Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

X-ray microanalysis of optical materials for 157nm photolithography

Identifieur interne : 000B77 ( Pascal/Corpus ); précédent : 000B76; suivant : 000B78

X-ray microanalysis of optical materials for 157nm photolithography

Auteurs : G. Drazic ; E. Sarantopoulou ; S. Kobe ; Z. Kollia ; A. C. Cefalas

Source :

RBID : Pascal:03-0193404

Descripteurs français

English descriptors

Abstract

Next generation microelectronic circuits will have minimum dimensions below 100 nm. It is envisioned that 157 nm laser lithography will be the next step of optical lithography, A.C. Cefalas, E. Sarantopoulou, Microelectronic Engineering V53 (2000) 465, followed by lithographies at shorter wavelengths e.g. 13 nm. At 157 nn vacuum ultraviolet (VUV) illumination of the mask target lithographic features with dimensions less than 100 nm on the photoresist could be achieved. However, there are problems related with the design of the optical projection system. This is mainly because most of the optical materials in one hand have high absorption coefficient and their optical properties degrade constantly with time under VUV irradiation. Taking into consideration the imaging requirements for this type of application, the refractive index variation over the illuminated volume of the optical material should be better than 10-6, and hence optical elements should be prepared from ultra high purity materials. Crystals have been examined with the Jeol 2010 F microscope equipped by the energy dispersive X-ray spectroscopy (EDXS), and it has been proved to be an efficient quality control technique for identifying defects and impurities in crystal samples. A non-uniform distribution of concentration of various elements in wide band gap dielectric crystals in confined space regions from 2 to 50 nm was found, and this result sets the limitations in the optical quality of the crystals.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1463-0184
A03   1    @0 Cryst. eng.
A05       @2 5
A06       @2 3-4
A08 01  1  ENG  @1 X-ray microanalysis of optical materials for 157nm photolithography
A09 01  1  ENG  @1 Crystal Chemistry of Functional Materials II. Proceedings of Symposium L, E-MRS Spring Meeting, June 18-21, 2002
A11 01  1    @1 DRAZIC (G.)
A11 02  1    @1 SARANTOPOULOU (E.)
A11 03  1    @1 KOBE (S.)
A11 04  1    @1 KOLLIA (Z.)
A11 05  1    @1 CEFALAS (A. C.)
A12 01  1    @1 MAJEWSKI (P.) @9 ed.
A12 02  1    @1 FUERTES (A.) @9 ed.
A12 03  1    @1 CLOOTS (R.) @9 ed.
A14 01      @1 Jozef Stefan Institute, Jamova 39 @2 1000 Ljubljana @3 SVN @Z 1 aut. @Z 3 aut.
A14 02      @1 Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, TPCI, 48 Vassileos Constantinou Avenue @2 Athens 11635 @3 GRC @Z 2 aut. @Z 4 aut. @Z 5 aut.
A15 01      @1 MPI @2 Stuttgart @3 DEU @Z 1 aut.
A15 02      @1 Inst. de Ciència de Material de Barcelona @2 Barcelona @3 ESP @Z 2 aut.
A15 03      @1 University of Liège @2 Liège @3 BEL @Z 3 aut.
A18 01  1    @1 European Materials Research Society (E-MRS) @2 Strasbourg @3 FRA @9 patr.
A20       @1 327-334
A21       @1 2002
A23 01      @0 ENG
A43 01      @1 INIST @2 13343S @5 354000110742270220
A44       @0 0000 @1 © 2003 INIST-CNRS. All rights reserved.
A45       @0 8 ref.
A47 01  1    @0 03-0193404
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Crystal engineering
A66 01      @0 GBR
C01 01    ENG  @0 Next generation microelectronic circuits will have minimum dimensions below 100 nm. It is envisioned that 157 nm laser lithography will be the next step of optical lithography, A.C. Cefalas, E. Sarantopoulou, Microelectronic Engineering V53 (2000) 465, followed by lithographies at shorter wavelengths e.g. 13 nm. At 157 nn vacuum ultraviolet (VUV) illumination of the mask target lithographic features with dimensions less than 100 nm on the photoresist could be achieved. However, there are problems related with the design of the optical projection system. This is mainly because most of the optical materials in one hand have high absorption coefficient and their optical properties degrade constantly with time under VUV irradiation. Taking into consideration the imaging requirements for this type of application, the refractive index variation over the illuminated volume of the optical material should be better than 10-6, and hence optical elements should be prepared from ultra high purity materials. Crystals have been examined with the Jeol 2010 F microscope equipped by the energy dispersive X-ray spectroscopy (EDXS), and it has been proved to be an efficient quality control technique for identifying defects and impurities in crystal samples. A non-uniform distribution of concentration of various elements in wide band gap dielectric crystals in confined space regions from 2 to 50 nm was found, and this result sets the limitations in the optical quality of the crystals.
C02 01  X    @0 001D03F17
C02 02  3    @0 001B40B70
C02 03  3    @0 001B60A72S
C03 01  X  FRE  @0 Etude expérimentale @5 01
C03 01  X  ENG  @0 Experimental study @5 01
C03 01  X  SPA  @0 Estudio experimental @5 01
C03 02  X  FRE  @0 Fabrication microélectronique @5 02
C03 02  X  ENG  @0 Microelectronic fabrication @5 02
C03 02  X  SPA  @0 Fabricación microeléctrica @5 02
C03 03  X  FRE  @0 Photolithographie @5 03
C03 03  X  ENG  @0 Photolithography @5 03
C03 03  X  SPA  @0 Fotolitografía @5 03
C03 04  X  FRE  @0 Rayonnement UV extrême @5 04
C03 04  X  ENG  @0 Vacuum ultraviolet radiation @5 04
C03 04  X  SPA  @0 Radiación ultravioleta extrema @5 04
C03 05  X  FRE  @0 Matériau optique @5 05
C03 05  X  ENG  @0 Optical material @5 05
C03 05  X  SPA  @0 Material óptico @5 05
C03 06  X  FRE  @0 Pureté optique @5 06
C03 06  X  ENG  @0 Optical purity @5 06
C03 06  X  SPA  @0 Pureza óptica @5 06
C03 07  X  FRE  @0 Monocristal @5 07
C03 07  X  ENG  @0 Single crystal @5 07
C03 07  X  SPA  @0 Monocristal @5 07
C03 08  X  FRE  @0 Calcium fluorure @5 08
C03 08  X  ENG  @0 Calcium fluoride @5 08
C03 08  X  SPA  @0 Calcio fluoruro @5 08
C03 09  X  FRE  @0 Potassium fluorure @5 09
C03 09  X  ENG  @0 Potassium fluoride @5 09
C03 09  X  SPA  @0 Potasio fluoruro @5 09
C03 10  X  FRE  @0 Yttrium fluorure @5 10
C03 10  X  ENG  @0 Yttrium fluoride @5 10
C03 10  X  SPA  @0 Ytrio fluoruro @5 10
C03 11  X  FRE  @0 Dopage @5 11
C03 11  X  ENG  @0 Doping @5 11
C03 11  X  SPA  @0 Doping @5 11
C03 12  X  FRE  @0 Addition praséodyme @5 12
C03 12  X  ENG  @0 Praseodymium addition @5 12
C03 12  X  SPA  @0 Adición praseodimio @5 12
C03 13  X  FRE  @0 Addition thulium @5 13
C03 13  X  ENG  @0 Thulium addition @5 13
C03 13  X  SPA  @0 Adición tulio @5 13
C03 14  X  FRE  @0 Haute pureté @5 14
C03 14  X  ENG  @0 High purity @5 14
C03 14  X  SPA  @0 Gran pureza @5 14
C03 15  X  FRE  @0 Concentration impureté @5 15
C03 15  X  ENG  @0 Impurity density @5 15
C03 15  X  SPA  @0 Concentración impureza @5 15
C03 16  X  FRE  @0 Distribution concentration @5 16
C03 16  X  ENG  @0 Concentration distribution @5 16
C03 16  X  SPA  @0 Distribución concentración @5 16
C03 17  X  FRE  @0 Méthode mesure @5 17
C03 17  X  ENG  @0 Measurement method @5 17
C03 17  X  SPA  @0 Método medida @5 17
C03 18  X  FRE  @0 Spectrométrie RX @5 18
C03 18  X  ENG  @0 X ray spectrometry @5 18
C03 18  X  SPA  @0 Espectrometría RX @5 18
C03 19  X  FRE  @0 Ca F @4 INC @5 52
C03 20  X  FRE  @0 8540H @2 PAC @4 INC @5 56
C03 21  X  FRE  @0 4270 @2 PAC @4 INC @5 57
C03 22  X  FRE  @0 6172S @2 PAC @4 INC @5 58
C03 23  X  FRE  @0 Dispersion énergie @5 81
C03 23  X  ENG  @0 Energy dispersion @5 81
C03 23  X  SPA  @0 Dispersión energía @5 81
C03 24  X  FRE  @0 Microanalyse @5 84
C03 24  X  ENG  @0 Microanalysis @5 84
C03 24  X  SPA  @0 Microanálisis @5 84
C03 25  X  FRE  @0 KY3F10:Pr @4 INC @5 92
C03 26  X  FRE  @0 CaF2:Tm @4 INC @5 94
C03 27  X  FRE  @0 F K Y @4 INC @5 95
C07 01  X  FRE  @0 Composé minéral @5 82
C07 01  X  ENG  @0 Inorganic compound @5 82
C07 01  X  SPA  @0 Compuesto inorgánico @5 82
C07 02  1  FRE  @0 Métal transition composé @5 83
C07 02  1  ENG  @0 Transition metal compounds @5 83
N21       @1 111
N82       @1 PSI
pR  
A30 01  1  ENG  @1 E-MRS Spring Meeting, Symposium L: Crystal Chemistry of Functional Materials II @3 Strasbourg FRA @4 2002-06-18

Format Inist (serveur)

NO : PASCAL 03-0193404 INIST
ET : X-ray microanalysis of optical materials for 157nm photolithography
AU : DRAZIC (G.); SARANTOPOULOU (E.); KOBE (S.); KOLLIA (Z.); CEFALAS (A. C.); MAJEWSKI (P.); FUERTES (A.); CLOOTS (R.)
AF : Jozef Stefan Institute, Jamova 39/1000 Ljubljana/Slovénie (1 aut., 3 aut.); Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, TPCI, 48 Vassileos Constantinou Avenue/Athens 11635/Grèce (2 aut., 4 aut., 5 aut.); MPI/Stuttgart/Allemagne (1 aut.); Inst. de Ciència de Material de Barcelona/Barcelona/Espagne (2 aut.); University of Liège/Liège/Belgique (3 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Crystal engineering; ISSN 1463-0184; Royaume-Uni; Da. 2002; Vol. 5; No. 3-4; Pp. 327-334; Bibl. 8 ref.
LA : Anglais
EA : Next generation microelectronic circuits will have minimum dimensions below 100 nm. It is envisioned that 157 nm laser lithography will be the next step of optical lithography, A.C. Cefalas, E. Sarantopoulou, Microelectronic Engineering V53 (2000) 465, followed by lithographies at shorter wavelengths e.g. 13 nm. At 157 nn vacuum ultraviolet (VUV) illumination of the mask target lithographic features with dimensions less than 100 nm on the photoresist could be achieved. However, there are problems related with the design of the optical projection system. This is mainly because most of the optical materials in one hand have high absorption coefficient and their optical properties degrade constantly with time under VUV irradiation. Taking into consideration the imaging requirements for this type of application, the refractive index variation over the illuminated volume of the optical material should be better than 10-6, and hence optical elements should be prepared from ultra high purity materials. Crystals have been examined with the Jeol 2010 F microscope equipped by the energy dispersive X-ray spectroscopy (EDXS), and it has been proved to be an efficient quality control technique for identifying defects and impurities in crystal samples. A non-uniform distribution of concentration of various elements in wide band gap dielectric crystals in confined space regions from 2 to 50 nm was found, and this result sets the limitations in the optical quality of the crystals.
CC : 001D03F17; 001B40B70; 001B60A72S
FD : Etude expérimentale; Fabrication microélectronique; Photolithographie; Rayonnement UV extrême; Matériau optique; Pureté optique; Monocristal; Calcium fluorure; Potassium fluorure; Yttrium fluorure; Dopage; Addition praséodyme; Addition thulium; Haute pureté; Concentration impureté; Distribution concentration; Méthode mesure; Spectrométrie RX; Ca F; 8540H; 4270; 6172S; Dispersion énergie; Microanalyse; KY3F10:Pr; CaF2:Tm; F K Y
FG : Composé minéral; Métal transition composé
ED : Experimental study; Microelectronic fabrication; Photolithography; Vacuum ultraviolet radiation; Optical material; Optical purity; Single crystal; Calcium fluoride; Potassium fluoride; Yttrium fluoride; Doping; Praseodymium addition; Thulium addition; High purity; Impurity density; Concentration distribution; Measurement method; X ray spectrometry; Energy dispersion; Microanalysis
EG : Inorganic compound; Transition metal compounds
SD : Estudio experimental; Fabricación microeléctrica; Fotolitografía; Radiación ultravioleta extrema; Material óptico; Pureza óptica; Monocristal; Calcio fluoruro; Potasio fluoruro; Ytrio fluoruro; Doping; Adición praseodimio; Adición tulio; Gran pureza; Concentración impureza; Distribución concentración; Método medida; Espectrometría RX; Dispersión energía; Microanálisis
LO : INIST-13343S.354000110742270220
ID : 03-0193404

Links to Exploration step

Pascal:03-0193404

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">X-ray microanalysis of optical materials for 157nm photolithography</title>
<author>
<name sortKey="Drazic, G" sort="Drazic, G" uniqKey="Drazic G" first="G." last="Drazic">G. Drazic</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jozef Stefan Institute, Jamova 39</s1>
<s2>1000 Ljubljana</s2>
<s3>SVN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sarantopoulou, E" sort="Sarantopoulou, E" uniqKey="Sarantopoulou E" first="E." last="Sarantopoulou">E. Sarantopoulou</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, TPCI, 48 Vassileos Constantinou Avenue</s1>
<s2>Athens 11635</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kobe, S" sort="Kobe, S" uniqKey="Kobe S" first="S." last="Kobe">S. Kobe</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jozef Stefan Institute, Jamova 39</s1>
<s2>1000 Ljubljana</s2>
<s3>SVN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kollia, Z" sort="Kollia, Z" uniqKey="Kollia Z" first="Z." last="Kollia">Z. Kollia</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, TPCI, 48 Vassileos Constantinou Avenue</s1>
<s2>Athens 11635</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cefalas, A C" sort="Cefalas, A C" uniqKey="Cefalas A" first="A. C." last="Cefalas">A. C. Cefalas</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, TPCI, 48 Vassileos Constantinou Avenue</s1>
<s2>Athens 11635</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">03-0193404</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 03-0193404 INIST</idno>
<idno type="RBID">Pascal:03-0193404</idno>
<idno type="wicri:Area/Pascal/Corpus">000B77</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">X-ray microanalysis of optical materials for 157nm photolithography</title>
<author>
<name sortKey="Drazic, G" sort="Drazic, G" uniqKey="Drazic G" first="G." last="Drazic">G. Drazic</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jozef Stefan Institute, Jamova 39</s1>
<s2>1000 Ljubljana</s2>
<s3>SVN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sarantopoulou, E" sort="Sarantopoulou, E" uniqKey="Sarantopoulou E" first="E." last="Sarantopoulou">E. Sarantopoulou</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, TPCI, 48 Vassileos Constantinou Avenue</s1>
<s2>Athens 11635</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kobe, S" sort="Kobe, S" uniqKey="Kobe S" first="S." last="Kobe">S. Kobe</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Jozef Stefan Institute, Jamova 39</s1>
<s2>1000 Ljubljana</s2>
<s3>SVN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kollia, Z" sort="Kollia, Z" uniqKey="Kollia Z" first="Z." last="Kollia">Z. Kollia</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, TPCI, 48 Vassileos Constantinou Avenue</s1>
<s2>Athens 11635</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cefalas, A C" sort="Cefalas, A C" uniqKey="Cefalas A" first="A. C." last="Cefalas">A. C. Cefalas</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, TPCI, 48 Vassileos Constantinou Avenue</s1>
<s2>Athens 11635</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Crystal engineering</title>
<title level="j" type="abbreviated">Cryst. eng.</title>
<idno type="ISSN">1463-0184</idno>
<imprint>
<date when="2002">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Crystal engineering</title>
<title level="j" type="abbreviated">Cryst. eng.</title>
<idno type="ISSN">1463-0184</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Calcium fluoride</term>
<term>Concentration distribution</term>
<term>Doping</term>
<term>Energy dispersion</term>
<term>Experimental study</term>
<term>High purity</term>
<term>Impurity density</term>
<term>Measurement method</term>
<term>Microanalysis</term>
<term>Microelectronic fabrication</term>
<term>Optical material</term>
<term>Optical purity</term>
<term>Photolithography</term>
<term>Potassium fluoride</term>
<term>Praseodymium addition</term>
<term>Single crystal</term>
<term>Thulium addition</term>
<term>Vacuum ultraviolet radiation</term>
<term>X ray spectrometry</term>
<term>Yttrium fluoride</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>Fabrication microélectronique</term>
<term>Photolithographie</term>
<term>Rayonnement UV extrême</term>
<term>Matériau optique</term>
<term>Pureté optique</term>
<term>Monocristal</term>
<term>Calcium fluorure</term>
<term>Potassium fluorure</term>
<term>Yttrium fluorure</term>
<term>Dopage</term>
<term>Addition praséodyme</term>
<term>Addition thulium</term>
<term>Haute pureté</term>
<term>Concentration impureté</term>
<term>Distribution concentration</term>
<term>Méthode mesure</term>
<term>Spectrométrie RX</term>
<term>Ca F</term>
<term>8540H</term>
<term>4270</term>
<term>6172S</term>
<term>Dispersion énergie</term>
<term>Microanalyse</term>
<term>KY3F10:Pr</term>
<term>CaF2:Tm</term>
<term>F K Y</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Next generation microelectronic circuits will have minimum dimensions below 100 nm. It is envisioned that 157 nm laser lithography will be the next step of optical lithography, A.C. Cefalas, E. Sarantopoulou, Microelectronic Engineering V53 (2000) 465, followed by lithographies at shorter wavelengths e.g. 13 nm. At 157 nn vacuum ultraviolet (VUV) illumination of the mask target lithographic features with dimensions less than 100 nm on the photoresist could be achieved. However, there are problems related with the design of the optical projection system. This is mainly because most of the optical materials in one hand have high absorption coefficient and their optical properties degrade constantly with time under VUV irradiation. Taking into consideration the imaging requirements for this type of application, the refractive index variation over the illuminated volume of the optical material should be better than 10
<sup>-6</sup>
, and hence optical elements should be prepared from ultra high purity materials. Crystals have been examined with the Jeol 2010 F microscope equipped by the energy dispersive X-ray spectroscopy (EDXS), and it has been proved to be an efficient quality control technique for identifying defects and impurities in crystal samples. A non-uniform distribution of concentration of various elements in wide band gap dielectric crystals in confined space regions from 2 to 50 nm was found, and this result sets the limitations in the optical quality of the crystals.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1463-0184</s0>
</fA01>
<fA03 i2="1">
<s0>Cryst. eng.</s0>
</fA03>
<fA05>
<s2>5</s2>
</fA05>
<fA06>
<s2>3-4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>X-ray microanalysis of optical materials for 157nm photolithography</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Crystal Chemistry of Functional Materials II. Proceedings of Symposium L, E-MRS Spring Meeting, June 18-21, 2002</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>DRAZIC (G.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SARANTOPOULOU (E.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KOBE (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KOLLIA (Z.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CEFALAS (A. C.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>MAJEWSKI (P.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>FUERTES (A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>CLOOTS (R.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Jozef Stefan Institute, Jamova 39</s1>
<s2>1000 Ljubljana</s2>
<s3>SVN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, TPCI, 48 Vassileos Constantinou Avenue</s1>
<s2>Athens 11635</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>MPI</s1>
<s2>Stuttgart</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Inst. de Ciència de Material de Barcelona</s1>
<s2>Barcelona</s2>
<s3>ESP</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>University of Liège</s1>
<s2>Liège</s2>
<s3>BEL</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>European Materials Research Society (E-MRS)</s1>
<s2>Strasbourg</s2>
<s3>FRA</s3>
<s9>patr.</s9>
</fA18>
<fA20>
<s1>327-334</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13343S</s2>
<s5>354000110742270220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2003 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>8 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0193404</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Crystal engineering</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Next generation microelectronic circuits will have minimum dimensions below 100 nm. It is envisioned that 157 nm laser lithography will be the next step of optical lithography, A.C. Cefalas, E. Sarantopoulou, Microelectronic Engineering V53 (2000) 465, followed by lithographies at shorter wavelengths e.g. 13 nm. At 157 nn vacuum ultraviolet (VUV) illumination of the mask target lithographic features with dimensions less than 100 nm on the photoresist could be achieved. However, there are problems related with the design of the optical projection system. This is mainly because most of the optical materials in one hand have high absorption coefficient and their optical properties degrade constantly with time under VUV irradiation. Taking into consideration the imaging requirements for this type of application, the refractive index variation over the illuminated volume of the optical material should be better than 10
<sup>-6</sup>
, and hence optical elements should be prepared from ultra high purity materials. Crystals have been examined with the Jeol 2010 F microscope equipped by the energy dispersive X-ray spectroscopy (EDXS), and it has been proved to be an efficient quality control technique for identifying defects and impurities in crystal samples. A non-uniform distribution of concentration of various elements in wide band gap dielectric crystals in confined space regions from 2 to 50 nm was found, and this result sets the limitations in the optical quality of the crystals.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F17</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B70</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60A72S</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Fabrication microélectronique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Microelectronic fabrication</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Fabricación microeléctrica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Photolithographie</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Photolithography</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Fotolitografía</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Rayonnement UV extrême</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Vacuum ultraviolet radiation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Radiación ultravioleta extrema</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Matériau optique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Optical material</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Material óptico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Pureté optique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Optical purity</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Pureza óptica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Monocristal</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Single crystal</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Monocristal</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Calcium fluorure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Calcium fluoride</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Calcio fluoruro</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Potassium fluorure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Potassium fluoride</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Potasio fluoruro</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Yttrium fluorure</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Yttrium fluoride</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Ytrio fluoruro</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Doping</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Doping</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Addition praséodyme</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Praseodymium addition</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Adición praseodimio</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Addition thulium</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Thulium addition</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Adición tulio</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Haute pureté</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>High purity</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Gran pureza</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Concentration impureté</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Impurity density</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Concentración impureza</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Distribution concentration</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Concentration distribution</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Distribución concentración</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Méthode mesure</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Measurement method</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Método medida</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Spectrométrie RX</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>X ray spectrometry</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Espectrometría RX</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Ca F</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>8540H</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>4270</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>6172S</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Dispersion énergie</s0>
<s5>81</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Energy dispersion</s0>
<s5>81</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Dispersión energía</s0>
<s5>81</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Microanalyse</s0>
<s5>84</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Microanalysis</s0>
<s5>84</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Microanálisis</s0>
<s5>84</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>KY3F10:Pr</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>CaF2:Tm</s0>
<s4>INC</s4>
<s5>94</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>F K Y</s0>
<s4>INC</s4>
<s5>95</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé minéral</s0>
<s5>82</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Inorganic compound</s0>
<s5>82</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto inorgánico</s0>
<s5>82</s5>
</fC07>
<fC07 i1="02" i2="1" l="FRE">
<s0>Métal transition composé</s0>
<s5>83</s5>
</fC07>
<fC07 i1="02" i2="1" l="ENG">
<s0>Transition metal compounds</s0>
<s5>83</s5>
</fC07>
<fN21>
<s1>111</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>E-MRS Spring Meeting, Symposium L: Crystal Chemistry of Functional Materials II</s1>
<s3>Strasbourg FRA</s3>
<s4>2002-06-18</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 03-0193404 INIST</NO>
<ET>X-ray microanalysis of optical materials for 157nm photolithography</ET>
<AU>DRAZIC (G.); SARANTOPOULOU (E.); KOBE (S.); KOLLIA (Z.); CEFALAS (A. C.); MAJEWSKI (P.); FUERTES (A.); CLOOTS (R.)</AU>
<AF>Jozef Stefan Institute, Jamova 39/1000 Ljubljana/Slovénie (1 aut., 3 aut.); Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, TPCI, 48 Vassileos Constantinou Avenue/Athens 11635/Grèce (2 aut., 4 aut., 5 aut.); MPI/Stuttgart/Allemagne (1 aut.); Inst. de Ciència de Material de Barcelona/Barcelona/Espagne (2 aut.); University of Liège/Liège/Belgique (3 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Crystal engineering; ISSN 1463-0184; Royaume-Uni; Da. 2002; Vol. 5; No. 3-4; Pp. 327-334; Bibl. 8 ref.</SO>
<LA>Anglais</LA>
<EA>Next generation microelectronic circuits will have minimum dimensions below 100 nm. It is envisioned that 157 nm laser lithography will be the next step of optical lithography, A.C. Cefalas, E. Sarantopoulou, Microelectronic Engineering V53 (2000) 465, followed by lithographies at shorter wavelengths e.g. 13 nm. At 157 nn vacuum ultraviolet (VUV) illumination of the mask target lithographic features with dimensions less than 100 nm on the photoresist could be achieved. However, there are problems related with the design of the optical projection system. This is mainly because most of the optical materials in one hand have high absorption coefficient and their optical properties degrade constantly with time under VUV irradiation. Taking into consideration the imaging requirements for this type of application, the refractive index variation over the illuminated volume of the optical material should be better than 10
<sup>-6</sup>
, and hence optical elements should be prepared from ultra high purity materials. Crystals have been examined with the Jeol 2010 F microscope equipped by the energy dispersive X-ray spectroscopy (EDXS), and it has been proved to be an efficient quality control technique for identifying defects and impurities in crystal samples. A non-uniform distribution of concentration of various elements in wide band gap dielectric crystals in confined space regions from 2 to 50 nm was found, and this result sets the limitations in the optical quality of the crystals.</EA>
<CC>001D03F17; 001B40B70; 001B60A72S</CC>
<FD>Etude expérimentale; Fabrication microélectronique; Photolithographie; Rayonnement UV extrême; Matériau optique; Pureté optique; Monocristal; Calcium fluorure; Potassium fluorure; Yttrium fluorure; Dopage; Addition praséodyme; Addition thulium; Haute pureté; Concentration impureté; Distribution concentration; Méthode mesure; Spectrométrie RX; Ca F; 8540H; 4270; 6172S; Dispersion énergie; Microanalyse; KY3F10:Pr; CaF2:Tm; F K Y</FD>
<FG>Composé minéral; Métal transition composé</FG>
<ED>Experimental study; Microelectronic fabrication; Photolithography; Vacuum ultraviolet radiation; Optical material; Optical purity; Single crystal; Calcium fluoride; Potassium fluoride; Yttrium fluoride; Doping; Praseodymium addition; Thulium addition; High purity; Impurity density; Concentration distribution; Measurement method; X ray spectrometry; Energy dispersion; Microanalysis</ED>
<EG>Inorganic compound; Transition metal compounds</EG>
<SD>Estudio experimental; Fabricación microeléctrica; Fotolitografía; Radiación ultravioleta extrema; Material óptico; Pureza óptica; Monocristal; Calcio fluoruro; Potasio fluoruro; Ytrio fluoruro; Doping; Adición praseodimio; Adición tulio; Gran pureza; Concentración impureza; Distribución concentración; Método medida; Espectrometría RX; Dispersión energía; Microanálisis</SD>
<LO>INIST-13343S.354000110742270220</LO>
<ID>03-0193404</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B77 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Corpus/biblio.hfd -nk 000B77 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:03-0193404
   |texte=   X-ray microanalysis of optical materials for 157nm photolithography
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024