Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Radiant energy required for infrared neural stimulation

Identifieur interne : 000042 ( Pmc/Checkpoint ); précédent : 000041; suivant : 000043

Radiant energy required for infrared neural stimulation

Auteurs : Xiaodong Tan [États-Unis] ; Suhrud Rajguru [États-Unis] ; Hunter Young [États-Unis] ; Nan Xia [États-Unis, République populaire de Chine] ; Stuart R. Stock [États-Unis] ; Xianghui Xiao [États-Unis] ; Claus-Peter Richter [États-Unis]

Source :

RBID : PMC:4548241

Abstract

Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography was used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm2, respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.


Url:
DOI: 10.1038/srep13273
PubMed: 26305106
PubMed Central: 4548241


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4548241

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Radiant energy required for infrared neural stimulation</title>
<author>
<name sortKey="Tan, Xiaodong" sort="Tan, Xiaodong" uniqKey="Tan X" first="Xiaodong" last="Tan">Xiaodong Tan</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Otolaryngology, Northwestern University</institution>
, 303 E. Chicago Ave, Searle 12-561, Chicago, IL 60611,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rajguru, Suhrud" sort="Rajguru, Suhrud" uniqKey="Rajguru S" first="Suhrud" last="Rajguru">Suhrud Rajguru</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Department of Biomedical Engineering, University of Miami</institution>
, Miami FL 33146,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="a3">
<institution>Department of Otolaryngology, University of Miami</institution>
, Miami FL 33136,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Young, Hunter" sort="Young, Hunter" uniqKey="Young H" first="Hunter" last="Young">Hunter Young</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Otolaryngology, Northwestern University</institution>
, 303 E. Chicago Ave, Searle 12-561, Chicago, IL 60611,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Xia, Nan" sort="Xia, Nan" uniqKey="Xia N" first="Nan" last="Xia">Nan Xia</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Otolaryngology, Northwestern University</institution>
, 303 E. Chicago Ave, Searle 12-561, Chicago, IL 60611,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="a4">
<institution>Key Laboratory of Biorheological Science and Technology, Bioengineering College, Chongqing University</institution>
, Chongqing 400044,
<country>China</country>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Stock, Stuart R" sort="Stock, Stuart R" uniqKey="Stock S" first="Stuart R." last="Stock">Stuart R. Stock</name>
<affiliation wicri:level="1">
<nlm:aff id="a5">
<institution>Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine</institution>
, Chicago, IL 60611,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Xianghui" sort="Xiao, Xianghui" uniqKey="Xiao X" first="Xianghui" last="Xiao">Xianghui Xiao</name>
<affiliation wicri:level="1">
<nlm:aff id="a6">
<institution>Advanced Photon Source, Argonne National Laboratory</institution>
, 9700 South Cass Ave. Argonne, IL 60439
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Richter, Claus Peter" sort="Richter, Claus Peter" uniqKey="Richter C" first="Claus-Peter" last="Richter">Claus-Peter Richter</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Otolaryngology, Northwestern University</institution>
, 303 E. Chicago Ave, Searle 12-561, Chicago, IL 60611,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="a7">
<institution>Department of Biomedical Engineering, Northwestern University</institution>
, 2145 Sheridan Road, Tech E310, Evanston, IL 60208,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="a8">
<institution>The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University</institution>
, Frances Searle Building, 2240 Campus Drive, Evanston, IL 60208,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26305106</idno>
<idno type="pmc">4548241</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548241</idno>
<idno type="RBID">PMC:4548241</idno>
<idno type="doi">10.1038/srep13273</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000091</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000091</idno>
<idno type="wicri:Area/Pmc/Curation">000091</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000091</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000042</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000042</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Radiant energy required for infrared neural stimulation</title>
<author>
<name sortKey="Tan, Xiaodong" sort="Tan, Xiaodong" uniqKey="Tan X" first="Xiaodong" last="Tan">Xiaodong Tan</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Otolaryngology, Northwestern University</institution>
, 303 E. Chicago Ave, Searle 12-561, Chicago, IL 60611,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rajguru, Suhrud" sort="Rajguru, Suhrud" uniqKey="Rajguru S" first="Suhrud" last="Rajguru">Suhrud Rajguru</name>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Department of Biomedical Engineering, University of Miami</institution>
, Miami FL 33146,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="a3">
<institution>Department of Otolaryngology, University of Miami</institution>
, Miami FL 33136,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Young, Hunter" sort="Young, Hunter" uniqKey="Young H" first="Hunter" last="Young">Hunter Young</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Otolaryngology, Northwestern University</institution>
, 303 E. Chicago Ave, Searle 12-561, Chicago, IL 60611,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Xia, Nan" sort="Xia, Nan" uniqKey="Xia N" first="Nan" last="Xia">Nan Xia</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Otolaryngology, Northwestern University</institution>
, 303 E. Chicago Ave, Searle 12-561, Chicago, IL 60611,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="a4">
<institution>Key Laboratory of Biorheological Science and Technology, Bioengineering College, Chongqing University</institution>
, Chongqing 400044,
<country>China</country>
</nlm:aff>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Stock, Stuart R" sort="Stock, Stuart R" uniqKey="Stock S" first="Stuart R." last="Stock">Stuart R. Stock</name>
<affiliation wicri:level="1">
<nlm:aff id="a5">
<institution>Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine</institution>
, Chicago, IL 60611,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Xiao, Xianghui" sort="Xiao, Xianghui" uniqKey="Xiao X" first="Xianghui" last="Xiao">Xianghui Xiao</name>
<affiliation wicri:level="1">
<nlm:aff id="a6">
<institution>Advanced Photon Source, Argonne National Laboratory</institution>
, 9700 South Cass Ave. Argonne, IL 60439
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Richter, Claus Peter" sort="Richter, Claus Peter" uniqKey="Richter C" first="Claus-Peter" last="Richter">Claus-Peter Richter</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Department of Otolaryngology, Northwestern University</institution>
, 303 E. Chicago Ave, Searle 12-561, Chicago, IL 60611,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="a7">
<institution>Department of Biomedical Engineering, Northwestern University</institution>
, 2145 Sheridan Road, Tech E310, Evanston, IL 60208,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="a8">
<institution>The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University</institution>
, Frances Searle Building, 2240 Campus Drive, Evanston, IL 60208,
<country>USA</country>
</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific Reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography was used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm
<sup>2</sup>
, respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Richter, C P" uniqKey="Richter C">C. P. Richter</name>
</author>
<author>
<name sortKey="Tan, X" uniqKey="Tan X">X. Tan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richter, C P" uniqKey="Richter C">C. P. Richter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fried, N M" uniqKey="Fried N">N. M. Fried</name>
</author>
<author>
<name sortKey="Lagoda, G A" uniqKey="Lagoda G">G. A. Lagoda</name>
</author>
<author>
<name sortKey="Scott, N J" uniqKey="Scott N">N. J. Scott</name>
</author>
<author>
<name sortKey="Su, L M" uniqKey="Su L">L. M. Su</name>
</author>
<author>
<name sortKey="Burnett, A L" uniqKey="Burnett A">A. L. Burnett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccaughey, R G" uniqKey="Mccaughey R">R. G. McCaughey</name>
</author>
<author>
<name sortKey="Chlebicki, C" uniqKey="Chlebicki C">C. Chlebicki</name>
</author>
<author>
<name sortKey="Wong, B J" uniqKey="Wong B">B. J. Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wells, J" uniqKey="Wells J">J Wells</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duke, A R" uniqKey="Duke A">A. R. Duke</name>
</author>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H. Lu</name>
</author>
<author>
<name sortKey="Jenkins, M W" uniqKey="Jenkins M">M. W. Jenkins</name>
</author>
<author>
<name sortKey="Chiel, H J" uniqKey="Chiel H">H. J. Chiel</name>
</author>
<author>
<name sortKey="Jansen, E D" uniqKey="Jansen E">E. D. Jansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jenkins, M W" uniqKey="Jenkins M">M. W Jenkins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cayce, J M" uniqKey="Cayce J">J. M Cayce</name>
</author>
<author>
<name sortKey="Friedman, R M" uniqKey="Friedman R">R. M Friedman</name>
</author>
<author>
<name sortKey="Jansen, E D" uniqKey="Jansen E">E. D Jansen</name>
</author>
<author>
<name sortKey="Mahavaden Jansen, A" uniqKey="Mahavaden Jansen A">A Mahavaden-Jansen</name>
</author>
<author>
<name sortKey="Roe, A W" uniqKey="Roe A">A. W. Roe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Izzo, A D" uniqKey="Izzo A">A. D. Izzo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rajguru, S M" uniqKey="Rajguru S">S. M. Rajguru</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wells, J" uniqKey="Wells J">J. Wells</name>
</author>
<author>
<name sortKey="Konrad, P" uniqKey="Konrad P">P. Konrad</name>
</author>
<author>
<name sortKey="Kao, C" uniqKey="Kao C">C. Kao</name>
</author>
<author>
<name sortKey="Jansen, E D" uniqKey="Jansen E">E. D. Jansen</name>
</author>
<author>
<name sortKey="Mahadevan Jansen, A" uniqKey="Mahadevan Jansen A">A. Mahadevan-Jansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Welch, A J" uniqKey="Welch A">A. J. Welch</name>
</author>
<author>
<name sortKey="Van Gemert, M J C" uniqKey="Van Gemert M">M. J. C. van Gemert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teudt, I U" uniqKey="Teudt I">I. U Teudt</name>
</author>
<author>
<name sortKey="Nevel, A E" uniqKey="Nevel A">A. E Nevel</name>
</author>
<author>
<name sortKey="Izzo, A D" uniqKey="Izzo A">A. D Izzo</name>
</author>
<author>
<name sortKey="Walsh, J T" uniqKey="Walsh J">J. T Walsh</name>
</author>
<author>
<name sortKey="Richter, C P" uniqKey="Richter C">C. P. Richter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wells, J" uniqKey="Wells J">J. Wells</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duke, A R" uniqKey="Duke A">A. R. Duke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moreno, L E" uniqKey="Moreno L">L. E. Moreno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shapiro, M G" uniqKey="Shapiro M">M. G. Shapiro</name>
</author>
<author>
<name sortKey="Homma, K" uniqKey="Homma K">K. Homma</name>
</author>
<author>
<name sortKey="Villarreal, S" uniqKey="Villarreal S">S. Villarreal</name>
</author>
<author>
<name sortKey="Richter, C P" uniqKey="Richter C">C. P. Richter</name>
</author>
<author>
<name sortKey="Bezanilla, F" uniqKey="Bezanilla F">F. Bezanilla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jacques, S L" uniqKey="Jacques S">S. L. Jacques</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tan, X" uniqKey="Tan X">X. Tan</name>
</author>
<author>
<name sortKey="Xia, N" uniqKey="Xia N">N. Xia</name>
</author>
<author>
<name sortKey="Young, H" uniqKey="Young H">H. Young</name>
</author>
<author>
<name sortKey="Richter, Cp" uniqKey="Richter C">CP. Richter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldstein, M H" uniqKey="Goldstein M">M. H. Goldstein</name>
</author>
<author>
<name sortKey="Kiang, N Y S" uniqKey="Kiang N">N. Y. S. Kiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ozdamar, O" uniqKey="Ozdamar O">O. Ozdamar</name>
</author>
<author>
<name sortKey="Dallos, P" uniqKey="Dallos P">P. Dallos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dallos, P" uniqKey="Dallos P">P. Dallos</name>
</author>
<author>
<name sortKey="Harris, D" uniqKey="Harris D">D. Harris</name>
</author>
<author>
<name sortKey="Ozdamar, O" uniqKey="Ozdamar O">O. Ozdamar</name>
</author>
<author>
<name sortKey="Ryan, A" uniqKey="Ryan A">A. Ryan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goyal, V" uniqKey="Goyal V">V. Goyal</name>
</author>
<author>
<name sortKey="Rajguru, S" uniqKey="Rajguru S">S. Rajguru</name>
</author>
<author>
<name sortKey="Matic, A I" uniqKey="Matic A">A. I. Matic</name>
</author>
<author>
<name sortKey="Stock, S R" uniqKey="Stock S">S. R. Stock</name>
</author>
<author>
<name sortKey="Richter, C P" uniqKey="Richter C">C. P. Richter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tozburun, S" uniqKey="Tozburun S">S Tozburun</name>
</author>
<author>
<name sortKey="Lagoda, G A" uniqKey="Lagoda G">G. A Lagoda</name>
</author>
<author>
<name sortKey="Burnett, A L" uniqKey="Burnett A">A. L Burnett</name>
</author>
<author>
<name sortKey="Fried, N M" uniqKey="Fried N">N. M. Fried</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tozburun, S" uniqKey="Tozburun S">S. Tozburun</name>
</author>
<author>
<name sortKey="Cilip, C M" uniqKey="Cilip C">C. M. Cilip</name>
</author>
<author>
<name sortKey="Lagoda, G A" uniqKey="Lagoda G">G. A. Lagoda</name>
</author>
<author>
<name sortKey="Burnett, A L" uniqKey="Burnett A">A. L. Burnett</name>
</author>
<author>
<name sortKey="Fried, N M" uniqKey="Fried N">N. M. Fried</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clark, G" uniqKey="Clark G">G. Clark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balster, S" uniqKey="Balster S">S. Balster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wells, J" uniqKey="Wells J">J Wells</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Okunade, O" uniqKey="Okunade O">O Okunade</name>
</author>
<author>
<name sortKey="Santos Sacchi, J I R" uniqKey="Santos Sacchi J">J. I. R Santos-Sacchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q. Liu</name>
</author>
<author>
<name sortKey="Frerck, M J" uniqKey="Frerck M">M. J. Frerck</name>
</author>
<author>
<name sortKey="Holman, H A" uniqKey="Holman H">H. A. Holman</name>
</author>
<author>
<name sortKey="Jorgensen, E M" uniqKey="Jorgensen E">E. M. Jorgensen</name>
</author>
<author>
<name sortKey="Rabbitt, R D" uniqKey="Rabbitt R">R. D. Rabbitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rhee, A Y" uniqKey="Rhee A">A. Y. Rhee</name>
</author>
<author>
<name sortKey="Li, G" uniqKey="Li G">G. Li</name>
</author>
<author>
<name sortKey="Wells, J" uniqKey="Wells J">J. Wells</name>
</author>
<author>
<name sortKey="Kao, J P Y" uniqKey="Kao J">J. P. Y. Kao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bec, J M" uniqKey="Bec J">J. M. Bec</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Albert, E S" uniqKey="Albert E">E. S. Albert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suh, E" uniqKey="Suh E">E. Suh</name>
</author>
<author>
<name sortKey="Matic, A I" uniqKey="Matic A">A. I. Matic</name>
</author>
<author>
<name sortKey="Otting, M" uniqKey="Otting M">M. Otting</name>
</author>
<author>
<name sortKey="Walsh, J T" uniqKey="Walsh J">J. T. Walsh</name>
</author>
<author>
<name sortKey="Richter, C P" uniqKey="Richter C">C-P. Richter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lumbreras, V" uniqKey="Lumbreras V">V. Lumbreras</name>
</author>
<author>
<name sortKey="Bas, E" uniqKey="Bas E">E. Bas</name>
</author>
<author>
<name sortKey="Gupta, C" uniqKey="Gupta C">C. Gupta</name>
</author>
<author>
<name sortKey="Rajguru, S M" uniqKey="Rajguru S">S. M. Rajguru</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rajguru, S M" uniqKey="Rajguru S">S. M. Rajguru</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dittami, G M" uniqKey="Dittami G">G. M. Dittami</name>
</author>
<author>
<name sortKey="Rajguru, S M" uniqKey="Rajguru S">S. M. Rajguru</name>
</author>
<author>
<name sortKey="Lasher, R A" uniqKey="Lasher R">R. A. Lasher</name>
</author>
<author>
<name sortKey="Hitchcock, R W" uniqKey="Hitchcock R">R. W. Hitchcock</name>
</author>
<author>
<name sortKey="Rabbitt, R D" uniqKey="Rabbitt R">R. D. Rabbitt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schultz, M" uniqKey="Schultz M">M Schultz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teudt, I U" uniqKey="Teudt I">I. U. Teudt</name>
</author>
<author>
<name sortKey="Maier, H" uniqKey="Maier H">H. Maier</name>
</author>
<author>
<name sortKey="Richter, C P" uniqKey="Richter C">C. P. Richter</name>
</author>
<author>
<name sortKey="Kral, A" uniqKey="Kral A">A. Kral</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verma, R U" uniqKey="Verma R">R. U. Verma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ren, T" uniqKey="Ren T">T. Ren</name>
</author>
<author>
<name sortKey="He, W" uniqKey="He W">W. He</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Grosh, K" uniqKey="Grosh K">K. Grosh</name>
</author>
<author>
<name sortKey="Fridberger, A" uniqKey="Fridberger A">A. Fridberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Snyder, R L" uniqKey="Snyder R">R. L. Snyder</name>
</author>
<author>
<name sortKey="Bierer, J A" uniqKey="Bierer J">J. A. Bierer</name>
</author>
<author>
<name sortKey="Middlebrooks, J C" uniqKey="Middlebrooks J">J. C. Middlebrooks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Snyder, R L" uniqKey="Snyder R">R. L. Snyder</name>
</author>
<author>
<name sortKey="Middlebrooks, J C" uniqKey="Middlebrooks J">J. C. Middlebrooks</name>
</author>
<author>
<name sortKey="Bonham, B H" uniqKey="Bonham B">B. H. Bonham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Middlebrooks, J C" uniqKey="Middlebrooks J">J. C. Middlebrooks</name>
</author>
<author>
<name sortKey="Snyder, R L" uniqKey="Snyder R">R. L. Snyder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goldberg, J M" uniqKey="Goldberg J">J. M. Goldberg</name>
</author>
<author>
<name sortKey="Brown, P B" uniqKey="Brown P">P. B. Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Littlefield, P D" uniqKey="Littlefield P">P. D. Littlefield</name>
</author>
<author>
<name sortKey="Vujanovic, I" uniqKey="Vujanovic I">I. Vujanovic</name>
</author>
<author>
<name sortKey="Mundi, J" uniqKey="Mundi J">J. Mundi</name>
</author>
<author>
<name sortKey="Matic, A I" uniqKey="Matic A">A. I. Matic</name>
</author>
<author>
<name sortKey="Richter, C P" uniqKey="Richter C">C. P. Richter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mardia, K V" uniqKey="Mardia K">K. V. Mardia</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Sci Rep</journal-id>
<journal-title-group>
<journal-title>Scientific Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-2322</issn>
<publisher>
<publisher-name>Nature Publishing Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26305106</article-id>
<article-id pub-id-type="pmc">4548241</article-id>
<article-id pub-id-type="pii">srep13273</article-id>
<article-id pub-id-type="doi">10.1038/srep13273</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Radiant energy required for infrared neural stimulation</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Tan</surname>
<given-names>Xiaodong</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rajguru</surname>
<given-names>Suhrud</given-names>
</name>
<xref ref-type="aff" rid="a2">2</xref>
<xref ref-type="aff" rid="a3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Young</surname>
<given-names>Hunter</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Xia</surname>
<given-names>Nan</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Stock</surname>
<given-names>Stuart R.</given-names>
</name>
<xref ref-type="aff" rid="a5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Xiao</surname>
<given-names>Xianghui</given-names>
</name>
<xref ref-type="aff" rid="a6">6</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Richter</surname>
<given-names>Claus-Peter</given-names>
</name>
<xref ref-type="corresp" rid="c1">a</xref>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a7">7</xref>
<xref ref-type="aff" rid="a8">8</xref>
</contrib>
<aff id="a1">
<label>1</label>
<institution>Department of Otolaryngology, Northwestern University</institution>
, 303 E. Chicago Ave, Searle 12-561, Chicago, IL 60611,
<country>USA</country>
</aff>
<aff id="a2">
<label>2</label>
<institution>Department of Biomedical Engineering, University of Miami</institution>
, Miami FL 33146,
<country>USA</country>
</aff>
<aff id="a3">
<label>3</label>
<institution>Department of Otolaryngology, University of Miami</institution>
, Miami FL 33136,
<country>USA</country>
</aff>
<aff id="a4">
<label>4</label>
<institution>Key Laboratory of Biorheological Science and Technology, Bioengineering College, Chongqing University</institution>
, Chongqing 400044,
<country>China</country>
</aff>
<aff id="a5">
<label>5</label>
<institution>Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine</institution>
, Chicago, IL 60611,
<country>USA</country>
</aff>
<aff id="a6">
<label>6</label>
<institution>Advanced Photon Source, Argonne National Laboratory</institution>
, 9700 South Cass Ave. Argonne, IL 60439
<country>USA</country>
</aff>
<aff id="a7">
<label>7</label>
<institution>Department of Biomedical Engineering, Northwestern University</institution>
, 2145 Sheridan Road, Tech E310, Evanston, IL 60208,
<country>USA</country>
</aff>
<aff id="a8">
<label>8</label>
<institution>The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University</institution>
, Frances Searle Building, 2240 Campus Drive, Evanston, IL 60208,
<country>USA</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="c1">
<label>a</label>
<email>cri529@northwestern.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>25</day>
<month>08</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>5</volume>
<elocation-id>13273</elocation-id>
<history>
<date date-type="received">
<day>17</day>
<month>12</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>06</day>
<month>07</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2015, Macmillan Publishers Limited</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>Macmillan Publishers Limited</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<pmc-comment>author-paid</pmc-comment>
<license-p>This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<p>Infrared neural stimulation (INS) has been proposed as an alternative method to electrical stimulation because of its spatial selective stimulation. Independent of the mechanism for INS, to translate the method into a device it is important to determine the energy for stimulation required at the target structure. Custom-designed, flat and angle polished fibers, were used to deliver the photons. By rotating the angle polished fibers, the orientation of the radiation beam in the cochlea could be changed. INS-evoked compound action potentials and single unit responses in the central nucleus of the inferior colliculus (ICC) were recorded. X-ray computed tomography was used to determine the orientation of the optical fiber. Maximum responses were observed when the radiation beam was directed towards the spiral ganglion neurons (SGNs), whereas little responses were seen when the beam was directed towards the basilar membrane. The radiant exposure required at the SGNs to evoke compound action potentials (CAPs) or ICC responses was on average 18.9 ± 12.2 or 10.3 ± 4.9 mJ/cm
<sup>2</sup>
, respectively. For cochlear INS it has been debated whether the radiation directly stimulates the SGNs or evokes a photoacoustic effect. The results support the view that a direct interaction between neurons and radiation dominates the response to INS.</p>
</abstract>
</article-meta>
</front>
<floats-group>
<fig id="f1">
<label>Figure 1</label>
<caption>
<title>Examples of the two different types of optical fibers used in this study.</title>
<p>(
<bold>A</bold>
,
<bold>B</bold>
) Flat polished (
<bold>A</bold>
) and angle polished (
<bold>B</bold>
) fibers showing the orientation of the beam path. The beam path of the flat polished fiber is along the fiber, while that of the angle polished fiber is perpendicular to the fiber. To localize the tip and orientation of the optical fiber in the microCT images, a 25 μm tungsten wire is glued to the tip of the angle polished fiber opposite to the site the beam exits the fiber. Sometimes a small amount of radiation can be measured straight out of the tip of the optical fiber as shown in the example. This fraction of the energy is usually less than 5% of the total energy of the perpendicular beam. (
<bold>C</bold>
,
<bold>D)</bold>
Two reconstructed microCT images from planes perpendicular to each other show the same flat polished fiber inserted into the cochlea. The red arrows show the orientation of the infrared beam, which was towards the modiolus, (
<bold>E)</bold>
The reconstructed microCT slice shows an angle polished fiber inserted into the scala tympani. Again, the radiation beam is directed onto the spiral ganglion (red arrow). Note that the tungsten wire has much higher contrast than the fiber, which clearly indicates the orientation of the optical fiber. The bars in B and E: 500 μm.</p>
</caption>
<graphic xlink:href="srep13273-f1"></graphic>
</fig>
<fig id="f2">
<label>Figure 2</label>
<caption>
<title>Representative frequency tuning curves and laser input/output curves.</title>
<p>(
<bold>A</bold>
) CAP thresholds to pure tones of a normal hearing (black circles and solid line), an acute deafened (black open circles and dashed line) and a chronic deaf animal (gray trace). (
<bold>B</bold>
) Laser input/ output curves of the same animals as in panel A. The legends are for both panels A and B. NH_pre-coch: normal hearing animals, pre-cochleostomy; NH_post-coch: normal hearing animal post-cochleostomy. (
<bold>C</bold>
) Frequency tuning curves of all the acutely deafened animals in this study. The black circles and black solid line represents the averaged threshold of all the animals. Each gray line with circles represents an acutely deafened animal. The arrow shows a particular animal whose acoustic response remains only at lowest frequencies with the threshold higher than 90 dB (re 20 μPa) sound pressure level (SPL). (
<bold>D</bold>
) Laser input/output of all the animals used in this study after acute deafening. The arrow shows the curve for the same particular animal as indicated in C.</p>
</caption>
<graphic xlink:href="srep13273-f2"></graphic>
</fig>
<fig id="f3">
<label>Figure 3</label>
<caption>
<title>CAPs evoked with angle polished fibers.</title>
<p>(
<bold>A</bold>
) Sketch of
<xref ref-type="fig" rid="f1">Fig. 1E</xref>
showing the locations of INS in the cochlea along the beam path while the optical fiber were retracted from the modiolus. The angle polished optical fiber was inserted along the scala tympani of the basal turn until it contacted the bony structure of modiolus. The fiber was then rotated until the maximum CAP amplitude was obtained. While maintaining the same orientation, the optical fiber was retracted from scala tympani using a micromanipulator. The CAP was measured at locations of the tip of the optical fiber marked by the colored arrows, namely 0, 100, 350, 600 and 850 μm away from the modiolus in consequence. The colored arrows also indicate the orientation of the beam so that the radiation target structures can be inferred. AF: angle polished optical fiber; OC: organ of Corti; SGN: spiral ganglion neuron; ST: scala tympani; SV: scala vestibuli; TST: tungsten wire. (
<bold>B</bold>
) Input-output curves of the 4 marked positions as in panel A showing CAP amplitude versus radiant energy profiles (amplitude-level curves). No CAP response could be measured at position 850 μm. Note that at all the positions measured, CAP amplitude always increased with laser energy. (
<bold>C</bold>
) Orientation-specific CAP changes in the 4 marked positions as in panel A. The orientation of the beam towards the modiolus is marked as 0° and increased counterclockwise. The energy level was fixed at 82 μJ/ pulse. Again, no CAP was evoked in position 4. (
<bold>D</bold>
) The average orientation-specific CAP changes across animals at position 0. The data were normalized by the maximum responses at the orientation 0°.</p>
</caption>
<graphic xlink:href="srep13273-f3"></graphic>
</fig>
<fig id="f4">
<label>Figure 4</label>
<caption>
<title>Responses of single units from the ICC obtained during INS.</title>
<p>(
<bold>A</bold>
) A representative example of single unit responses to a continuous 5 Hz INS pulse trains at orientations of 0, 90, 180, 270 and 360° is shown in the raster plots. Each dot represents an action potential. Note that the phase-locked responses at ~24 ms following stimulus presentation to 5 Hz INS pulse trains were only observed in the initial orientation (0°) and recurred at the same orientation (360°) after a full turn of rotation. (
<bold>B</bold>
) Vector strengths in response to INS at different energy levels and orientations. When the vector strength is higher than the Rayleigh criteria (open circles superimposed on each column), the response is considered significantly phase-locked (P < 0.001). The inset shows the uniformity of all the action potential waveforms recorded. The threshold stimulation energy of the single units was 12.4 μJ/pulse.</p>
</caption>
<graphic xlink:href="srep13273-f4"></graphic>
</fig>
<fig id="f5">
<label>Figure 5</label>
<caption>
<title>The spatial response profile of a single unit response in the ICC during INS.</title>
<p>Data were acquired in a normal hearing animal and recorded with a 16-channel electrode. INS was delivered by an angle-polished optical fiber. The best frequency at each channel was determined using pure tone stimuli with different frequencies and stimulus levels before the insertion of the optical fiber into scala tympani. The single unit responses were only detected in 2 channels with best frequencies of 16 kHz and 17 kHz, respectively. Results were obtained at the orientation where the maximum response was evoked (marked as 0° in the text). Similar responses were observed in a ±45° range, and no response was detected for any other orientations. The color code: spike counts per 100 ms.</p>
</caption>
<graphic xlink:href="srep13273-f5"></graphic>
</fig>
<fig id="f6">
<label>Figure 6</label>
<caption>
<title>ICC single unit responses to different INS orientations in a normal hearing animal combined with imaging with synchrotron radiation.</title>
<p>The single unit responded to acoustic stimulation as well, with a best frequency at 16 kHz. (
<bold>Central panel</bold>
) A reconstructed slice perpendicular to the fiber axis and its sketch. The angle polished fiber (AF, the bright semi-circle in the center) was fixed with dental acrylic in the cochlea at the initial position (0°) for imaging with synchrotron radiation. Notice that the fiber was located between the spiral ganglion neurons (SGN) and the organ of Corti (OC) facing the SGNs. ST: Scala tympani; SV: Scala vestibuli. (
<bold>Surrounding panels</bold>
) Single unit responses to different orientations of the INS changing in step of 45°, as indicated in the upright corner of each panel, shown for 200 stimulus trials. This ICC unit showed phase-locked responses at ~7 ms following stimulus presentation. Only the action potentials detected in the first 100 ms following the stimulus were included in the raster plot.</p>
</caption>
<graphic xlink:href="srep13273-f6"></graphic>
</fig>
<fig id="f7">
<label>Figure 7</label>
<caption>
<p>(
<bold>A</bold>
) Threshold radiant energy for stimulation of spiral ganglion neurons was measured at the tip of the optical fiber from ICC response profiles (filled black circles) and CAP measurements (black circles). (
<bold>B</bold>
) The corresponding corrected energy values at the modiolus. (
<bold>C)</bold>
The corresponding peak power for stimulation threshold at the modiolus. (
<bold>D</bold>
) The corresponding radiant exposure.</p>
</caption>
<graphic xlink:href="srep13273-f7"></graphic>
</fig>
</floats-group>
</pmc>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Tan, Xiaodong" sort="Tan, Xiaodong" uniqKey="Tan X" first="Xiaodong" last="Tan">Xiaodong Tan</name>
</noRegion>
<name sortKey="Rajguru, Suhrud" sort="Rajguru, Suhrud" uniqKey="Rajguru S" first="Suhrud" last="Rajguru">Suhrud Rajguru</name>
<name sortKey="Rajguru, Suhrud" sort="Rajguru, Suhrud" uniqKey="Rajguru S" first="Suhrud" last="Rajguru">Suhrud Rajguru</name>
<name sortKey="Richter, Claus Peter" sort="Richter, Claus Peter" uniqKey="Richter C" first="Claus-Peter" last="Richter">Claus-Peter Richter</name>
<name sortKey="Richter, Claus Peter" sort="Richter, Claus Peter" uniqKey="Richter C" first="Claus-Peter" last="Richter">Claus-Peter Richter</name>
<name sortKey="Richter, Claus Peter" sort="Richter, Claus Peter" uniqKey="Richter C" first="Claus-Peter" last="Richter">Claus-Peter Richter</name>
<name sortKey="Stock, Stuart R" sort="Stock, Stuart R" uniqKey="Stock S" first="Stuart R." last="Stock">Stuart R. Stock</name>
<name sortKey="Xia, Nan" sort="Xia, Nan" uniqKey="Xia N" first="Nan" last="Xia">Nan Xia</name>
<name sortKey="Xiao, Xianghui" sort="Xiao, Xianghui" uniqKey="Xiao X" first="Xianghui" last="Xiao">Xianghui Xiao</name>
<name sortKey="Young, Hunter" sort="Young, Hunter" uniqKey="Young H" first="Hunter" last="Young">Hunter Young</name>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Xia, Nan" sort="Xia, Nan" uniqKey="Xia N" first="Nan" last="Xia">Nan Xia</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000042 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000042 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:4548241
   |texte=   Radiant energy required for infrared neural stimulation
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:26305106" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024