Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Intense ultraviolet and blue upconversion emissions in Yb3+-Tm3+ codoped stoichiometric Y7O6F9 powder

Identifieur interne : 000240 ( Pascal/Corpus ); précédent : 000239; suivant : 000241

Intense ultraviolet and blue upconversion emissions in Yb3+-Tm3+ codoped stoichiometric Y7O6F9 powder

Auteurs : MO MA ; CHANGFU XU ; LIWEN YANG ; GUOZHONG REN ; JIANGUO LIN ; QIBIN YANG

Source :

RBID : Pascal:11-0316056

Descripteurs français

English descriptors

Abstract

Stoichiometric Y7O6F9 powder codoped with Yb3+-Tm3+ was synthesized via co-precipitation and subsequent calcining route. The results of X-ray diffraction and transmission electron microscopy reveal that when the calcining temperature is beyond 800 °C, orthorhombic YF3 nanoparticles can be completely oxidized into orthorhombic Y7O6F9 powder. Under the excitation of a 980 nm laser, Y7O6F9 powder exhibits multicolor UC emission in regions spanning the UV to the NIR. In addition, the upconversion emission intensities of YF3, Y7O6F9 and Y2O3 powders were compared under the same dopant condition (Yb/Tm=5/0.5 mol%). The low phonon energy revealed by Raman spectra helped to understand the high efficient upconversion emission of Y7O6F9 and the main phonon vibration of Y7O6F9 lies at 472 cm-1, which is far lower that of Y2O3 (at 708 cm-1). Our results indicate that orthorhombic rare earth ions doped Y7O6F9 is an efficient matrix for UV and blue UC emission, and has potential applications in color displays, anti-counterfeiting and multicolor fluorescent labels.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0921-4526
A03   1    @0 Physica, B Condens. matter
A05       @2 406
A06       @2 17
A08 01  1  ENG  @1 Intense ultraviolet and blue upconversion emissions in Yb3+-Tm3+ codoped stoichiometric Y7O6F9 powder
A11 01  1    @1 MO MA
A11 02  1    @1 CHANGFU XU
A11 03  1    @1 LIWEN YANG
A11 04  1    @1 GUOZHONG REN
A11 05  1    @1 JIANGUO LIN
A11 06  1    @1 QIBIN YANG
A14 01      @1 Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University @2 Xiangtan 411105 @3 CHN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut.
A14 02      @1 Institute of Modern Physics, Faculty of Material and Photoelectronic Physics, Xiangtan University @2 Xiangtan 411105 @3 CHN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut.
A20       @1 3256-3260
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 145B @5 354000189918940260
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 34 ref.
A47 01  1    @0 11-0316056
A60       @1 P
A61       @0 A
A64 01  1    @0 Physica. B, Condensed matter
A66 01      @0 GBR
C01 01    ENG  @0 Stoichiometric Y7O6F9 powder codoped with Yb3+-Tm3+ was synthesized via co-precipitation and subsequent calcining route. The results of X-ray diffraction and transmission electron microscopy reveal that when the calcining temperature is beyond 800 °C, orthorhombic YF3 nanoparticles can be completely oxidized into orthorhombic Y7O6F9 powder. Under the excitation of a 980 nm laser, Y7O6F9 powder exhibits multicolor UC emission in regions spanning the UV to the NIR. In addition, the upconversion emission intensities of YF3, Y7O6F9 and Y2O3 powders were compared under the same dopant condition (Yb/Tm=5/0.5 mol%). The low phonon energy revealed by Raman spectra helped to understand the high efficient upconversion emission of Y7O6F9 and the main phonon vibration of Y7O6F9 lies at 472 cm-1, which is far lower that of Y2O3 (at 708 cm-1). Our results indicate that orthorhombic rare earth ions doped Y7O6F9 is an efficient matrix for UV and blue UC emission, and has potential applications in color displays, anti-counterfeiting and multicolor fluorescent labels.
C02 01  3    @0 001B70H55H
C03 01  3  FRE  @0 Photoluminescence @5 02
C03 01  3  ENG  @0 Photoluminescence @5 02
C03 02  X  FRE  @0 Codopage @5 03
C03 02  X  ENG  @0 Codoping @5 03
C03 02  X  SPA  @0 Codrogado @5 03
C03 03  3  FRE  @0 Coprécipitation @5 04
C03 03  3  ENG  @0 Coprecipitation @5 04
C03 04  3  FRE  @0 Diffraction RX @5 05
C03 04  3  ENG  @0 XRD @5 05
C03 05  3  FRE  @0 Microscopie électronique transmission @5 06
C03 05  3  ENG  @0 Transmission electron microscopy @5 06
C03 06  3  FRE  @0 Processus n phonons @5 07
C03 06  3  ENG  @0 Multi-phonon processes @5 07
C03 07  3  FRE  @0 Addition ytterbium @5 08
C03 07  3  ENG  @0 Ytterbium additions @5 08
C03 08  3  FRE  @0 Addition thulium @5 09
C03 08  3  ENG  @0 Thulium additions @5 09
C03 09  3  FRE  @0 Spectre Raman @5 10
C03 09  3  ENG  @0 Raman spectra @5 10
C03 10  3  FRE  @0 Yttrium Oxyfluorure @2 NC @2 NA @5 11
C03 10  3  ENG  @0 Yttrium Oxyfluorides @2 NC @2 NA @5 11
C03 11  3  FRE  @0 Transfert énergie @5 12
C03 11  3  ENG  @0 Energy transfer @5 12
C03 12  X  FRE  @0 Conversion fréquence @5 14
C03 12  X  ENG  @0 Frequency conversion @5 14
C03 12  X  SPA  @0 Conversión frecuencia @5 14
C03 13  3  FRE  @0 Réseau orthorhombique @5 15
C03 13  3  ENG  @0 Orthorhombic lattices @5 15
N21       @1 213

Format Inist (serveur)

NO : PASCAL 11-0316056 INIST
ET : Intense ultraviolet and blue upconversion emissions in Yb3+-Tm3+ codoped stoichiometric Y7O6F9 powder
AU : MO MA; CHANGFU XU; LIWEN YANG; GUOZHONG REN; JIANGUO LIN; QIBIN YANG
AF : Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University/Xiangtan 411105/Chine (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut.); Institute of Modern Physics, Faculty of Material and Photoelectronic Physics, Xiangtan University/Xiangtan 411105/Chine (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut.)
DT : Publication en série; Niveau analytique
SO : Physica. B, Condensed matter; ISSN 0921-4526; Royaume-Uni; Da. 2011; Vol. 406; No. 17; Pp. 3256-3260; Bibl. 34 ref.
LA : Anglais
EA : Stoichiometric Y7O6F9 powder codoped with Yb3+-Tm3+ was synthesized via co-precipitation and subsequent calcining route. The results of X-ray diffraction and transmission electron microscopy reveal that when the calcining temperature is beyond 800 °C, orthorhombic YF3 nanoparticles can be completely oxidized into orthorhombic Y7O6F9 powder. Under the excitation of a 980 nm laser, Y7O6F9 powder exhibits multicolor UC emission in regions spanning the UV to the NIR. In addition, the upconversion emission intensities of YF3, Y7O6F9 and Y2O3 powders were compared under the same dopant condition (Yb/Tm=5/0.5 mol%). The low phonon energy revealed by Raman spectra helped to understand the high efficient upconversion emission of Y7O6F9 and the main phonon vibration of Y7O6F9 lies at 472 cm-1, which is far lower that of Y2O3 (at 708 cm-1). Our results indicate that orthorhombic rare earth ions doped Y7O6F9 is an efficient matrix for UV and blue UC emission, and has potential applications in color displays, anti-counterfeiting and multicolor fluorescent labels.
CC : 001B70H55H
FD : Photoluminescence; Codopage; Coprécipitation; Diffraction RX; Microscopie électronique transmission; Processus n phonons; Addition ytterbium; Addition thulium; Spectre Raman; Yttrium Oxyfluorure; Transfert énergie; Conversion fréquence; Réseau orthorhombique
ED : Photoluminescence; Codoping; Coprecipitation; XRD; Transmission electron microscopy; Multi-phonon processes; Ytterbium additions; Thulium additions; Raman spectra; Yttrium Oxyfluorides; Energy transfer; Frequency conversion; Orthorhombic lattices
SD : Codrogado; Conversión frecuencia
LO : INIST-145B.354000189918940260
ID : 11-0316056

Links to Exploration step

Pascal:11-0316056

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Intense ultraviolet and blue upconversion emissions in Yb
<sup>3+</sup>
-Tm
<sup>3+ </sup>
codoped stoichiometric Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
powder</title>
<author>
<name sortKey="Mo Ma" sort="Mo Ma" uniqKey="Mo Ma" last="Mo Ma">MO MA</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Modern Physics, Faculty of Material and Photoelectronic Physics, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Changfu Xu" sort="Changfu Xu" uniqKey="Changfu Xu" last="Changfu Xu">CHANGFU XU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Modern Physics, Faculty of Material and Photoelectronic Physics, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Liwen Yang" sort="Liwen Yang" uniqKey="Liwen Yang" last="Liwen Yang">LIWEN YANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Modern Physics, Faculty of Material and Photoelectronic Physics, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Guozhong Ren" sort="Guozhong Ren" uniqKey="Guozhong Ren" last="Guozhong Ren">GUOZHONG REN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Modern Physics, Faculty of Material and Photoelectronic Physics, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jianguo Lin" sort="Jianguo Lin" uniqKey="Jianguo Lin" last="Jianguo Lin">JIANGUO LIN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Modern Physics, Faculty of Material and Photoelectronic Physics, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Qibin Yang" sort="Qibin Yang" uniqKey="Qibin Yang" last="Qibin Yang">QIBIN YANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Modern Physics, Faculty of Material and Photoelectronic Physics, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0316056</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0316056 INIST</idno>
<idno type="RBID">Pascal:11-0316056</idno>
<idno type="wicri:Area/Pascal/Corpus">000240</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Intense ultraviolet and blue upconversion emissions in Yb
<sup>3+</sup>
-Tm
<sup>3+ </sup>
codoped stoichiometric Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
powder</title>
<author>
<name sortKey="Mo Ma" sort="Mo Ma" uniqKey="Mo Ma" last="Mo Ma">MO MA</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Modern Physics, Faculty of Material and Photoelectronic Physics, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Changfu Xu" sort="Changfu Xu" uniqKey="Changfu Xu" last="Changfu Xu">CHANGFU XU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Modern Physics, Faculty of Material and Photoelectronic Physics, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Liwen Yang" sort="Liwen Yang" uniqKey="Liwen Yang" last="Liwen Yang">LIWEN YANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Modern Physics, Faculty of Material and Photoelectronic Physics, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Guozhong Ren" sort="Guozhong Ren" uniqKey="Guozhong Ren" last="Guozhong Ren">GUOZHONG REN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Modern Physics, Faculty of Material and Photoelectronic Physics, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Jianguo Lin" sort="Jianguo Lin" uniqKey="Jianguo Lin" last="Jianguo Lin">JIANGUO LIN</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Modern Physics, Faculty of Material and Photoelectronic Physics, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Qibin Yang" sort="Qibin Yang" uniqKey="Qibin Yang" last="Qibin Yang">QIBIN YANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute of Modern Physics, Faculty of Material and Photoelectronic Physics, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Physica. B, Condensed matter</title>
<title level="j" type="abbreviated">Physica, B Condens. matter</title>
<idno type="ISSN">0921-4526</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Physica. B, Condensed matter</title>
<title level="j" type="abbreviated">Physica, B Condens. matter</title>
<idno type="ISSN">0921-4526</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Codoping</term>
<term>Coprecipitation</term>
<term>Energy transfer</term>
<term>Frequency conversion</term>
<term>Multi-phonon processes</term>
<term>Orthorhombic lattices</term>
<term>Photoluminescence</term>
<term>Raman spectra</term>
<term>Thulium additions</term>
<term>Transmission electron microscopy</term>
<term>XRD</term>
<term>Ytterbium additions</term>
<term>Yttrium Oxyfluorides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photoluminescence</term>
<term>Codopage</term>
<term>Coprécipitation</term>
<term>Diffraction RX</term>
<term>Microscopie électronique transmission</term>
<term>Processus n phonons</term>
<term>Addition ytterbium</term>
<term>Addition thulium</term>
<term>Spectre Raman</term>
<term>Yttrium Oxyfluorure</term>
<term>Transfert énergie</term>
<term>Conversion fréquence</term>
<term>Réseau orthorhombique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stoichiometric Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
powder codoped with Yb
<sup>3+</sup>
-Tm
<sup>3+ </sup>
was synthesized via co-precipitation and subsequent calcining route. The results of X-ray diffraction and transmission electron microscopy reveal that when the calcining temperature is beyond 800 °C, orthorhombic YF
<sub>3</sub>
nanoparticles can be completely oxidized into orthorhombic Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
powder. Under the excitation of a 980 nm laser, Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
powder exhibits multicolor UC emission in regions spanning the UV to the NIR. In addition, the upconversion emission intensities of YF
<sub>3</sub>
, Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
and Y
<sub>2</sub>
O
<sub>3</sub>
powders were compared under the same dopant condition (Yb/Tm=5/0.5 mol%). The low phonon energy revealed by Raman spectra helped to understand the high efficient upconversion emission of Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
and the main phonon vibration of Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
lies at 472 cm
<sup>-1</sup>
, which is far lower that of Y
<sub>2</sub>
O
<sub>3</sub>
(at 708 cm
<sup>-1</sup>
). Our results indicate that orthorhombic rare earth ions doped Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
is an efficient matrix for UV and blue UC emission, and has potential applications in color displays, anti-counterfeiting and multicolor fluorescent labels.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0921-4526</s0>
</fA01>
<fA03 i2="1">
<s0>Physica, B Condens. matter</s0>
</fA03>
<fA05>
<s2>406</s2>
</fA05>
<fA06>
<s2>17</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Intense ultraviolet and blue upconversion emissions in Yb
<sup>3+</sup>
-Tm
<sup>3+ </sup>
codoped stoichiometric Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
powder</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MO MA</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHANGFU XU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LIWEN YANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GUOZHONG REN</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JIANGUO LIN</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>QIBIN YANG</s1>
</fA11>
<fA14 i1="01">
<s1>Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Modern Physics, Faculty of Material and Photoelectronic Physics, Xiangtan University</s1>
<s2>Xiangtan 411105</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>3256-3260</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145B</s2>
<s5>354000189918940260</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>34 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0316056</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. B, Condensed matter</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Stoichiometric Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
powder codoped with Yb
<sup>3+</sup>
-Tm
<sup>3+ </sup>
was synthesized via co-precipitation and subsequent calcining route. The results of X-ray diffraction and transmission electron microscopy reveal that when the calcining temperature is beyond 800 °C, orthorhombic YF
<sub>3</sub>
nanoparticles can be completely oxidized into orthorhombic Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
powder. Under the excitation of a 980 nm laser, Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
powder exhibits multicolor UC emission in regions spanning the UV to the NIR. In addition, the upconversion emission intensities of YF
<sub>3</sub>
, Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
and Y
<sub>2</sub>
O
<sub>3</sub>
powders were compared under the same dopant condition (Yb/Tm=5/0.5 mol%). The low phonon energy revealed by Raman spectra helped to understand the high efficient upconversion emission of Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
and the main phonon vibration of Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
lies at 472 cm
<sup>-1</sup>
, which is far lower that of Y
<sub>2</sub>
O
<sub>3</sub>
(at 708 cm
<sup>-1</sup>
). Our results indicate that orthorhombic rare earth ions doped Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
is an efficient matrix for UV and blue UC emission, and has potential applications in color displays, anti-counterfeiting and multicolor fluorescent labels.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H55H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Codopage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Codoping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Codrogado</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Coprécipitation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Coprecipitation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>XRD</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Processus n phonons</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Multi-phonon processes</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Addition ytterbium</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Ytterbium additions</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Addition thulium</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Thulium additions</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Spectre Raman</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Raman spectra</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Yttrium Oxyfluorure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Yttrium Oxyfluorides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Transfert énergie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Energy transfer</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Conversion fréquence</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Frequency conversion</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Conversión frecuencia</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Réseau orthorhombique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Orthorhombic lattices</s0>
<s5>15</s5>
</fC03>
<fN21>
<s1>213</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 11-0316056 INIST</NO>
<ET>Intense ultraviolet and blue upconversion emissions in Yb
<sup>3+</sup>
-Tm
<sup>3+ </sup>
codoped stoichiometric Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
powder</ET>
<AU>MO MA; CHANGFU XU; LIWEN YANG; GUOZHONG REN; JIANGUO LIN; QIBIN YANG</AU>
<AF>Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University/Xiangtan 411105/Chine (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut.); Institute of Modern Physics, Faculty of Material and Photoelectronic Physics, Xiangtan University/Xiangtan 411105/Chine (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Physica. B, Condensed matter; ISSN 0921-4526; Royaume-Uni; Da. 2011; Vol. 406; No. 17; Pp. 3256-3260; Bibl. 34 ref.</SO>
<LA>Anglais</LA>
<EA>Stoichiometric Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
powder codoped with Yb
<sup>3+</sup>
-Tm
<sup>3+ </sup>
was synthesized via co-precipitation and subsequent calcining route. The results of X-ray diffraction and transmission electron microscopy reveal that when the calcining temperature is beyond 800 °C, orthorhombic YF
<sub>3</sub>
nanoparticles can be completely oxidized into orthorhombic Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
powder. Under the excitation of a 980 nm laser, Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
powder exhibits multicolor UC emission in regions spanning the UV to the NIR. In addition, the upconversion emission intensities of YF
<sub>3</sub>
, Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
and Y
<sub>2</sub>
O
<sub>3</sub>
powders were compared under the same dopant condition (Yb/Tm=5/0.5 mol%). The low phonon energy revealed by Raman spectra helped to understand the high efficient upconversion emission of Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
and the main phonon vibration of Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
lies at 472 cm
<sup>-1</sup>
, which is far lower that of Y
<sub>2</sub>
O
<sub>3</sub>
(at 708 cm
<sup>-1</sup>
). Our results indicate that orthorhombic rare earth ions doped Y
<sub>7</sub>
O
<sub>6</sub>
F
<sub>9</sub>
is an efficient matrix for UV and blue UC emission, and has potential applications in color displays, anti-counterfeiting and multicolor fluorescent labels.</EA>
<CC>001B70H55H</CC>
<FD>Photoluminescence; Codopage; Coprécipitation; Diffraction RX; Microscopie électronique transmission; Processus n phonons; Addition ytterbium; Addition thulium; Spectre Raman; Yttrium Oxyfluorure; Transfert énergie; Conversion fréquence; Réseau orthorhombique</FD>
<ED>Photoluminescence; Codoping; Coprecipitation; XRD; Transmission electron microscopy; Multi-phonon processes; Ytterbium additions; Thulium additions; Raman spectra; Yttrium Oxyfluorides; Energy transfer; Frequency conversion; Orthorhombic lattices</ED>
<SD>Codrogado; Conversión frecuencia</SD>
<LO>INIST-145B.354000189918940260</LO>
<ID>11-0316056</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000240 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Corpus/biblio.hfd -nk 000240 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0316056
   |texte=   Intense ultraviolet and blue upconversion emissions in Yb3+-Tm3+ codoped stoichiometric Y7O6F9 powder
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024