Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Magnetic and electrical resistivity study of Tm3Co11B4 compound

Identifieur interne : 001351 ( Pascal/Corpus ); précédent : 001350; suivant : 001352

Magnetic and electrical resistivity study of Tm3Co11B4 compound

Auteurs : A. Kowalczyk ; L. Smardz

Source :

RBID : Pascal:97-0487890

Descripteurs français

English descriptors

Abstract

Copyright (c) 1997 Elsevier Science S.A. All rights reserved. The magnetic (magnetization and coercivity) and transport (electrical resistivity) properties of the Tm3Co11B4 compound have been studied. This compound crystallizes in the hexagonal Ce3Co11B4 type structure. Results show that the Tm3Co11B4 is a ferromagnet with TC=347 K and a compensation point equal to 125 K. The coercivity of the compound was determined from hysteresis measurements in fields up to 4 T. For the Tm3Co11B4 compound we have observed a large increase of coercivity at low temperatures, typically from 0.01 T at 295 K to 0.8 T at 30 K. The resistivity at low temperatures shows a T2 dependence, implying that electron-spin wave scattering is dominant in this temperature range.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0925-8388
A03   1    @0 J. alloys compd.
A05       @2 259
A08 01  1  ENG  @1 Magnetic and electrical resistivity study of Tm3Co11B4 compound
A11 01  1    @1 KOWALCZYK (A.)
A11 02  1    @1 SMARDZ (L.)
A14 01      @1 Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 @2 Poznań @3 POL @Z 1 aut. @Z 2 aut.
A20       @1 59-61
A21       @1 1997
A23 01      @0 ENG
A24 01      @0 eng
A43 01      @1 INIST @2 1151 @5 354000069167050026
A44       @0 9000 @1 © 1997 Elsevier Science B.V. All rights reserved.
A47 01  1    @0 97-0487890
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of alloys and compounds
A66 01      @0 CHE
C01 01    ENG  @0 Copyright (c) 1997 Elsevier Science S.A. All rights reserved. The magnetic (magnetization and coercivity) and transport (electrical resistivity) properties of the Tm3Co11B4 compound have been studied. This compound crystallizes in the hexagonal Ce3Co11B4 type structure. Results show that the Tm3Co11B4 is a ferromagnet with TC=347 K and a compensation point equal to 125 K. The coercivity of the compound was determined from hysteresis measurements in fields up to 4 T. For the Tm3Co11B4 compound we have observed a large increase of coercivity at low temperatures, typically from 0.01 T at 295 K to 0.8 T at 30 K. The resistivity at low temperatures shows a T2 dependence, implying that electron-spin wave scattering is dominant in this temperature range.
C02 01  3    @0 001B70E60E
C02 02  3    @0 001B70B15E
C02 03  X    @0 240
C03 01  3  FRE  @0 Aimantation @5 02
C03 01  3  ENG  @0 Magnetization @5 02
C03 02  3  FRE  @0 Force coercitive @5 03
C03 02  3  ENG  @0 Coercive force @5 03
C03 03  3  FRE  @0 Conductivité électrique @5 04
C03 03  3  ENG  @0 Electric conductivity @5 04
C03 04  X  FRE  @0 Hystérésis magnétique @5 05
C03 04  X  ENG  @0 Magnetic hysteresis @5 05
C03 04  X  GER  @0 Magnetische Hysteresis @5 05
C03 04  X  SPA  @0 Histérisis magnética @5 05
C03 05  3  FRE  @0 Effet champ magnétique @5 06
C03 05  3  ENG  @0 Magnetic field effects @5 06
C03 06  3  FRE  @0 Réseau hexagonal @5 07
C03 06  3  ENG  @0 Hexagonal lattices @5 07
C03 07  X  FRE  @0 Point compensation @5 08
C03 07  X  ENG  @0 Compensation point @5 08
C03 07  X  SPA  @0 Punto compensación @5 08
C03 08  3  FRE  @0 Interaction électron électron @5 09
C03 08  3  ENG  @0 Electron-electron interactions @5 09
C03 09  3  FRE  @0 Diffusion @5 10
C03 09  3  ENG  @0 Scattering @5 10
C03 10  3  FRE  @0 Onde spin @5 11
C03 10  3  ENG  @0 Spin waves @5 11
C03 11  3  FRE  @0 Alliage base cobalt @2 NK @5 12
C03 11  3  ENG  @0 Cobalt base alloys @2 NK @5 12
C03 12  3  FRE  @0 Thulium alliage @5 13
C03 12  3  ENG  @0 Thulium alloys @5 13
C03 13  3  FRE  @0 Bore alliage @5 14
C03 13  3  ENG  @0 Boron alloys @5 14
C03 14  3  FRE  @0 Alliage ternaire @5 15
C03 14  3  ENG  @0 Ternary alloys @5 15
C03 15  3  FRE  @0 Etude expérimentale @5 18
C03 15  3  ENG  @0 Experimental study @5 18
C03 16  3  FRE  @0 7560E @2 PAC @4 INC @5 56
C03 17  3  FRE  @0 7215E @2 PAC @4 INC @5 57
C03 18  3  FRE  @0 Alliage Co54Tm42B4 @2 NK @4 INC @5 92
C03 19  3  FRE  @0 B Co Tm @4 INC @5 93
C07 01  3  FRE  @0 Lanthanide alliage @5 16
C07 01  3  ENG  @0 Rare earth alloys @5 16
C07 02  3  FRE  @0 Métal transition alliage @5 17
C07 02  3  ENG  @0 Transition element alloys @5 17
N21       @1 300

Format Inist (serveur)

NO : PASCAL 97-0487890 Elsevier
ET : Magnetic and electrical resistivity study of Tm3Co11B4 compound
AU : KOWALCZYK (A.); SMARDZ (L.)
AF : Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179/Poznań/Pologne (1 aut., 2 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of alloys and compounds; ISSN 0925-8388; Suisse; Da. 1997; Vol. 259; Pp. 59-61; Abs. anglais
LA : Anglais
EA : Copyright (c) 1997 Elsevier Science S.A. All rights reserved. The magnetic (magnetization and coercivity) and transport (electrical resistivity) properties of the Tm3Co11B4 compound have been studied. This compound crystallizes in the hexagonal Ce3Co11B4 type structure. Results show that the Tm3Co11B4 is a ferromagnet with TC=347 K and a compensation point equal to 125 K. The coercivity of the compound was determined from hysteresis measurements in fields up to 4 T. For the Tm3Co11B4 compound we have observed a large increase of coercivity at low temperatures, typically from 0.01 T at 295 K to 0.8 T at 30 K. The resistivity at low temperatures shows a T2 dependence, implying that electron-spin wave scattering is dominant in this temperature range.
CC : 001B70E60E; 001B70B15E; 240
FD : Aimantation; Force coercitive; Conductivité électrique; Hystérésis magnétique; Effet champ magnétique; Réseau hexagonal; Point compensation; Interaction électron électron; Diffusion; Onde spin; Alliage base cobalt; Thulium alliage; Bore alliage; Alliage ternaire; Etude expérimentale; 7560E; 7215E; Alliage Co54Tm42B4; B Co Tm
FG : Lanthanide alliage; Métal transition alliage
ED : Magnetization; Coercive force; Electric conductivity; Magnetic hysteresis; Magnetic field effects; Hexagonal lattices; Compensation point; Electron-electron interactions; Scattering; Spin waves; Cobalt base alloys; Thulium alloys; Boron alloys; Ternary alloys; Experimental study
EG : Rare earth alloys; Transition element alloys
GD : Magnetische Hysteresis
SD : Histérisis magnética; Punto compensación
LO : INIST-1151.354000069167050026
ID : 97-0487890

Links to Exploration step

Pascal:97-0487890

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Magnetic and electrical resistivity study of Tm
<sub>3</sub>
Co
<sub>11</sub>
B
<sub>4</sub>
compound</title>
<author>
<name sortKey="Kowalczyk, A" sort="Kowalczyk, A" uniqKey="Kowalczyk A" first="A." last="Kowalczyk">A. Kowalczyk</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179</s1>
<s2>Poznań</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Smardz, L" sort="Smardz, L" uniqKey="Smardz L" first="L." last="Smardz">L. Smardz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179</s1>
<s2>Poznań</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">97-0487890</idno>
<date when="1997">1997</date>
<idno type="stanalyst">PASCAL 97-0487890 Elsevier</idno>
<idno type="RBID">Pascal:97-0487890</idno>
<idno type="wicri:Area/Pascal/Corpus">001351</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Magnetic and electrical resistivity study of Tm
<sub>3</sub>
Co
<sub>11</sub>
B
<sub>4</sub>
compound</title>
<author>
<name sortKey="Kowalczyk, A" sort="Kowalczyk, A" uniqKey="Kowalczyk A" first="A." last="Kowalczyk">A. Kowalczyk</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179</s1>
<s2>Poznań</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Smardz, L" sort="Smardz, L" uniqKey="Smardz L" first="L." last="Smardz">L. Smardz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179</s1>
<s2>Poznań</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of alloys and compounds</title>
<title level="j" type="abbreviated">J. alloys compd.</title>
<idno type="ISSN">0925-8388</idno>
<imprint>
<date when="1997">1997</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of alloys and compounds</title>
<title level="j" type="abbreviated">J. alloys compd.</title>
<idno type="ISSN">0925-8388</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Boron alloys</term>
<term>Cobalt base alloys</term>
<term>Coercive force</term>
<term>Compensation point</term>
<term>Electric conductivity</term>
<term>Electron-electron interactions</term>
<term>Experimental study</term>
<term>Hexagonal lattices</term>
<term>Magnetic field effects</term>
<term>Magnetic hysteresis</term>
<term>Magnetization</term>
<term>Scattering</term>
<term>Spin waves</term>
<term>Ternary alloys</term>
<term>Thulium alloys</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Aimantation</term>
<term>Force coercitive</term>
<term>Conductivité électrique</term>
<term>Hystérésis magnétique</term>
<term>Effet champ magnétique</term>
<term>Réseau hexagonal</term>
<term>Point compensation</term>
<term>Interaction électron électron</term>
<term>Diffusion</term>
<term>Onde spin</term>
<term>Alliage base cobalt</term>
<term>Thulium alliage</term>
<term>Bore alliage</term>
<term>Alliage ternaire</term>
<term>Etude expérimentale</term>
<term>7560E</term>
<term>7215E</term>
<term>Alliage Co54Tm42B4</term>
<term>B Co Tm</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Copyright (c) 1997 Elsevier Science S.A. All rights reserved. The magnetic (magnetization and coercivity) and transport (electrical resistivity) properties of the Tm
<sub>3</sub>
Co
<sub>11</sub>
B
<sub>4</sub>
compound have been studied. This compound crystallizes in the hexagonal Ce
<sub>3</sub>
Co
<sub>11</sub>
B
<sub>4</sub>
type structure. Results show that the Tm
<sub>3</sub>
Co
<sub>11</sub>
B
<sub>4</sub>
is a ferromagnet with T
<sub>C</sub>
=347 K and a compensation point equal to 125 K. The coercivity of the compound was determined from hysteresis measurements in fields up to 4 T. For the Tm
<sub>3</sub>
Co
<sub>11</sub>
B
<sub>4</sub>
compound we have observed a large increase of coercivity at low temperatures, typically from 0.01 T at 295 K to 0.8 T at 30 K. The resistivity at low temperatures shows a T
<sup>2</sup>
dependence, implying that electron-spin wave scattering is dominant in this temperature range.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>259</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Magnetic and electrical resistivity study of Tm
<sub>3</sub>
Co
<sub>11</sub>
B
<sub>4</sub>
compound</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KOWALCZYK (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SMARDZ (L.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179</s1>
<s2>Poznań</s2>
<s3>POL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>59-61</s1>
</fA20>
<fA21>
<s1>1997</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA24 i1="01">
<s0>eng</s0>
</fA24>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000069167050026</s5>
</fA43>
<fA44>
<s0>9000</s0>
<s1>© 1997 Elsevier Science B.V. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>97-0487890</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Copyright (c) 1997 Elsevier Science S.A. All rights reserved. The magnetic (magnetization and coercivity) and transport (electrical resistivity) properties of the Tm
<sub>3</sub>
Co
<sub>11</sub>
B
<sub>4</sub>
compound have been studied. This compound crystallizes in the hexagonal Ce
<sub>3</sub>
Co
<sub>11</sub>
B
<sub>4</sub>
type structure. Results show that the Tm
<sub>3</sub>
Co
<sub>11</sub>
B
<sub>4</sub>
is a ferromagnet with T
<sub>C</sub>
=347 K and a compensation point equal to 125 K. The coercivity of the compound was determined from hysteresis measurements in fields up to 4 T. For the Tm
<sub>3</sub>
Co
<sub>11</sub>
B
<sub>4</sub>
compound we have observed a large increase of coercivity at low temperatures, typically from 0.01 T at 295 K to 0.8 T at 30 K. The resistivity at low temperatures shows a T
<sup>2</sup>
dependence, implying that electron-spin wave scattering is dominant in this temperature range.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70E60E</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70B15E</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>240</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Aimantation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Magnetization</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Force coercitive</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Coercive force</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Electric conductivity</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Hystérésis magnétique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Magnetic hysteresis</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="GER">
<s0>Magnetische Hysteresis</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Histérisis magnética</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Effet champ magnétique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Magnetic field effects</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Réseau hexagonal</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Hexagonal lattices</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Point compensation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Compensation point</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Punto compensación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Interaction électron électron</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Electron-electron interactions</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Diffusion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Scattering</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Onde spin</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Spin waves</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Alliage base cobalt</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Cobalt base alloys</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Thulium alliage</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Thulium alloys</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Bore alliage</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Boron alloys</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Alliage ternaire</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Ternary alloys</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>7560E</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>7215E</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Alliage Co54Tm42B4</s0>
<s2>NK</s2>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>B Co Tm</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Lanthanide alliage</s0>
<s5>16</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Rare earth alloys</s0>
<s5>16</s5>
</fC07>
<fC07 i1="02" i2="3" l="FRE">
<s0>Métal transition alliage</s0>
<s5>17</s5>
</fC07>
<fC07 i1="02" i2="3" l="ENG">
<s0>Transition element alloys</s0>
<s5>17</s5>
</fC07>
<fN21>
<s1>300</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 97-0487890 Elsevier</NO>
<ET>Magnetic and electrical resistivity study of Tm
<sub>3</sub>
Co
<sub>11</sub>
B
<sub>4</sub>
compound</ET>
<AU>KOWALCZYK (A.); SMARDZ (L.)</AU>
<AF>Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179/Poznań/Pologne (1 aut., 2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of alloys and compounds; ISSN 0925-8388; Suisse; Da. 1997; Vol. 259; Pp. 59-61; Abs. anglais</SO>
<LA>Anglais</LA>
<EA>Copyright (c) 1997 Elsevier Science S.A. All rights reserved. The magnetic (magnetization and coercivity) and transport (electrical resistivity) properties of the Tm
<sub>3</sub>
Co
<sub>11</sub>
B
<sub>4</sub>
compound have been studied. This compound crystallizes in the hexagonal Ce
<sub>3</sub>
Co
<sub>11</sub>
B
<sub>4</sub>
type structure. Results show that the Tm
<sub>3</sub>
Co
<sub>11</sub>
B
<sub>4</sub>
is a ferromagnet with T
<sub>C</sub>
=347 K and a compensation point equal to 125 K. The coercivity of the compound was determined from hysteresis measurements in fields up to 4 T. For the Tm
<sub>3</sub>
Co
<sub>11</sub>
B
<sub>4</sub>
compound we have observed a large increase of coercivity at low temperatures, typically from 0.01 T at 295 K to 0.8 T at 30 K. The resistivity at low temperatures shows a T
<sup>2</sup>
dependence, implying that electron-spin wave scattering is dominant in this temperature range.</EA>
<CC>001B70E60E; 001B70B15E; 240</CC>
<FD>Aimantation; Force coercitive; Conductivité électrique; Hystérésis magnétique; Effet champ magnétique; Réseau hexagonal; Point compensation; Interaction électron électron; Diffusion; Onde spin; Alliage base cobalt; Thulium alliage; Bore alliage; Alliage ternaire; Etude expérimentale; 7560E; 7215E; Alliage Co54Tm42B4; B Co Tm</FD>
<FG>Lanthanide alliage; Métal transition alliage</FG>
<ED>Magnetization; Coercive force; Electric conductivity; Magnetic hysteresis; Magnetic field effects; Hexagonal lattices; Compensation point; Electron-electron interactions; Scattering; Spin waves; Cobalt base alloys; Thulium alloys; Boron alloys; Ternary alloys; Experimental study</ED>
<EG>Rare earth alloys; Transition element alloys</EG>
<GD>Magnetische Hysteresis</GD>
<SD>Histérisis magnética; Punto compensación</SD>
<LO>INIST-1151.354000069167050026</LO>
<ID>97-0487890</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001351 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Corpus/biblio.hfd -nk 001351 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:97-0487890
   |texte=   Magnetic and electrical resistivity study of Tm3Co11B4 compound
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024