Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Excited state relaxation dynamics and non-radiative energy transfer in fluoroindate glass singly doped with thulium and doubly doped with thulium and terbium

Identifieur interne : 000D96 ( Pascal/Curation ); précédent : 000D95; suivant : 000D97

Excited state relaxation dynamics and non-radiative energy transfer in fluoroindate glass singly doped with thulium and doubly doped with thulium and terbium

Auteurs : W. Ryba-Romanowski [Pologne] ; S. Golłab [Pologne] ; G. Dominiak-Dzik [Pologne] ; M. Zelechower [Pologne] ; J. Gabrys-Pisarska [Pologne]

Source :

RBID : Pascal:01-0352918

Descripteurs français

English descriptors

Abstract

Effect of activator concentration on luminescence spectra and luminescence decay of excited states of Tm3+ in indium-based fluoride glass has been investigated. Self-quenching of luminescence originating in the 1D2, 1G4 and the 3H4 levels is found to be significant at doping levels as low as 0.5%. Luminescence decay curves are consistent with the Inokuti-Hirayama model for the non-radiative energy transfer involving an electric dipole-electric dipole interaction. Critical distance R0=12.3 Å, derived from an analysis of the 1G4 decay, is relatively high and indicates that the glass matrix favours the ion-ion interaction. Relaxation dynamics for glass samples doubly doped with thulium and terbium provides evidence that terbium ions are able to shorten the 3F4 lifetime with extremely high efficiency. However, the Tm3+→Tb3+ energy transfer contributes adversely to relaxation of the 3H4 level. Critical distance for this interaction is nearly the same as that for the self-quenching of Tm3+ luminescence.
pA  
A01 01  1    @0 0925-8388
A03   1    @0 J. alloys compd.
A05       @2 325
A06       @2 1-2
A08 01  1  ENG  @1 Excited state relaxation dynamics and non-radiative energy transfer in fluoroindate glass singly doped with thulium and doubly doped with thulium and terbium
A11 01  1    @1 RYBA-ROMANOWSKI (W.)
A11 02  1    @1 GOLŁAB (S.)
A11 03  1    @1 DOMINIAK-DZIK (G.)
A11 04  1    @1 ZELECHOWER (M.)
A11 05  1    @1 GABRYS-PISARSKA (J.)
A14 01      @1 Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okolna Street @2 50-422 Wroclaw @3 POL @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 Silesian University of Technology, Department of Materials Science, 8 Krasinskiego Street @2 40-019 Katowice @3 POL @Z 4 aut. @Z 5 aut.
A20       @1 215-222
A21       @1 2001
A23 01      @0 ENG
A43 01      @1 INIST @2 1151 @5 354000096660340340
A44       @0 0000 @1 © 2001 INIST-CNRS. All rights reserved.
A45       @0 19 ref.
A47 01  1    @0 01-0352918
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of alloys and compounds
A66 01      @0 CHE
C01 01    ENG  @0 Effect of activator concentration on luminescence spectra and luminescence decay of excited states of Tm3+ in indium-based fluoride glass has been investigated. Self-quenching of luminescence originating in the 1D2, 1G4 and the 3H4 levels is found to be significant at doping levels as low as 0.5%. Luminescence decay curves are consistent with the Inokuti-Hirayama model for the non-radiative energy transfer involving an electric dipole-electric dipole interaction. Critical distance R0=12.3 Å, derived from an analysis of the 1G4 decay, is relatively high and indicates that the glass matrix favours the ion-ion interaction. Relaxation dynamics for glass samples doubly doped with thulium and terbium provides evidence that terbium ions are able to shorten the 3F4 lifetime with extremely high efficiency. However, the Tm3+→Tb3+ energy transfer contributes adversely to relaxation of the 3H4 level. Critical distance for this interaction is nearly the same as that for the self-quenching of Tm3+ luminescence.
C02 01  3    @0 001B70H55H
C02 02  3    @0 001B70A55J
C03 01  3  FRE  @0 Photoluminescence @5 01
C03 01  3  ENG  @0 Photoluminescence @5 01
C03 02  X  FRE  @0 Codopage @5 02
C03 02  X  ENG  @0 Codoping @5 02
C03 02  X  SPA  @0 Codrogado @5 02
C03 03  X  FRE  @0 Dopage @5 03
C03 03  X  ENG  @0 Doping @5 03
C03 03  X  SPA  @0 Doping @5 03
C03 04  3  FRE  @0 Addition thulium @5 04
C03 04  3  ENG  @0 Thulium additions @5 04
C03 05  3  FRE  @0 Addition terbium @5 05
C03 05  3  ENG  @0 Terbium additions @5 05
C03 06  3  FRE  @0 Transfert énergie @5 06
C03 06  3  ENG  @0 Energy transfer @5 06
C03 07  3  FRE  @0 Transfert radiatif @5 07
C03 07  3  ENG  @0 Radiative transfer @5 07
C03 08  3  FRE  @0 Etat impureté @5 08
C03 08  3  ENG  @0 Impurity states @5 08
C03 09  X  FRE  @0 Déclin luminescence @5 09
C03 09  X  ENG  @0 Luminescence decay @5 09
C03 09  X  SPA  @0 Decadencia luminiscencia @5 09
C03 10  3  FRE  @0 Transition niveau énergie @5 10
C03 10  3  ENG  @0 Energy-level transitions @5 10
C03 11  X  FRE  @0 Extinction luminescence @5 11
C03 11  X  ENG  @0 Luminescence quenching @5 11
C03 11  X  SPA  @0 Extinción luminiscencia @5 11
C03 12  3  FRE  @0 Dipôle électrique @5 13
C03 12  3  ENG  @0 Electric dipoles @5 13
C03 13  X  FRE  @0 Interaction dipôle dipôle @5 14
C03 13  X  ENG  @0 Dipole dipole interaction @5 14
C03 13  X  SPA  @0 Interacción dipolo dipolo @5 14
C03 14  3  FRE  @0 Verre fluorure @5 15
C03 14  3  ENG  @0 Fluoride glass @5 15
C03 15  3  FRE  @0 Indium composé @5 16
C03 15  3  ENG  @0 Indium compounds @5 16
C03 16  X  FRE  @0 Système multiple @5 17
C03 16  X  ENG  @0 Multiple system @5 17
C03 16  X  SPA  @0 Sistema múltiple @5 17
C03 17  3  FRE  @0 Etude expérimentale @5 18
C03 17  3  ENG  @0 Experimental study @5 18
C03 18  3  FRE  @0 Système BaF2 GaF3 InF3 NaF SrF2 ZnF2 @4 INC @5 52
C03 19  3  FRE  @0 Ba F Ga In Na Sr Zn @4 INC @5 53
C03 20  3  FRE  @0 7855H @2 PAC @4 INC @5 56
C03 21  3  FRE  @0 7155J @2 PAC @4 INC @5 57
N21       @1 246

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:01-0352918

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Excited state relaxation dynamics and non-radiative energy transfer in fluoroindate glass singly doped with thulium and doubly doped with thulium and terbium</title>
<author>
<name sortKey="Ryba Romanowski, W" sort="Ryba Romanowski, W" uniqKey="Ryba Romanowski W" first="W." last="Ryba-Romanowski">W. Ryba-Romanowski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okolna Street</s1>
<s2>50-422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Gollab, S" sort="Gollab, S" uniqKey="Gollab S" first="S." last="Golłab">S. Golłab</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okolna Street</s1>
<s2>50-422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Dominiak Dzik, G" sort="Dominiak Dzik, G" uniqKey="Dominiak Dzik G" first="G." last="Dominiak-Dzik">G. Dominiak-Dzik</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okolna Street</s1>
<s2>50-422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Zelechower, M" sort="Zelechower, M" uniqKey="Zelechower M" first="M." last="Zelechower">M. Zelechower</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Silesian University of Technology, Department of Materials Science, 8 Krasinskiego Street</s1>
<s2>40-019 Katowice</s2>
<s3>POL</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Gabrys Pisarska, J" sort="Gabrys Pisarska, J" uniqKey="Gabrys Pisarska J" first="J." last="Gabrys-Pisarska">J. Gabrys-Pisarska</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Silesian University of Technology, Department of Materials Science, 8 Krasinskiego Street</s1>
<s2>40-019 Katowice</s2>
<s3>POL</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">01-0352918</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 01-0352918 INIST</idno>
<idno type="RBID">Pascal:01-0352918</idno>
<idno type="wicri:Area/Pascal/Corpus">000D96</idno>
<idno type="wicri:Area/Pascal/Curation">000D96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Excited state relaxation dynamics and non-radiative energy transfer in fluoroindate glass singly doped with thulium and doubly doped with thulium and terbium</title>
<author>
<name sortKey="Ryba Romanowski, W" sort="Ryba Romanowski, W" uniqKey="Ryba Romanowski W" first="W." last="Ryba-Romanowski">W. Ryba-Romanowski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okolna Street</s1>
<s2>50-422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Gollab, S" sort="Gollab, S" uniqKey="Gollab S" first="S." last="Golłab">S. Golłab</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okolna Street</s1>
<s2>50-422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Dominiak Dzik, G" sort="Dominiak Dzik, G" uniqKey="Dominiak Dzik G" first="G." last="Dominiak-Dzik">G. Dominiak-Dzik</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okolna Street</s1>
<s2>50-422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Zelechower, M" sort="Zelechower, M" uniqKey="Zelechower M" first="M." last="Zelechower">M. Zelechower</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Silesian University of Technology, Department of Materials Science, 8 Krasinskiego Street</s1>
<s2>40-019 Katowice</s2>
<s3>POL</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
<author>
<name sortKey="Gabrys Pisarska, J" sort="Gabrys Pisarska, J" uniqKey="Gabrys Pisarska J" first="J." last="Gabrys-Pisarska">J. Gabrys-Pisarska</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Silesian University of Technology, Department of Materials Science, 8 Krasinskiego Street</s1>
<s2>40-019 Katowice</s2>
<s3>POL</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Pologne</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of alloys and compounds</title>
<title level="j" type="abbreviated">J. alloys compd.</title>
<idno type="ISSN">0925-8388</idno>
<imprint>
<date when="2001">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of alloys and compounds</title>
<title level="j" type="abbreviated">J. alloys compd.</title>
<idno type="ISSN">0925-8388</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Codoping</term>
<term>Dipole dipole interaction</term>
<term>Doping</term>
<term>Electric dipoles</term>
<term>Energy transfer</term>
<term>Energy-level transitions</term>
<term>Experimental study</term>
<term>Fluoride glass</term>
<term>Impurity states</term>
<term>Indium compounds</term>
<term>Luminescence decay</term>
<term>Luminescence quenching</term>
<term>Multiple system</term>
<term>Photoluminescence</term>
<term>Radiative transfer</term>
<term>Terbium additions</term>
<term>Thulium additions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photoluminescence</term>
<term>Codopage</term>
<term>Dopage</term>
<term>Addition thulium</term>
<term>Addition terbium</term>
<term>Transfert énergie</term>
<term>Transfert radiatif</term>
<term>Etat impureté</term>
<term>Déclin luminescence</term>
<term>Transition niveau énergie</term>
<term>Extinction luminescence</term>
<term>Dipôle électrique</term>
<term>Interaction dipôle dipôle</term>
<term>Verre fluorure</term>
<term>Indium composé</term>
<term>Système multiple</term>
<term>Etude expérimentale</term>
<term>Système BaF2 GaF3 InF3 NaF SrF2 ZnF2</term>
<term>Ba F Ga In Na Sr Zn</term>
<term>7855H</term>
<term>7155J</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Effect of activator concentration on luminescence spectra and luminescence decay of excited states of Tm
<sup>3+</sup>
in indium-based fluoride glass has been investigated. Self-quenching of luminescence originating in the
<sup>1</sup>
D
<sub>2</sub>
,
<sup>1</sup>
G
<sub>4</sub>
and the
<sup>3</sup>
H
<sub>4</sub>
levels is found to be significant at doping levels as low as 0.5%. Luminescence decay curves are consistent with the Inokuti-Hirayama model for the non-radiative energy transfer involving an electric dipole-electric dipole interaction. Critical distance R
<sub>0</sub>
=12.3 Å, derived from an analysis of the
<sup>1</sup>
G
<sub>4</sub>
decay, is relatively high and indicates that the glass matrix favours the ion-ion interaction. Relaxation dynamics for glass samples doubly doped with thulium and terbium provides evidence that terbium ions are able to shorten the
<sup>3</sup>
F
<sub>4</sub>
lifetime with extremely high efficiency. However, the Tm
<sup>3+</sup>
→Tb
<sup>3+</sup>
energy transfer contributes adversely to relaxation of the
<sup>3</sup>
H
<sub>4</sub>
level. Critical distance for this interaction is nearly the same as that for the self-quenching of Tm
<sup>3+</sup>
luminescence.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>325</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Excited state relaxation dynamics and non-radiative energy transfer in fluoroindate glass singly doped with thulium and doubly doped with thulium and terbium</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RYBA-ROMANOWSKI (W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GOLŁAB (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DOMINIAK-DZIK (G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ZELECHOWER (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GABRYS-PISARSKA (J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okolna Street</s1>
<s2>50-422 Wroclaw</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Silesian University of Technology, Department of Materials Science, 8 Krasinskiego Street</s1>
<s2>40-019 Katowice</s2>
<s3>POL</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>215-222</s1>
</fA20>
<fA21>
<s1>2001</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000096660340340</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2001 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0352918</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Effect of activator concentration on luminescence spectra and luminescence decay of excited states of Tm
<sup>3+</sup>
in indium-based fluoride glass has been investigated. Self-quenching of luminescence originating in the
<sup>1</sup>
D
<sub>2</sub>
,
<sup>1</sup>
G
<sub>4</sub>
and the
<sup>3</sup>
H
<sub>4</sub>
levels is found to be significant at doping levels as low as 0.5%. Luminescence decay curves are consistent with the Inokuti-Hirayama model for the non-radiative energy transfer involving an electric dipole-electric dipole interaction. Critical distance R
<sub>0</sub>
=12.3 Å, derived from an analysis of the
<sup>1</sup>
G
<sub>4</sub>
decay, is relatively high and indicates that the glass matrix favours the ion-ion interaction. Relaxation dynamics for glass samples doubly doped with thulium and terbium provides evidence that terbium ions are able to shorten the
<sup>3</sup>
F
<sub>4</sub>
lifetime with extremely high efficiency. However, the Tm
<sup>3+</sup>
→Tb
<sup>3+</sup>
energy transfer contributes adversely to relaxation of the
<sup>3</sup>
H
<sub>4</sub>
level. Critical distance for this interaction is nearly the same as that for the self-quenching of Tm
<sup>3+</sup>
luminescence.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H55H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70A55J</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Codopage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Codoping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Codrogado</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Doping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Doping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Addition thulium</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Thulium additions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Addition terbium</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Terbium additions</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Transfert énergie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Energy transfer</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Transfert radiatif</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Radiative transfer</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Etat impureté</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Impurity states</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Déclin luminescence</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Luminescence decay</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Decadencia luminiscencia</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Transition niveau énergie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Energy-level transitions</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Extinction luminescence</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Luminescence quenching</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Extinción luminiscencia</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Dipôle électrique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Electric dipoles</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Interaction dipôle dipôle</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Dipole dipole interaction</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Interacción dipolo dipolo</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Verre fluorure</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Fluoride glass</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Indium composé</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium compounds</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Système multiple</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Multiple system</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Sistema múltiple</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Système BaF2 GaF3 InF3 NaF SrF2 ZnF2</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Ba F Ga In Na Sr Zn</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>7855H</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>7155J</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fN21>
<s1>246</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D96 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Curation/biblio.hfd -nk 000D96 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:01-0352918
   |texte=   Excited state relaxation dynamics and non-radiative energy transfer in fluoroindate glass singly doped with thulium and doubly doped with thulium and terbium
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024