Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantum storage in rare-earth-doped crystals for secure networks

Identifieur interne : 000821 ( Pascal/Curation ); précédent : 000820; suivant : 000822

Quantum storage in rare-earth-doped crystals for secure networks

Auteurs : O. Guillot-Noël [France] ; Ph. Goldner [France] ; E. Antic-Fidancev [France] ; A. Louchet [France] ; J. L. Le Gouët [France] ; F. Bretenaker [France] ; I. Lorgere [France]

Source :

RBID : Pascal:07-0033705

Descripteurs français

English descriptors

Abstract

Quantum storage of photons in an atomic ensemble can be obtained by using three-level A systems. In these systems, two levels are coupled by optical transitions to a third one. Rare-earth ion-doped crystals are attractive materials for quantum storage because their hyperfine levels can have coherence lifetimes longer than 100 μs and thus can be used to build A systems. Tm3+ ions are especially interesting since they can be excited by ultra-stable laser diodes. The influence of an external magnetic field has been studied in order to obtain an efficient three-level A system with the hyperfine levels of the rare earth. The particular case of the Tm3+ ion in the Y3Al5O12 host is discussed.
pA  
A01 01  1    @0 0022-2313
A02 01      @0 JLUMA8
A03   1    @0 J. lumin.
A05       @2 122-23
A08 01  1  ENG  @1 Quantum storage in rare-earth-doped crystals for secure networks
A09 01  1  ENG  @1 Proceedings of the 2005 internationbal conference on luminescence and optical spectroscopy of condensed matter, Beijing, July 25-29, 2005
A11 01  1    @1 GUILLOT-NOËL (O.)
A11 02  1    @1 GOLDNER (Ph.)
A11 03  1    @1 ANTIC-FIDANCEV (E.)
A11 04  1    @1 LOUCHET (A.)
A11 05  1    @1 LE GOUËT (J. L.)
A11 06  1    @1 BRETENAKER (F.)
A11 07  1    @1 LORGERE (I.)
A12 01  1    @1 SHIHUA HUANG @9 ed.
A12 02  1    @1 ZHIQUN HE @9 ed.
A12 03  1    @1 XIAOJUN WANG @9 ed.
A12 04  1    @1 HONG ZHANG @9 ed.
A14 01      @1 Laboratoire de Chimie Appliquée de l'Etat Solide, CNRS-UMR 7574, ENSCP, 11, rue Pierre et Marie Curie @2 75231 Paris @3 FRA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 Laboratoire Aimé Cotton, CNRS-UPR 3321, Bât. 505 @2 91405 Orsay @3 FRA @Z 4 aut. @Z 5 aut. @Z 6 aut. @Z 7 aut.
A15 01      @1 Institute of Optoelectronic Technology, Beijing Jiaotong University @2 Beijing 100044 @3 CHN @Z 1 aut. @Z 2 aut.
A15 02      @1 Changchun Institute of Optics, Fine Mechnanics and Physics, CAS @2 Changchun, 130033 @3 CHN @Z 3 aut.
A15 03      @1 Van 't Hoff Institute of Molecular Sciences, University of Amsterdam @2 1018 WS Amsterdam @3 NLD @Z 4 aut.
A20       @1 526-528
A21       @1 2007
A23 01      @0 ENG
A43 01      @1 INIST @2 14666 @5 354000159066971520
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 8 ref.
A47 01  1    @0 07-0033705
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Journal of luminescence
A66 01      @0 NLD
C01 01    ENG  @0 Quantum storage of photons in an atomic ensemble can be obtained by using three-level A systems. In these systems, two levels are coupled by optical transitions to a third one. Rare-earth ion-doped crystals are attractive materials for quantum storage because their hyperfine levels can have coherence lifetimes longer than 100 μs and thus can be used to build A systems. Tm3+ ions are especially interesting since they can be excited by ultra-stable laser diodes. The influence of an external magnetic field has been studied in order to obtain an efficient three-level A system with the hyperfine levels of the rare earth. The particular case of the Tm3+ ion in the Y3Al5O12 host is discussed.
C02 01  3    @0 001B70H20
C03 01  X  FRE  @0 Dopage @5 02
C03 01  X  ENG  @0 Doping @5 02
C03 01  X  SPA  @0 Doping @5 02
C03 02  3  FRE  @0 Système 3 niveaux @5 03
C03 02  3  ENG  @0 Three-level systems @5 03
C03 03  X  FRE  @0 Spectre excitation @5 04
C03 03  X  ENG  @0 Excitation spectrum @5 04
C03 03  X  SPA  @0 Espectro excitación @5 04
C03 04  X  FRE  @0 Transition optique @5 05
C03 04  X  ENG  @0 Optical transition @5 05
C03 04  X  SPA  @0 Transición óptica @5 05
C03 05  3  FRE  @0 Stockage optique @5 06
C03 05  3  ENG  @0 Optical storage @5 06
C03 06  3  FRE  @0 Durée vie @5 07
C03 06  3  ENG  @0 Lifetime @5 07
C03 07  X  FRE  @0 Effet quantique @5 08
C03 07  X  ENG  @0 Quantum effect @5 08
C03 07  X  SPA  @0 Efecto cuántico @5 08
C03 08  3  FRE  @0 Impureté @5 09
C03 08  3  ENG  @0 Impurities @5 09
C03 09  3  FRE  @0 Effet champ magnétique @5 10
C03 09  3  ENG  @0 Magnetic field effects @5 10
C03 10  X  FRE  @0 Spectre optique @5 11
C03 10  X  ENG  @0 Optical spectrum @5 11
C03 10  X  SPA  @0 Espectro óptico @5 11
C03 11  3  FRE  @0 Addition thulium @5 12
C03 11  3  ENG  @0 Thulium additions @5 12
C03 12  X  FRE  @0 Champ magnétique hyperfin @5 13
C03 12  X  ENG  @0 Hyperfine magnetic field @5 13
C03 12  X  SPA  @0 Campo magnético hiperfino @5 13
C03 13  3  FRE  @0 Yttrium oxyde @2 NK @5 15
C03 13  3  ENG  @0 Yttrium oxides @2 NK @5 15
C03 14  3  FRE  @0 Aluminium oxyde @2 NK @5 16
C03 14  3  ENG  @0 Aluminium oxides @2 NK @5 16
C03 15  3  FRE  @0 7820 @4 INC @5 60
N21       @1 015
pR  
A30 01  1  ENG  @1 ICL'05 : 2005 international conference on luminescence and optical spectroscopy of condensed matter @3 Beijing CHN @4 2005-07-25

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:07-0033705

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Quantum storage in rare-earth-doped crystals for secure networks</title>
<author>
<name sortKey="Guillot Noel, O" sort="Guillot Noel, O" uniqKey="Guillot Noel O" first="O." last="Guillot-Noël">O. Guillot-Noël</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Chimie Appliquée de l'Etat Solide, CNRS-UMR 7574, ENSCP, 11, rue Pierre et Marie Curie</s1>
<s2>75231 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Goldner, Ph" sort="Goldner, Ph" uniqKey="Goldner P" first="Ph." last="Goldner">Ph. Goldner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Chimie Appliquée de l'Etat Solide, CNRS-UMR 7574, ENSCP, 11, rue Pierre et Marie Curie</s1>
<s2>75231 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Antic Fidancev, E" sort="Antic Fidancev, E" uniqKey="Antic Fidancev E" first="E." last="Antic-Fidancev">E. Antic-Fidancev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Chimie Appliquée de l'Etat Solide, CNRS-UMR 7574, ENSCP, 11, rue Pierre et Marie Curie</s1>
<s2>75231 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Louchet, A" sort="Louchet, A" uniqKey="Louchet A" first="A." last="Louchet">A. Louchet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Aimé Cotton, CNRS-UPR 3321, Bât. 505</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Le Gouet, J L" sort="Le Gouet, J L" uniqKey="Le Gouet J" first="J. L." last="Le Gouët">J. L. Le Gouët</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Aimé Cotton, CNRS-UPR 3321, Bât. 505</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Bretenaker, F" sort="Bretenaker, F" uniqKey="Bretenaker F" first="F." last="Bretenaker">F. Bretenaker</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Aimé Cotton, CNRS-UPR 3321, Bât. 505</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Lorgere, I" sort="Lorgere, I" uniqKey="Lorgere I" first="I." last="Lorgere">I. Lorgere</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Aimé Cotton, CNRS-UPR 3321, Bât. 505</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0033705</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0033705 INIST</idno>
<idno type="RBID">Pascal:07-0033705</idno>
<idno type="wicri:Area/Pascal/Corpus">000821</idno>
<idno type="wicri:Area/Pascal/Curation">000821</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Quantum storage in rare-earth-doped crystals for secure networks</title>
<author>
<name sortKey="Guillot Noel, O" sort="Guillot Noel, O" uniqKey="Guillot Noel O" first="O." last="Guillot-Noël">O. Guillot-Noël</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Chimie Appliquée de l'Etat Solide, CNRS-UMR 7574, ENSCP, 11, rue Pierre et Marie Curie</s1>
<s2>75231 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Goldner, Ph" sort="Goldner, Ph" uniqKey="Goldner P" first="Ph." last="Goldner">Ph. Goldner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Chimie Appliquée de l'Etat Solide, CNRS-UMR 7574, ENSCP, 11, rue Pierre et Marie Curie</s1>
<s2>75231 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Antic Fidancev, E" sort="Antic Fidancev, E" uniqKey="Antic Fidancev E" first="E." last="Antic-Fidancev">E. Antic-Fidancev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Chimie Appliquée de l'Etat Solide, CNRS-UMR 7574, ENSCP, 11, rue Pierre et Marie Curie</s1>
<s2>75231 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Louchet, A" sort="Louchet, A" uniqKey="Louchet A" first="A." last="Louchet">A. Louchet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Aimé Cotton, CNRS-UPR 3321, Bât. 505</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Le Gouet, J L" sort="Le Gouet, J L" uniqKey="Le Gouet J" first="J. L." last="Le Gouët">J. L. Le Gouët</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Aimé Cotton, CNRS-UPR 3321, Bât. 505</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Bretenaker, F" sort="Bretenaker, F" uniqKey="Bretenaker F" first="F." last="Bretenaker">F. Bretenaker</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Aimé Cotton, CNRS-UPR 3321, Bât. 505</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
<author>
<name sortKey="Lorgere, I" sort="Lorgere, I" uniqKey="Lorgere I" first="I." last="Lorgere">I. Lorgere</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Laboratoire Aimé Cotton, CNRS-UPR 3321, Bât. 505</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of luminescence</title>
<title level="j" type="abbreviated">J. lumin.</title>
<idno type="ISSN">0022-2313</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of luminescence</title>
<title level="j" type="abbreviated">J. lumin.</title>
<idno type="ISSN">0022-2313</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium oxides</term>
<term>Doping</term>
<term>Excitation spectrum</term>
<term>Hyperfine magnetic field</term>
<term>Impurities</term>
<term>Lifetime</term>
<term>Magnetic field effects</term>
<term>Optical spectrum</term>
<term>Optical storage</term>
<term>Optical transition</term>
<term>Quantum effect</term>
<term>Three-level systems</term>
<term>Thulium additions</term>
<term>Yttrium oxides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dopage</term>
<term>Système 3 niveaux</term>
<term>Spectre excitation</term>
<term>Transition optique</term>
<term>Stockage optique</term>
<term>Durée vie</term>
<term>Effet quantique</term>
<term>Impureté</term>
<term>Effet champ magnétique</term>
<term>Spectre optique</term>
<term>Addition thulium</term>
<term>Champ magnétique hyperfin</term>
<term>Yttrium oxyde</term>
<term>Aluminium oxyde</term>
<term>7820</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Quantum storage of photons in an atomic ensemble can be obtained by using three-level A systems. In these systems, two levels are coupled by optical transitions to a third one. Rare-earth ion-doped crystals are attractive materials for quantum storage because their hyperfine levels can have coherence lifetimes longer than 100 μs and thus can be used to build A systems. Tm
<sup>3+</sup>
ions are especially interesting since they can be excited by ultra-stable laser diodes. The influence of an external magnetic field has been studied in order to obtain an efficient three-level A system with the hyperfine levels of the rare earth. The particular case of the Tm
<sup>3+</sup>
ion in the Y
<sub>3</sub>
Al
<sub>5</sub>
O
<sub>12</sub>
host is discussed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-2313</s0>
</fA01>
<fA02 i1="01">
<s0>JLUMA8</s0>
</fA02>
<fA03 i2="1">
<s0>J. lumin.</s0>
</fA03>
<fA05>
<s2>122-23</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Quantum storage in rare-earth-doped crystals for secure networks</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Proceedings of the 2005 internationbal conference on luminescence and optical spectroscopy of condensed matter, Beijing, July 25-29, 2005</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>GUILLOT-NOËL (O.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GOLDNER (Ph.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ANTIC-FIDANCEV (E.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LOUCHET (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LE GOUËT (J. L.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BRETENAKER (F.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>LORGERE (I.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>SHIHUA HUANG</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>ZHIQUN HE</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>XIAOJUN WANG</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>HONG ZHANG</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Laboratoire de Chimie Appliquée de l'Etat Solide, CNRS-UMR 7574, ENSCP, 11, rue Pierre et Marie Curie</s1>
<s2>75231 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire Aimé Cotton, CNRS-UPR 3321, Bât. 505</s1>
<s2>91405 Orsay</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Institute of Optoelectronic Technology, Beijing Jiaotong University</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Changchun Institute of Optics, Fine Mechnanics and Physics, CAS</s1>
<s2>Changchun, 130033</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Van 't Hoff Institute of Molecular Sciences, University of Amsterdam</s1>
<s2>1018 WS Amsterdam</s2>
<s3>NLD</s3>
<sZ>4 aut.</sZ>
</fA15>
<fA20>
<s1>526-528</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14666</s2>
<s5>354000159066971520</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>8 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0033705</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of luminescence</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Quantum storage of photons in an atomic ensemble can be obtained by using three-level A systems. In these systems, two levels are coupled by optical transitions to a third one. Rare-earth ion-doped crystals are attractive materials for quantum storage because their hyperfine levels can have coherence lifetimes longer than 100 μs and thus can be used to build A systems. Tm
<sup>3+</sup>
ions are especially interesting since they can be excited by ultra-stable laser diodes. The influence of an external magnetic field has been studied in order to obtain an efficient three-level A system with the hyperfine levels of the rare earth. The particular case of the Tm
<sup>3+</sup>
ion in the Y
<sub>3</sub>
Al
<sub>5</sub>
O
<sub>12</sub>
host is discussed.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H20</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Système 3 niveaux</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Three-level systems</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Spectre excitation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Excitation spectrum</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Espectro excitación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Transition optique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Optical transition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Transición óptica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Stockage optique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Optical storage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Durée vie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Lifetime</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Effet quantique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Quantum effect</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Efecto cuántico</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Impureté</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Impurities</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Effet champ magnétique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Magnetic field effects</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Spectre optique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Optical spectrum</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Espectro óptico</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Addition thulium</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Thulium additions</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Champ magnétique hyperfin</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Hyperfine magnetic field</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Campo magnético hiperfino</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Yttrium oxyde</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Yttrium oxides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Aluminium oxyde</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Aluminium oxides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>7820</s0>
<s4>INC</s4>
<s5>60</s5>
</fC03>
<fN21>
<s1>015</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>ICL'05 : 2005 international conference on luminescence and optical spectroscopy of condensed matter</s1>
<s3>Beijing CHN</s3>
<s4>2005-07-25</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000821 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Curation/biblio.hfd -nk 000821 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:07-0033705
   |texte=   Quantum storage in rare-earth-doped crystals for secure networks
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024