Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers

Identifieur interne : 000908 ( Pascal/Curation ); précédent : 000907; suivant : 000909

Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers

Auteurs : Marc Eichhom [France]

Source :

RBID : Pascal:06-0135681

Descripteurs français

English descriptors

Abstract

Theoretical modeling of Watt-level average power Tm-doped fluoride glass fiber amplifiers operating at 1.87 μm is presented. To characterize and optimize these devices a computer model has been developed taking into account the full spectral information of the laser transition as well as all important ionic levels, their decay schemes and important cross-relaxation rates, being capable of modeling steady-state and especially transient characteristics of an optically pumped fiber as is needed for the amplification of short pulses. As a result, optimum fiber lengths and core sizes for maximum output power can be determined. It is shown that the influence of amplified spontaneous emission (ASE) onto amplifier efficiency and gain strongly depends on the fiber length for a given amplifier geometry, thus realistic modeling of the ASE background and its wavelength shift with respect to the fiber length is a key issue for the layout of amplifier fibers. The model is compared with experimental results obtained by amplification of 20-30-ns pulses at repetition rates in the range of 5-60 kHz. A good agreement between experiment and numerical results was reached without a substantial adjustment on the input parameters concerning amplification as well as continuous-wave ASE output power of an unseeded fiber.
pA  
A01 01  1    @0 0018-9197
A02 01      @0 IEJQA7
A03   1    @0 IEEE j. quantum electron.
A05       @2 41
A06       @2 12
A08 01  1  ENG  @1 Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers
A11 01  1    @1 EICHHOM (Marc)
A14 01      @1 German-French Research Institute of Saint-Louis ISL @2 68301 Saint-Louis @3 FRA @Z 1 aut.
A20       @1 1574-1581
A21       @1 2005
A23 01      @0 ENG
A43 01      @1 INIST @2 222K @5 354000134330410190
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 16 ref.
A47 01  1    @0 06-0135681
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE journal of quantum electronics
A66 01      @0 USA
C01 01    ENG  @0 Theoretical modeling of Watt-level average power Tm-doped fluoride glass fiber amplifiers operating at 1.87 μm is presented. To characterize and optimize these devices a computer model has been developed taking into account the full spectral information of the laser transition as well as all important ionic levels, their decay schemes and important cross-relaxation rates, being capable of modeling steady-state and especially transient characteristics of an optically pumped fiber as is needed for the amplification of short pulses. As a result, optimum fiber lengths and core sizes for maximum output power can be determined. It is shown that the influence of amplified spontaneous emission (ASE) onto amplifier efficiency and gain strongly depends on the fiber length for a given amplifier geometry, thus realistic modeling of the ASE background and its wavelength shift with respect to the fiber length is a key issue for the layout of amplifier fibers. The model is compared with experimental results obtained by amplification of 20-30-ns pulses at repetition rates in the range of 5-60 kHz. A good agreement between experiment and numerical results was reached without a substantial adjustment on the input parameters concerning amplification as well as continuous-wave ASE output power of an unseeded fiber.
C02 01  3    @0 001B40B55X
C02 02  3    @0 001B40B55W
C02 03  3    @0 001B40B60D
C03 01  3  FRE  @0 Simulation numérique @5 50
C03 01  3  ENG  @0 Digital simulation @5 50
C03 02  3  FRE  @0 Amplificateur fibre optique @5 51
C03 02  3  ENG  @0 Optical fiber amplifiers @5 51
C03 03  3  FRE  @0 Verre fluorure @5 52
C03 03  3  ENG  @0 Fluoride glass @5 52
C03 04  3  FRE  @0 Addition thulium @5 53
C03 04  3  ENG  @0 Thulium additions @5 53
C03 05  3  FRE  @0 Laser puissance @5 54
C03 05  3  ENG  @0 High-power lasers @5 54
C03 06  3  FRE  @0 Simulation ordinateur @5 55
C03 06  3  ENG  @0 Computerized simulation @5 55
C03 07  3  FRE  @0 Temps relaxation @5 56
C03 07  3  ENG  @0 Relaxation time @5 56
C03 08  X  FRE  @0 Coeur fibre @5 57
C03 08  X  ENG  @0 Fiber core @5 57
C03 08  X  SPA  @0 Corazón fibra @5 57
C03 09  X  FRE  @0 Pompage par diode @5 58
C03 09  X  ENG  @0 Diode pumping @5 58
C03 09  X  SPA  @0 Bombeo por diodo @5 58
C03 10  3  FRE  @0 Emission spontanée amplifiée @5 59
C03 10  3  ENG  @0 Amplified spontaneous emission @5 59
C03 11  X  FRE  @0 Impulsion ultracourte @5 60
C03 11  X  ENG  @0 Ultrashort pulse @5 60
C03 11  X  SPA  @0 Impulsión ultracorto @5 60
C03 12  X  FRE  @0 Matériau fibre @5 61
C03 12  X  ENG  @0 Fibrous material @5 61
C03 12  X  SPA  @0 Material fibra @5 61
C03 13  3  FRE  @0 Niveau énergie @5 62
C03 13  3  ENG  @0 Energy levels @5 62
C03 14  3  FRE  @0 Matériau dopé @5 63
C03 14  3  ENG  @0 Doped materials @5 63
C03 15  X  FRE  @0 Equation vitesse @5 64
C03 15  X  ENG  @0 Rate equation @5 64
C03 15  X  SPA  @0 Ecuación velocidad @5 64
C03 16  X  FRE  @0 Dispositif expérimental @5 65
C03 16  X  ENG  @0 Experimental device @5 65
C03 16  X  SPA  @0 Dispositivo experimental @5 65
C03 17  3  FRE  @0 Etude expérimentale @5 66
C03 17  3  ENG  @0 Experimental study @5 66
C03 18  3  FRE  @0 Etude théorique @5 67
C03 18  3  ENG  @0 Theoretical study @5 67
C03 19  X  FRE  @0 Fibre double gaine @5 68
C03 19  X  ENG  @0 Doubly clad fiber @5 68
C03 19  X  SPA  @0 Fibra chapado doble @5 68
C03 20  3  FRE  @0 Fibre verre @5 69
C03 20  3  ENG  @0 Glass fibers @5 69
C03 21  3  FRE  @0 4255X @4 INC @5 91
C03 22  3  FRE  @0 4255W @2 PAC @4 INC @5 92
C03 23  3  FRE  @0 4260D @2 PAC @4 INC @5 93
C03 24  3  FRE  @0 ZBLAN @4 CD @5 99
C03 24  3  ENG  @0 ZBLAN @4 CD @5 99
N21       @1 086
N44 01      @1 PSI
N82       @1 PSI

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:06-0135681

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers</title>
<author>
<name sortKey="Eichhom, Marc" sort="Eichhom, Marc" uniqKey="Eichhom M" first="Marc" last="Eichhom">Marc Eichhom</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>German-French Research Institute of Saint-Louis ISL</s1>
<s2>68301 Saint-Louis</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0135681</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 06-0135681 INIST</idno>
<idno type="RBID">Pascal:06-0135681</idno>
<idno type="wicri:Area/Pascal/Corpus">000908</idno>
<idno type="wicri:Area/Pascal/Curation">000908</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers</title>
<author>
<name sortKey="Eichhom, Marc" sort="Eichhom, Marc" uniqKey="Eichhom M" first="Marc" last="Eichhom">Marc Eichhom</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>German-French Research Institute of Saint-Louis ISL</s1>
<s2>68301 Saint-Louis</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE journal of quantum electronics</title>
<title level="j" type="abbreviated">IEEE j. quantum electron.</title>
<idno type="ISSN">0018-9197</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE journal of quantum electronics</title>
<title level="j" type="abbreviated">IEEE j. quantum electron.</title>
<idno type="ISSN">0018-9197</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amplified spontaneous emission</term>
<term>Computerized simulation</term>
<term>Digital simulation</term>
<term>Diode pumping</term>
<term>Doped materials</term>
<term>Doubly clad fiber</term>
<term>Energy levels</term>
<term>Experimental device</term>
<term>Experimental study</term>
<term>Fiber core</term>
<term>Fibrous material</term>
<term>Fluoride glass</term>
<term>Glass fibers</term>
<term>High-power lasers</term>
<term>Optical fiber amplifiers</term>
<term>Rate equation</term>
<term>Relaxation time</term>
<term>Theoretical study</term>
<term>Thulium additions</term>
<term>Ultrashort pulse</term>
<term>ZBLAN</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Simulation numérique</term>
<term>Amplificateur fibre optique</term>
<term>Verre fluorure</term>
<term>Addition thulium</term>
<term>Laser puissance</term>
<term>Simulation ordinateur</term>
<term>Temps relaxation</term>
<term>Coeur fibre</term>
<term>Pompage par diode</term>
<term>Emission spontanée amplifiée</term>
<term>Impulsion ultracourte</term>
<term>Matériau fibre</term>
<term>Niveau énergie</term>
<term>Matériau dopé</term>
<term>Equation vitesse</term>
<term>Dispositif expérimental</term>
<term>Etude expérimentale</term>
<term>Etude théorique</term>
<term>Fibre double gaine</term>
<term>Fibre verre</term>
<term>4255X</term>
<term>4255W</term>
<term>4260D</term>
<term>ZBLAN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Theoretical modeling of Watt-level average power Tm-doped fluoride glass fiber amplifiers operating at 1.87 μm is presented. To characterize and optimize these devices a computer model has been developed taking into account the full spectral information of the laser transition as well as all important ionic levels, their decay schemes and important cross-relaxation rates, being capable of modeling steady-state and especially transient characteristics of an optically pumped fiber as is needed for the amplification of short pulses. As a result, optimum fiber lengths and core sizes for maximum output power can be determined. It is shown that the influence of amplified spontaneous emission (ASE) onto amplifier efficiency and gain strongly depends on the fiber length for a given amplifier geometry, thus realistic modeling of the ASE background and its wavelength shift with respect to the fiber length is a key issue for the layout of amplifier fibers. The model is compared with experimental results obtained by amplification of 20-30-ns pulses at repetition rates in the range of 5-60 kHz. A good agreement between experiment and numerical results was reached without a substantial adjustment on the input parameters concerning amplification as well as continuous-wave ASE output power of an unseeded fiber.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0018-9197</s0>
</fA01>
<fA02 i1="01">
<s0>IEJQA7</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE j. quantum electron.</s0>
</fA03>
<fA05>
<s2>41</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>EICHHOM (Marc)</s1>
</fA11>
<fA14 i1="01">
<s1>German-French Research Institute of Saint-Louis ISL</s1>
<s2>68301 Saint-Louis</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>1574-1581</s1>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222K</s2>
<s5>354000134330410190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>16 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0135681</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE journal of quantum electronics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Theoretical modeling of Watt-level average power Tm-doped fluoride glass fiber amplifiers operating at 1.87 μm is presented. To characterize and optimize these devices a computer model has been developed taking into account the full spectral information of the laser transition as well as all important ionic levels, their decay schemes and important cross-relaxation rates, being capable of modeling steady-state and especially transient characteristics of an optically pumped fiber as is needed for the amplification of short pulses. As a result, optimum fiber lengths and core sizes for maximum output power can be determined. It is shown that the influence of amplified spontaneous emission (ASE) onto amplifier efficiency and gain strongly depends on the fiber length for a given amplifier geometry, thus realistic modeling of the ASE background and its wavelength shift with respect to the fiber length is a key issue for the layout of amplifier fibers. The model is compared with experimental results obtained by amplification of 20-30-ns pulses at repetition rates in the range of 5-60 kHz. A good agreement between experiment and numerical results was reached without a substantial adjustment on the input parameters concerning amplification as well as continuous-wave ASE output power of an unseeded fiber.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B55X</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B55W</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B40B60D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Simulation numérique</s0>
<s5>50</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Digital simulation</s0>
<s5>50</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Amplificateur fibre optique</s0>
<s5>51</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Optical fiber amplifiers</s0>
<s5>51</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Verre fluorure</s0>
<s5>52</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Fluoride glass</s0>
<s5>52</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Addition thulium</s0>
<s5>53</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Thulium additions</s0>
<s5>53</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Laser puissance</s0>
<s5>54</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>High-power lasers</s0>
<s5>54</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Simulation ordinateur</s0>
<s5>55</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Computerized simulation</s0>
<s5>55</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Temps relaxation</s0>
<s5>56</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Relaxation time</s0>
<s5>56</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Coeur fibre</s0>
<s5>57</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Fiber core</s0>
<s5>57</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Corazón fibra</s0>
<s5>57</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Pompage par diode</s0>
<s5>58</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Diode pumping</s0>
<s5>58</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Bombeo por diodo</s0>
<s5>58</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Emission spontanée amplifiée</s0>
<s5>59</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Amplified spontaneous emission</s0>
<s5>59</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Impulsion ultracourte</s0>
<s5>60</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Ultrashort pulse</s0>
<s5>60</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Impulsión ultracorto</s0>
<s5>60</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Matériau fibre</s0>
<s5>61</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Fibrous material</s0>
<s5>61</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Material fibra</s0>
<s5>61</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Niveau énergie</s0>
<s5>62</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Energy levels</s0>
<s5>62</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>63</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>63</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Equation vitesse</s0>
<s5>64</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Rate equation</s0>
<s5>64</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Ecuación velocidad</s0>
<s5>64</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Dispositif expérimental</s0>
<s5>65</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Experimental device</s0>
<s5>65</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Dispositivo experimental</s0>
<s5>65</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>66</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>66</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>67</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>67</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Fibre double gaine</s0>
<s5>68</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Doubly clad fiber</s0>
<s5>68</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Fibra chapado doble</s0>
<s5>68</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Fibre verre</s0>
<s5>69</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Glass fibers</s0>
<s5>69</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>4255X</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>4255W</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>4260D</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>ZBLAN</s0>
<s4>CD</s4>
<s5>99</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>ZBLAN</s0>
<s4>CD</s4>
<s5>99</s5>
</fC03>
<fN21>
<s1>086</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000908 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Curation/biblio.hfd -nk 000908 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:06-0135681
   |texte=   Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024