub-id>
</mixed-citation>
</ref>
<ref id="b50">
<mixed-citation publication-type="journal">
<name>
<surname>Tiu</surname>
<given-names>Z. C.</given-names>
</name>
,
<name>
<surname>Tan</surname>
<given-names>S. J.</given-names>
</name>
,
<name>
<surname>Ahmad</surname>
<given-names>H.</given-names>
</name>
&
<name>
<surname>Harun</surname>
<given-names>S. W.</given-names>
</name>
<article-title>Dark pulse emission in nonlinear polarization rotation-based multiwavelength mode-locked erbium-doped fiber laser</article-title>
.
<source>Chin. Opt. Lett</source>
<volume>12</volume>
,
<fpage>113202</fpage>
(
<year>2014</year>
).</mixed-citation>
</ref>
<ref id="b51">
<mixed-citation publication-type="journal">
<name>
<surname>Hansen</surname>
<given-names>T. P.</given-names>
</name>
<italic>et al.</italic>
<article-title>Highly birefringent index-guiding photonic crystal fibers</article-title>
.
<source>IEEE Photonic Tech L</source>
<volume>24</volume>
,
<fpage>588</fpage>
(
<year>2001</year>
).</mixed-citation>
</ref>
<ref id="b52">
<mixed-citation publication-type="journal">
<name>
<surname>Ulrich</surname>
<given-names>R.</given-names>
</name>
&
<name>
<surname>Simon</surname>
<given-names>A.</given-names>
</name>
<article-title>Polarization optics of twisted single-mode fibers</article-title>
.
<source>Appl. Opt</source>
<volume>18</volume>
,
<fpage>2241</fpage>
(
<year>1979</year>
).
<pub-id pub-id-type="pmid">20212641</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="f1">
<label>Figure 1</label>
<caption>
<title>The microscopic image of (a) the AS-PCF, and (b) the PM-AS-PCF.</title>
</caption>
<graphic xlink:href="srep08490-f1"></graphic>
</fig>
<fig id="f2">
<label>Figure 2</label>
<caption>
<title>Measured laser output power plotted against the absorbed pump power.</title>
</caption>
<graphic xlink:href="srep08490-f2"></graphic>
</fig>
<fig id="f3">
<label>Figure 3</label>
<caption>
<title>Spectrum of the fiber laser.</title>
</caption>
<graphic xlink:href="srep08490-f3"></graphic>
</fig>
<fig id="f4">
<label>Figure 4</label>
<caption>
<title>Measured beam quality factors of the AS-PCF.</title>
<p>Inset, the beam profile in the far field.</p>
</caption>
<graphic xlink:href="srep08490-f4"></graphic>
</fig>
<fig id="f5">
<label>Figure 5</label>
<caption>
<title>Setup for characterizing the polarization properties of the fiber.</title>
</caption>
<graphic xlink:href="srep08490-f5"></graphic>
</fig>
<fig id="f6">
<label>Figure 6</label>
<caption>
<title>DOP vs. absorbed pump power for the polarizing and the non-polarizing AS-PCF.</title>
</caption>
<graphic xlink:href="srep08490-f6"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0000789 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0000789 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024