Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Float zone growth and spectroscopic characterization of Tm:GdVO4 single crystals

Identifieur interne : 000A23 ( Pascal/Corpus ); précédent : 000A22; suivant : 000A24

Float zone growth and spectroscopic characterization of Tm:GdVO4 single crystals

Auteurs : M. Higuchi ; K. Kodaira ; Y. Urata ; S. Wada ; H. Machida

Source :

RBID : Pascal:04-0437434

Descripteurs français

English descriptors

Abstract

Heavily Tm-doped (5-20 at%) GdVO4 single crystals were successfully grown by the floating zone method. All the grown crystals had no cracks and no inclusions for any dopant concentration. Low-angle grain boundary-free crystals were easily grown along the [110] direction whereas the crystals grown along the [001] direction comprised a few low-angle grain boundaries. The formation of bubble inclusions was effectively suppressed by optimizing growth rates and rotation rates. The absorption coefficient around 800 nm was large enough for pumping with a laser diode of 808 nm, which is conventionally used for Nd lasers. Intensive emission was observed even above 1950 nm where the self-absorption could be neglected. The fluorescence decay time decreased from 2.1 to 0.5 ms with increasing Tm concentration but is long enough for laser oscillation.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-0248
A02 01      @0 JCRGAE
A03   1    @0 J. cryst. growth
A05       @2 265
A06       @2 3-4
A08 01  1  ENG  @1 Float zone growth and spectroscopic characterization of Tm:GdVO4 single crystals
A11 01  1    @1 HIGUCHI (M.)
A11 02  1    @1 KODAIRA (K.)
A11 03  1    @1 URATA (Y.)
A11 04  1    @1 WADA (S.)
A11 05  1    @1 MACHIDA (H.)
A14 01      @1 Graduate School of Engineering, Hokkaido University @2 Kita-ku, Sapporo 060-8628 @3 JPN @Z 1 aut. @Z 2 aut.
A14 02      @1 Megaopto Co. Ltd., 11-58-307 Honcho @2 Wako, Saitama 351-0114 @3 JPN @Z 3 aut.
A14 03      @1 The Institute of Physical and Chemical Research (RIKEN) @2 2-1 Hirosawa, Wako 351-0198 @3 JPN @Z 4 aut.
A14 04      @1 Tokin Corporation @2 28-1 Hanashimashinden, Tsukuba 305-0875 @3 JPN @Z 5 aut.
A20       @1 487-493
A21       @1 2004
A23 01      @0 ENG
A43 01      @1 INIST @2 13507 @5 354000117109940210
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 17 ref.
A47 01  1    @0 04-0437434
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of crystal growth
A66 01      @0 NLD
C01 01    ENG  @0 Heavily Tm-doped (5-20 at%) GdVO4 single crystals were successfully grown by the floating zone method. All the grown crystals had no cracks and no inclusions for any dopant concentration. Low-angle grain boundary-free crystals were easily grown along the [110] direction whereas the crystals grown along the [001] direction comprised a few low-angle grain boundaries. The formation of bubble inclusions was effectively suppressed by optimizing growth rates and rotation rates. The absorption coefficient around 800 nm was large enough for pumping with a laser diode of 808 nm, which is conventionally used for Nd lasers. Intensive emission was observed even above 1950 nm where the self-absorption could be neglected. The fluorescence decay time decreased from 2.1 to 0.5 ms with increasing Tm concentration but is long enough for laser oscillation.
C02 01  3    @0 001B80A10F
C03 01  3  FRE  @0 Etude expérimentale @5 02
C03 01  3  ENG  @0 Experimental study @5 02
C03 02  3  FRE  @0 Croissance cristalline en phase fondue @5 03
C03 02  3  ENG  @0 Crystal growth from melts @5 03
C03 03  X  FRE  @0 Zone flottante @5 04
C03 03  X  ENG  @0 Floating zone @5 04
C03 03  X  SPA  @0 Zona flotante @5 04
C03 04  X  FRE  @0 Dopage @5 05
C03 04  X  ENG  @0 Doping @5 05
C03 04  X  SPA  @0 Doping @5 05
C03 05  3  FRE  @0 Addition thulium @5 06
C03 05  3  ENG  @0 Thulium additions @5 06
C03 06  3  FRE  @0 Effet concentration @5 07
C03 06  3  ENG  @0 Quantity ratio @5 07
C03 07  3  FRE  @0 Joint grain @5 08
C03 07  3  ENG  @0 Grain boundaries @5 08
C03 08  3  FRE  @0 Inclusion @5 09
C03 08  3  ENG  @0 Inclusions @5 09
C03 09  3  FRE  @0 Taux croissance @5 10
C03 09  3  ENG  @0 Growth rate @5 10
C03 10  3  FRE  @0 Coefficient absorption @5 11
C03 10  3  ENG  @0 Absorption coefficients @5 11
C03 11  3  FRE  @0 Autoabsorption @5 12
C03 11  3  ENG  @0 Self-absorption @5 12
C03 12  3  FRE  @0 Photoluminescence @5 13
C03 12  3  ENG  @0 Photoluminescence @5 13
C03 13  3  FRE  @0 Monocristal @5 15
C03 13  3  ENG  @0 Monocrystals @5 15
C03 14  3  FRE  @0 Gadolinium oxyde @2 NK @5 16
C03 14  3  ENG  @0 Gadolinium oxides @2 NK @5 16
C03 15  3  FRE  @0 Vanadium oxyde @2 NK @5 17
C03 15  3  ENG  @0 Vanadium oxides @2 NK @5 17
C03 16  3  FRE  @0 Composé ternaire @5 18
C03 16  3  ENG  @0 Ternary compounds @5 18
C03 17  3  FRE  @0 GdVO4 @4 INC @5 52
C03 18  3  FRE  @0 Gd O V @4 INC @5 53
C03 19  3  FRE  @0 8110F @2 PAC @4 INC @5 56
C07 01  3  FRE  @0 Composé minéral @5 48
C07 01  3  ENG  @0 Inorganic compounds @5 48
C07 02  3  FRE  @0 Métal transition composé @5 49
C07 02  3  ENG  @0 Transition element compounds @5 49
C07 03  3  FRE  @0 Lanthanide composé @5 50
C07 03  3  ENG  @0 Rare earth compounds @5 50
N21       @1 243
N44 01      @1 PSI
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 04-0437434 INIST
ET : Float zone growth and spectroscopic characterization of Tm:GdVO4 single crystals
AU : HIGUCHI (M.); KODAIRA (K.); URATA (Y.); WADA (S.); MACHIDA (H.)
AF : Graduate School of Engineering, Hokkaido University/Kita-ku, Sapporo 060-8628/Japon (1 aut., 2 aut.); Megaopto Co. Ltd., 11-58-307 Honcho/Wako, Saitama 351-0114/Japon (3 aut.); The Institute of Physical and Chemical Research (RIKEN)/2-1 Hirosawa, Wako 351-0198/Japon (4 aut.); Tokin Corporation/28-1 Hanashimashinden, Tsukuba 305-0875/Japon (5 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of crystal growth; ISSN 0022-0248; Coden JCRGAE; Pays-Bas; Da. 2004; Vol. 265; No. 3-4; Pp. 487-493; Bibl. 17 ref.
LA : Anglais
EA : Heavily Tm-doped (5-20 at%) GdVO4 single crystals were successfully grown by the floating zone method. All the grown crystals had no cracks and no inclusions for any dopant concentration. Low-angle grain boundary-free crystals were easily grown along the [110] direction whereas the crystals grown along the [001] direction comprised a few low-angle grain boundaries. The formation of bubble inclusions was effectively suppressed by optimizing growth rates and rotation rates. The absorption coefficient around 800 nm was large enough for pumping with a laser diode of 808 nm, which is conventionally used for Nd lasers. Intensive emission was observed even above 1950 nm where the self-absorption could be neglected. The fluorescence decay time decreased from 2.1 to 0.5 ms with increasing Tm concentration but is long enough for laser oscillation.
CC : 001B80A10F
FD : Etude expérimentale; Croissance cristalline en phase fondue; Zone flottante; Dopage; Addition thulium; Effet concentration; Joint grain; Inclusion; Taux croissance; Coefficient absorption; Autoabsorption; Photoluminescence; Monocristal; Gadolinium oxyde; Vanadium oxyde; Composé ternaire; GdVO4; Gd O V; 8110F
FG : Composé minéral; Métal transition composé; Lanthanide composé
ED : Experimental study; Crystal growth from melts; Floating zone; Doping; Thulium additions; Quantity ratio; Grain boundaries; Inclusions; Growth rate; Absorption coefficients; Self-absorption; Photoluminescence; Monocrystals; Gadolinium oxides; Vanadium oxides; Ternary compounds
EG : Inorganic compounds; Transition element compounds; Rare earth compounds
SD : Zona flotante; Doping
LO : INIST-13507.354000117109940210
ID : 04-0437434

Links to Exploration step

Pascal:04-0437434

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Float zone growth and spectroscopic characterization of Tm:GdVO
<sub>4</sub>
single crystals</title>
<author>
<name sortKey="Higuchi, M" sort="Higuchi, M" uniqKey="Higuchi M" first="M." last="Higuchi">M. Higuchi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Graduate School of Engineering, Hokkaido University</s1>
<s2>Kita-ku, Sapporo 060-8628</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kodaira, K" sort="Kodaira, K" uniqKey="Kodaira K" first="K." last="Kodaira">K. Kodaira</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Graduate School of Engineering, Hokkaido University</s1>
<s2>Kita-ku, Sapporo 060-8628</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Urata, Y" sort="Urata, Y" uniqKey="Urata Y" first="Y." last="Urata">Y. Urata</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Megaopto Co. Ltd., 11-58-307 Honcho</s1>
<s2>Wako, Saitama 351-0114</s2>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wada, S" sort="Wada, S" uniqKey="Wada S" first="S." last="Wada">S. Wada</name>
<affiliation>
<inist:fA14 i1="03">
<s1>The Institute of Physical and Chemical Research (RIKEN)</s1>
<s2>2-1 Hirosawa, Wako 351-0198</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Machida, H" sort="Machida, H" uniqKey="Machida H" first="H." last="Machida">H. Machida</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Tokin Corporation</s1>
<s2>28-1 Hanashimashinden, Tsukuba 305-0875</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0437434</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0437434 INIST</idno>
<idno type="RBID">Pascal:04-0437434</idno>
<idno type="wicri:Area/Pascal/Corpus">000A23</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Float zone growth and spectroscopic characterization of Tm:GdVO
<sub>4</sub>
single crystals</title>
<author>
<name sortKey="Higuchi, M" sort="Higuchi, M" uniqKey="Higuchi M" first="M." last="Higuchi">M. Higuchi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Graduate School of Engineering, Hokkaido University</s1>
<s2>Kita-ku, Sapporo 060-8628</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kodaira, K" sort="Kodaira, K" uniqKey="Kodaira K" first="K." last="Kodaira">K. Kodaira</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Graduate School of Engineering, Hokkaido University</s1>
<s2>Kita-ku, Sapporo 060-8628</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Urata, Y" sort="Urata, Y" uniqKey="Urata Y" first="Y." last="Urata">Y. Urata</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Megaopto Co. Ltd., 11-58-307 Honcho</s1>
<s2>Wako, Saitama 351-0114</s2>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wada, S" sort="Wada, S" uniqKey="Wada S" first="S." last="Wada">S. Wada</name>
<affiliation>
<inist:fA14 i1="03">
<s1>The Institute of Physical and Chemical Research (RIKEN)</s1>
<s2>2-1 Hirosawa, Wako 351-0198</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Machida, H" sort="Machida, H" uniqKey="Machida H" first="H." last="Machida">H. Machida</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Tokin Corporation</s1>
<s2>28-1 Hanashimashinden, Tsukuba 305-0875</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of crystal growth</title>
<title level="j" type="abbreviated">J. cryst. growth</title>
<idno type="ISSN">0022-0248</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of crystal growth</title>
<title level="j" type="abbreviated">J. cryst. growth</title>
<idno type="ISSN">0022-0248</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption coefficients</term>
<term>Crystal growth from melts</term>
<term>Doping</term>
<term>Experimental study</term>
<term>Floating zone</term>
<term>Gadolinium oxides</term>
<term>Grain boundaries</term>
<term>Growth rate</term>
<term>Inclusions</term>
<term>Monocrystals</term>
<term>Photoluminescence</term>
<term>Quantity ratio</term>
<term>Self-absorption</term>
<term>Ternary compounds</term>
<term>Thulium additions</term>
<term>Vanadium oxides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>Croissance cristalline en phase fondue</term>
<term>Zone flottante</term>
<term>Dopage</term>
<term>Addition thulium</term>
<term>Effet concentration</term>
<term>Joint grain</term>
<term>Inclusion</term>
<term>Taux croissance</term>
<term>Coefficient absorption</term>
<term>Autoabsorption</term>
<term>Photoluminescence</term>
<term>Monocristal</term>
<term>Gadolinium oxyde</term>
<term>Vanadium oxyde</term>
<term>Composé ternaire</term>
<term>GdVO4</term>
<term>Gd O V</term>
<term>8110F</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Heavily Tm-doped (5-20 at%) GdVO
<sub>4</sub>
single crystals were successfully grown by the floating zone method. All the grown crystals had no cracks and no inclusions for any dopant concentration. Low-angle grain boundary-free crystals were easily grown along the [110] direction whereas the crystals grown along the [001] direction comprised a few low-angle grain boundaries. The formation of bubble inclusions was effectively suppressed by optimizing growth rates and rotation rates. The absorption coefficient around 800 nm was large enough for pumping with a laser diode of 808 nm, which is conventionally used for Nd lasers. Intensive emission was observed even above 1950 nm where the self-absorption could be neglected. The fluorescence decay time decreased from 2.1 to 0.5 ms with increasing Tm concentration but is long enough for laser oscillation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>265</s2>
</fA05>
<fA06>
<s2>3-4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Float zone growth and spectroscopic characterization of Tm:GdVO
<sub>4</sub>
single crystals</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HIGUCHI (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KODAIRA (K.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>URATA (Y.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WADA (S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MACHIDA (H.)</s1>
</fA11>
<fA14 i1="01">
<s1>Graduate School of Engineering, Hokkaido University</s1>
<s2>Kita-ku, Sapporo 060-8628</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Megaopto Co. Ltd., 11-58-307 Honcho</s1>
<s2>Wako, Saitama 351-0114</s2>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>The Institute of Physical and Chemical Research (RIKEN)</s1>
<s2>2-1 Hirosawa, Wako 351-0198</s2>
<s3>JPN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Tokin Corporation</s1>
<s2>28-1 Hanashimashinden, Tsukuba 305-0875</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>487-493</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000117109940210</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0437434</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Heavily Tm-doped (5-20 at%) GdVO
<sub>4</sub>
single crystals were successfully grown by the floating zone method. All the grown crystals had no cracks and no inclusions for any dopant concentration. Low-angle grain boundary-free crystals were easily grown along the [110] direction whereas the crystals grown along the [001] direction comprised a few low-angle grain boundaries. The formation of bubble inclusions was effectively suppressed by optimizing growth rates and rotation rates. The absorption coefficient around 800 nm was large enough for pumping with a laser diode of 808 nm, which is conventionally used for Nd lasers. Intensive emission was observed even above 1950 nm where the self-absorption could be neglected. The fluorescence decay time decreased from 2.1 to 0.5 ms with increasing Tm concentration but is long enough for laser oscillation.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A10F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Croissance cristalline en phase fondue</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Crystal growth from melts</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Zone flottante</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Floating zone</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Zona flotante</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Doping</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Doping</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Addition thulium</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thulium additions</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Effet concentration</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Quantity ratio</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Joint grain</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Grain boundaries</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Inclusion</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Inclusions</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Taux croissance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Growth rate</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Coefficient absorption</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Absorption coefficients</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Autoabsorption</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Self-absorption</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Gadolinium oxyde</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Gadolinium oxides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Vanadium oxyde</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Vanadium oxides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>GdVO4</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Gd O V</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>8110F</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>48</s5>
</fC07>
<fC07 i1="02" i2="3" l="FRE">
<s0>Métal transition composé</s0>
<s5>49</s5>
</fC07>
<fC07 i1="02" i2="3" l="ENG">
<s0>Transition element compounds</s0>
<s5>49</s5>
</fC07>
<fC07 i1="03" i2="3" l="FRE">
<s0>Lanthanide composé</s0>
<s5>50</s5>
</fC07>
<fC07 i1="03" i2="3" l="ENG">
<s0>Rare earth compounds</s0>
<s5>50</s5>
</fC07>
<fN21>
<s1>243</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 04-0437434 INIST</NO>
<ET>Float zone growth and spectroscopic characterization of Tm:GdVO
<sub>4</sub>
single crystals</ET>
<AU>HIGUCHI (M.); KODAIRA (K.); URATA (Y.); WADA (S.); MACHIDA (H.)</AU>
<AF>Graduate School of Engineering, Hokkaido University/Kita-ku, Sapporo 060-8628/Japon (1 aut., 2 aut.); Megaopto Co. Ltd., 11-58-307 Honcho/Wako, Saitama 351-0114/Japon (3 aut.); The Institute of Physical and Chemical Research (RIKEN)/2-1 Hirosawa, Wako 351-0198/Japon (4 aut.); Tokin Corporation/28-1 Hanashimashinden, Tsukuba 305-0875/Japon (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of crystal growth; ISSN 0022-0248; Coden JCRGAE; Pays-Bas; Da. 2004; Vol. 265; No. 3-4; Pp. 487-493; Bibl. 17 ref.</SO>
<LA>Anglais</LA>
<EA>Heavily Tm-doped (5-20 at%) GdVO
<sub>4</sub>
single crystals were successfully grown by the floating zone method. All the grown crystals had no cracks and no inclusions for any dopant concentration. Low-angle grain boundary-free crystals were easily grown along the [110] direction whereas the crystals grown along the [001] direction comprised a few low-angle grain boundaries. The formation of bubble inclusions was effectively suppressed by optimizing growth rates and rotation rates. The absorption coefficient around 800 nm was large enough for pumping with a laser diode of 808 nm, which is conventionally used for Nd lasers. Intensive emission was observed even above 1950 nm where the self-absorption could be neglected. The fluorescence decay time decreased from 2.1 to 0.5 ms with increasing Tm concentration but is long enough for laser oscillation.</EA>
<CC>001B80A10F</CC>
<FD>Etude expérimentale; Croissance cristalline en phase fondue; Zone flottante; Dopage; Addition thulium; Effet concentration; Joint grain; Inclusion; Taux croissance; Coefficient absorption; Autoabsorption; Photoluminescence; Monocristal; Gadolinium oxyde; Vanadium oxyde; Composé ternaire; GdVO4; Gd O V; 8110F</FD>
<FG>Composé minéral; Métal transition composé; Lanthanide composé</FG>
<ED>Experimental study; Crystal growth from melts; Floating zone; Doping; Thulium additions; Quantity ratio; Grain boundaries; Inclusions; Growth rate; Absorption coefficients; Self-absorption; Photoluminescence; Monocrystals; Gadolinium oxides; Vanadium oxides; Ternary compounds</ED>
<EG>Inorganic compounds; Transition element compounds; Rare earth compounds</EG>
<SD>Zona flotante; Doping</SD>
<LO>INIST-13507.354000117109940210</LO>
<ID>04-0437434</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A23 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Corpus/biblio.hfd -nk 000A23 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0437434
   |texte=   Float zone growth and spectroscopic characterization of Tm:GdVO4 single crystals
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024