Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spectroscopic properties of the 1.8 μm emission of Tm3+/Yb3+ codoped TeO2-ZnO-Bi2O3 glasses with efficient energy transfer

Identifieur interne : 000233 ( Pascal/Curation ); précédent : 000232; suivant : 000234

Spectroscopic properties of the 1.8 μm emission of Tm3+/Yb3+ codoped TeO2-ZnO-Bi2O3 glasses with efficient energy transfer

Auteurs : KEFENG LI [République populaire de Chine] ; SIJUN FAN [République populaire de Chine] ; LEI ZHANG [République populaire de Chine] ; QIANG ZHANG [République populaire de Chine] ; JUNJIE ZHANG [République populaire de Chine] ; LILI HU [République populaire de Chine]

Source :

RBID : Pascal:11-0327167

Descripteurs français

English descriptors

Abstract

Tm3+-doped and Tm3+/Yb3+-codoped TeO2-ZnO-Bi2O3 (TZB) glasses are prepared by melt-quenching method. The Judd-Ofelt intensity parameters (Ωt t = 2, 4, 6), radiative transition rate, and radiative lifetime of Tm3+ are calculated based on the absorption spectra. The 1.8 μm emission of the samples is investigated under 980 nm laser excitation. The absorption, emission cross-sections, and gain coefficient of Tm3+ :3F43H6 are calculated. The energy transfer processes of Yb3+-Yb3+ and Yb3+-Tm3+ are analyzed, the results show that the Yb3+ ions can transfer their energy to Tm3+ ions with large energy transfer coefficient, and a maximum efficiency of 79%.
pA  
A01 01  1    @0 0022-3093
A02 01      @0 JNCSBJ
A03   1    @0 J. non-cryst. solids
A05       @2 357
A06       @2 11-13
A08 01  1  ENG  @1 Spectroscopic properties of the 1.8 μm emission of Tm3+/Yb3+ codoped TeO2-ZnO-Bi2O3 glasses with efficient energy transfer
A09 01  1  ENG  @1 17th International Symposium on Non-Oxide and New Optical Glasses (XVII ISNOG), June 13-18, 2010, Ningbo, China
A11 01  1    @1 KEFENG LI
A11 02  1    @1 SIJUN FAN
A11 03  1    @1 LEI ZHANG
A11 04  1    @1 QIANG ZHANG
A11 05  1    @1 JUNJIE ZHANG
A11 06  1    @1 LILI HU
A12 01  1    @1 ZHANG (Long) @9 ed.
A12 02  1    @1 QIU (Jianrong) @9 ed.
A14 01      @1 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences @2 Shanghai 201800 @3 CHN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut.
A14 02      @1 Graduate School of Chinese Academy of Sciences @2 Beijing 100039 @3 CHN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A15 01      @1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, P.O. Box 800-211 @2 Shangai 201800 @3 CHN @Z 1 aut.
A15 02      @1 Zhejiang University @3 CHN @Z 2 aut.
A18 01  1    @1 Shanghai Institute of Optics and Fine Mechanics @2 Shangai 201800 @3 CHN @9 org-cong.
A18 02  1    @1 Ningbo University @2 Nigbo @3 CHN @9 org-cong.
A18 03  1    @1 Chinese Academy of Science (CAS) @2 Beijing @3 CHN @9 org-cong.
A20       @1 2417-2420
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 14572 @5 354000192186020500
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 15 ref.
A47 01  1    @0 11-0327167
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Journal of non-crystalline solids
A66 01      @0 GBR
C01 01    ENG  @0 Tm3+-doped and Tm3+/Yb3+-codoped TeO2-ZnO-Bi2O3 (TZB) glasses are prepared by melt-quenching method. The Judd-Ofelt intensity parameters (Ωt t = 2, 4, 6), radiative transition rate, and radiative lifetime of Tm3+ are calculated based on the absorption spectra. The 1.8 μm emission of the samples is investigated under 980 nm laser excitation. The absorption, emission cross-sections, and gain coefficient of Tm3+ :3F43H6 are calculated. The energy transfer processes of Yb3+-Yb3+ and Yb3+-Tm3+ are analyzed, the results show that the Yb3+ ions can transfer their energy to Tm3+ ions with large energy transfer coefficient, and a maximum efficiency of 79%.
C02 01  3    @0 001B70H55Q
C03 01  X  FRE  @0 Codopage @5 02
C03 01  X  ENG  @0 Codoping @5 02
C03 01  X  SPA  @0 Codrogado @5 02
C03 02  3  FRE  @0 Transfert énergie @5 03
C03 02  3  ENG  @0 Energy transfer @5 03
C03 03  3  FRE  @0 Addition thulium @5 04
C03 03  3  ENG  @0 Thulium additions @5 04
C03 04  X  FRE  @0 Trempe état liquide @5 05
C03 04  X  ENG  @0 Liquid state quenching @5 05
C03 04  X  SPA  @0 Temple estado líquido @5 05
C03 05  3  FRE  @0 Théorie Judd Ofelt @5 06
C03 05  3  ENG  @0 Judd-Ofelt theory @5 06
C03 06  X  FRE  @0 Transition radiative @5 07
C03 06  X  ENG  @0 Radiative transition @5 07
C03 06  X  SPA  @0 Transición radiativa @5 07
C03 07  3  FRE  @0 Durée vie radiative @5 08
C03 07  3  ENG  @0 Radiative lifetimes @5 08
C03 08  3  FRE  @0 Spectre absorption @5 09
C03 08  3  ENG  @0 Absorption spectra @5 09
C03 09  3  FRE  @0 Addition ytterbium @5 10
C03 09  3  ENG  @0 Ytterbium additions @5 10
C03 10  3  FRE  @0 Addition lanthane @5 11
C03 10  3  ENG  @0 Lanthanum additions @5 11
C03 11  3  FRE  @0 Spectre IR @5 12
C03 11  3  ENG  @0 Infrared spectra @5 12
C03 12  3  FRE  @0 Photoluminescence @5 13
C03 12  3  ENG  @0 Photoluminescence @5 13
C03 13  X  FRE  @0 Amplification optique @5 14
C03 13  X  ENG  @0 Optical amplification @5 14
C03 13  X  SPA  @0 Amplificación óptica @5 14
C03 14  3  FRE  @0 Système ternaire @5 15
C03 14  3  ENG  @0 Ternary systems @5 15
C03 15  X  FRE  @0 Oxyde de zinc @5 16
C03 15  X  ENG  @0 Zinc oxide @5 16
C03 15  X  SPA  @0 Zinc óxido @5 16
C03 16  X  FRE  @0 Oxyde de bismuth @5 17
C03 16  X  ENG  @0 Bismuth oxide @5 17
C03 16  X  SPA  @0 Bismuto óxido @5 17
C03 17  3  FRE  @0 Verre de tellurite @4 CD @5 96
C03 17  3  ENG  @0 Tellurite glass @4 CD @5 96
C03 17  3  SPA  @0 Vidrio de telurito @4 CD @5 96
N21       @1 220
pR  
A30 01  1  ENG  @1 XVII ISNOG International Symposium on Non-Oxide and New Optical Glasses @2 17 @3 Nigbo CHN @4 2010-06-13

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0327167

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Spectroscopic properties of the 1.8 μm emission of Tm
<sup>3+</sup>
/Yb
<sup>3+</sup>
codoped TeO
<sub>2-</sub>
ZnO
<sub>-</sub>
Bi
<sub>2</sub>
O
<sub>3</sub>
glasses with efficient energy transfer</title>
<author>
<name sortKey="Kefeng Li" sort="Kefeng Li" uniqKey="Kefeng Li" last="Kefeng Li">KEFENG LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of Chinese Academy of Sciences</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Sijun Fan" sort="Sijun Fan" uniqKey="Sijun Fan" last="Sijun Fan">SIJUN FAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of Chinese Academy of Sciences</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Lei Zhang" sort="Lei Zhang" uniqKey="Lei Zhang" last="Lei Zhang">LEI ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of Chinese Academy of Sciences</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Qiang Zhang" sort="Qiang Zhang" uniqKey="Qiang Zhang" last="Qiang Zhang">QIANG ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of Chinese Academy of Sciences</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Junjie Zhang" sort="Junjie Zhang" uniqKey="Junjie Zhang" last="Junjie Zhang">JUNJIE ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Lili Hu" sort="Lili Hu" uniqKey="Lili Hu" last="Lili Hu">LILI HU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0327167</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0327167 INIST</idno>
<idno type="RBID">Pascal:11-0327167</idno>
<idno type="wicri:Area/Pascal/Corpus">000233</idno>
<idno type="wicri:Area/Pascal/Curation">000233</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Spectroscopic properties of the 1.8 μm emission of Tm
<sup>3+</sup>
/Yb
<sup>3+</sup>
codoped TeO
<sub>2-</sub>
ZnO
<sub>-</sub>
Bi
<sub>2</sub>
O
<sub>3</sub>
glasses with efficient energy transfer</title>
<author>
<name sortKey="Kefeng Li" sort="Kefeng Li" uniqKey="Kefeng Li" last="Kefeng Li">KEFENG LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of Chinese Academy of Sciences</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Sijun Fan" sort="Sijun Fan" uniqKey="Sijun Fan" last="Sijun Fan">SIJUN FAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of Chinese Academy of Sciences</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Lei Zhang" sort="Lei Zhang" uniqKey="Lei Zhang" last="Lei Zhang">LEI ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of Chinese Academy of Sciences</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Qiang Zhang" sort="Qiang Zhang" uniqKey="Qiang Zhang" last="Qiang Zhang">QIANG ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of Chinese Academy of Sciences</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Junjie Zhang" sort="Junjie Zhang" uniqKey="Junjie Zhang" last="Junjie Zhang">JUNJIE ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
<author>
<name sortKey="Lili Hu" sort="Lili Hu" uniqKey="Lili Hu" last="Lili Hu">LILI HU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of non-crystalline solids</title>
<title level="j" type="abbreviated">J. non-cryst. solids</title>
<idno type="ISSN">0022-3093</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of non-crystalline solids</title>
<title level="j" type="abbreviated">J. non-cryst. solids</title>
<idno type="ISSN">0022-3093</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption spectra</term>
<term>Bismuth oxide</term>
<term>Codoping</term>
<term>Energy transfer</term>
<term>Infrared spectra</term>
<term>Judd-Ofelt theory</term>
<term>Lanthanum additions</term>
<term>Liquid state quenching</term>
<term>Optical amplification</term>
<term>Photoluminescence</term>
<term>Radiative lifetimes</term>
<term>Radiative transition</term>
<term>Tellurite glass</term>
<term>Ternary systems</term>
<term>Thulium additions</term>
<term>Ytterbium additions</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Codopage</term>
<term>Transfert énergie</term>
<term>Addition thulium</term>
<term>Trempe état liquide</term>
<term>Théorie Judd Ofelt</term>
<term>Transition radiative</term>
<term>Durée vie radiative</term>
<term>Spectre absorption</term>
<term>Addition ytterbium</term>
<term>Addition lanthane</term>
<term>Spectre IR</term>
<term>Photoluminescence</term>
<term>Amplification optique</term>
<term>Système ternaire</term>
<term>Oxyde de zinc</term>
<term>Oxyde de bismuth</term>
<term>Verre de tellurite</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tm
<sup>3+</sup>
-doped and Tm
<sup>3+</sup>
/Yb
<sup>3+</sup>
-codoped TeO
<sub>2-</sub>
ZnO
<sub>-</sub>
Bi
<sub>2</sub>
O
<sub>3</sub>
(TZB) glasses are prepared by melt-quenching method. The Judd-Ofelt intensity parameters (Ω
<sub>t</sub>
t = 2, 4, 6), radiative transition rate, and radiative lifetime of Tm
<sup>3+</sup>
are calculated based on the absorption spectra. The 1.8 μm emission of the samples is investigated under 980 nm laser excitation. The absorption, emission cross-sections, and gain coefficient of Tm
<sup>3+ </sup>
:
<sup>3</sup>
F
<sub>4</sub>
<sup>3</sup>
H
<sub>6</sub>
are calculated. The energy transfer processes of Yb
<sup>3+</sup>
-Yb
<sup>3+</sup>
and Yb
<sup>3+</sup>
<sub>-</sub>
Tm
<sup>3+</sup>
are analyzed, the results show that the Yb
<sup>3+</sup>
ions can transfer their energy to Tm
<sup>3+</sup>
ions with large energy transfer coefficient, and a maximum efficiency of 79%.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-3093</s0>
</fA01>
<fA02 i1="01">
<s0>JNCSBJ</s0>
</fA02>
<fA03 i2="1">
<s0>J. non-cryst. solids</s0>
</fA03>
<fA05>
<s2>357</s2>
</fA05>
<fA06>
<s2>11-13</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Spectroscopic properties of the 1.8 μm emission of Tm
<sup>3+</sup>
/Yb
<sup>3+</sup>
codoped TeO
<sub>2-</sub>
ZnO
<sub>-</sub>
Bi
<sub>2</sub>
O
<sub>3</sub>
glasses with efficient energy transfer</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>17th International Symposium on Non-Oxide and New Optical Glasses (XVII ISNOG), June 13-18, 2010, Ningbo, China</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KEFENG LI</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SIJUN FAN</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LEI ZHANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>QIANG ZHANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JUNJIE ZHANG</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LILI HU</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ZHANG (Long)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>QIU (Jianrong)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Graduate School of Chinese Academy of Sciences</s1>
<s2>Beijing 100039</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, P.O. Box 800-211</s1>
<s2>Shangai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Zhejiang University</s1>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>Shanghai Institute of Optics and Fine Mechanics</s1>
<s2>Shangai 201800</s2>
<s3>CHN</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="02" i2="1">
<s1>Ningbo University</s1>
<s2>Nigbo</s2>
<s3>CHN</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="03" i2="1">
<s1>Chinese Academy of Science (CAS)</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>2417-2420</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14572</s2>
<s5>354000192186020500</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>15 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0327167</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of non-crystalline solids</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Tm
<sup>3+</sup>
-doped and Tm
<sup>3+</sup>
/Yb
<sup>3+</sup>
-codoped TeO
<sub>2-</sub>
ZnO
<sub>-</sub>
Bi
<sub>2</sub>
O
<sub>3</sub>
(TZB) glasses are prepared by melt-quenching method. The Judd-Ofelt intensity parameters (Ω
<sub>t</sub>
t = 2, 4, 6), radiative transition rate, and radiative lifetime of Tm
<sup>3+</sup>
are calculated based on the absorption spectra. The 1.8 μm emission of the samples is investigated under 980 nm laser excitation. The absorption, emission cross-sections, and gain coefficient of Tm
<sup>3+ </sup>
:
<sup>3</sup>
F
<sub>4</sub>
<sup>3</sup>
H
<sub>6</sub>
are calculated. The energy transfer processes of Yb
<sup>3+</sup>
-Yb
<sup>3+</sup>
and Yb
<sup>3+</sup>
<sub>-</sub>
Tm
<sup>3+</sup>
are analyzed, the results show that the Yb
<sup>3+</sup>
ions can transfer their energy to Tm
<sup>3+</sup>
ions with large energy transfer coefficient, and a maximum efficiency of 79%.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H55Q</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Codopage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Codoping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Codrogado</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Transfert énergie</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Energy transfer</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Addition thulium</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Thulium additions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Trempe état liquide</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Liquid state quenching</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Temple estado líquido</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Théorie Judd Ofelt</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Judd-Ofelt theory</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Transition radiative</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Radiative transition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Transición radiativa</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Durée vie radiative</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Radiative lifetimes</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Spectre absorption</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Absorption spectra</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Addition ytterbium</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Ytterbium additions</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Addition lanthane</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Lanthanum additions</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Spectre IR</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Infrared spectra</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Amplification optique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Optical amplification</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Amplificación óptica</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Système ternaire</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Ternary systems</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde de bismuth</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Bismuth oxide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Bismuto óxido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Verre de tellurite</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Tellurite glass</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="17" i2="3" l="SPA">
<s0>Vidrio de telurito</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>220</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>XVII ISNOG International Symposium on Non-Oxide and New Optical Glasses</s1>
<s2>17</s2>
<s3>Nigbo CHN</s3>
<s4>2010-06-13</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000233 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Curation/biblio.hfd -nk 000233 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:11-0327167
   |texte=   Spectroscopic properties of the 1.8 μm emission of Tm3+/Yb3+ codoped TeO2-ZnO-Bi2O3 glasses with efficient energy transfer
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024