Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pulsed 2-micron lasers based on Tm3+-doped monoclinic double tungstate crystals

Identifieur interne : 000191 ( Pascal/Corpus ); précédent : 000190; suivant : 000192

Pulsed 2-micron lasers based on Tm3+-doped monoclinic double tungstate crystals

Auteurs : X. Mateos ; M. Segura ; W. B. Cho ; A. Schmidt ; F. Rotermund ; M. C. Pujol ; J. J. Carvajal ; M. Aguilo ; F. Diaz ; V. Panyutin ; U. Griebner ; V. Petrov

Source :

RBID : Pascal:12-0011732

Descripteurs français

English descriptors

Abstract

Monoclinic crystals of Tm-doped KLu(WO4)2 were used to demonstrate pulsed laser operation near 2 μm. Passive Q-switching and passive mode-locking were the techniques employed to produce such laser pulses. For passive Q-switching we used an AlGaAs -based diode laser to pump the active elements and Cr:ZnSe and Cr:ZnS crystals as saturable absorbers. For passive mode-locking we used a Ti:sapphire laser as pump source and single-walled carbon nanotubes as saturable absorbers. In the former case, maximum pulse energies of 200 μJ for a pulse duration of 70 ns were achieved at a repetition rate of 3 kHz with Cr:ZnS saturable absorber, while in the latter case, ultrashort pulse durations of ∼10 ps were measured with a maximum average power of 240 mW. In both laser regimes the oscillation wavelength was ∼1945 nm.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0277-786X
A02 01      @0 PSISDG
A03   1    @0 Proc. SPIE Int. Soc. Opt. Eng.
A05       @2 8039
A08 01  1  ENG  @1 Pulsed 2-micron lasers based on Tm3+-doped monoclinic double tungstate crystals
A09 01  1  ENG  @1 Laser technology for defense and security VII : 25-27 April 2011, Orlando, Florida, United States
A11 01  1    @1 MATEOS (X.)
A11 02  1    @1 SEGURA (M.)
A11 03  1    @1 CHO (W. B.)
A11 04  1    @1 SCHMIDT (A.)
A11 05  1    @1 ROTERMUND (F.)
A11 06  1    @1 PUJOL (M. C.)
A11 07  1    @1 CARVAJAL (J. J.)
A11 08  1    @1 AGUILO (M.)
A11 09  1    @1 DIAZ (F.)
A11 10  1    @1 PANYUTIN (V.)
A11 11  1    @1 GRIEBNER (U.)
A11 12  1    @1 PETROV (V.)
A12 01  1    @1 DUBINSKII (Mark A.) @9 ed.
A12 02  1    @1 POST (Stephen G.) @9 ed.
A14 01      @1 Física i Cristal.lografia de Materials i Nanomaterials, FiCMA-FiCNA @2 43007 Tarragona @3 ESP @Z 1 aut. @Z 2 aut. @Z 6 aut. @Z 7 aut. @Z 8 aut. @Z 9 aut.
A14 02      @1 Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a @2 12489 Berlin @3 DEU @Z 1 aut. @Z 4 aut. @Z 10 aut. @Z 11 aut. @Z 12 aut.
A14 03      @1 Division of Energy Systems Research, Ajou University, San 5 Wonchun-dong @2 443-749 Suwon @3 KOR @Z 3 aut. @Z 5 aut.
A18 01  1    @1 SPIE @3 USA @9 org-cong.
A20       @2 803902.1-803902.9
A21       @1 2011
A23 01      @0 ENG
A25 01      @1 SPIE @2 Bellingham WA
A26 01      @0 978-0-8194-8613-4
A43 01      @1 INIST @2 21760 @5 354000174755190010
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 28 ref.
A47 01  1    @0 12-0011732
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Proceedings of SPIE, the International Society for Optical Engineering
A66 01      @0 USA
C01 01    ENG  @0 Monoclinic crystals of Tm-doped KLu(WO4)2 were used to demonstrate pulsed laser operation near 2 μm. Passive Q-switching and passive mode-locking were the techniques employed to produce such laser pulses. For passive Q-switching we used an AlGaAs -based diode laser to pump the active elements and Cr:ZnSe and Cr:ZnS crystals as saturable absorbers. For passive mode-locking we used a Ti:sapphire laser as pump source and single-walled carbon nanotubes as saturable absorbers. In the former case, maximum pulse energies of 200 μJ for a pulse duration of 70 ns were achieved at a repetition rate of 3 kHz with Cr:ZnS saturable absorber, while in the latter case, ultrashort pulse durations of ∼10 ps were measured with a maximum average power of 240 mW. In both laser regimes the oscillation wavelength was ∼1945 nm.
C02 01  3    @0 001B00A30C
C02 02  3    @0 001B40B62
C02 03  3    @0 001B40B70H
C02 04  3    @0 001B40B55P
C03 01  3  FRE  @0 Blocage mode laser @5 01
C03 01  3  ENG  @0 Laser mode locking @5 01
C03 02  3  FRE  @0 Pompage par laser @5 03
C03 02  3  ENG  @0 Laser pumping @5 03
C03 03  X  FRE  @0 Impulsion ultracourte @5 04
C03 03  X  ENG  @0 Ultrashort pulse @5 04
C03 03  X  SPA  @0 Impulsión ultracorto @5 04
C03 04  X  FRE  @0 Laser déclenché @5 09
C03 04  X  ENG  @0 Q switched laser @5 09
C03 04  X  SPA  @0 Laser disparado @5 09
C03 05  3  FRE  @0 Laser semiconducteur @5 10
C03 05  3  ENG  @0 Semiconductor lasers @5 10
C03 06  3  FRE  @0 Laser pulsé @5 11
C03 06  3  ENG  @0 Pulsed lasers @5 11
C03 07  3  FRE  @0 Diode laser @5 12
C03 07  3  ENG  @0 Laser diodes @5 12
C03 08  3  FRE  @0 Application laser @5 19
C03 08  3  ENG  @0 Laser beam applications @5 19
C03 09  X  FRE  @0 Durée impulsion @5 41
C03 09  X  ENG  @0 Pulse width @5 41
C03 09  X  SPA  @0 Duración impulso @5 41
C03 10  3  FRE  @0 Domaine temps ps @5 42
C03 10  3  ENG  @0 ps range @5 42
C03 11  3  FRE  @0 Nanotube monofeuillet @5 47
C03 11  3  ENG  @0 Singlewalled nanotube @5 47
C03 12  3  FRE  @0 Nanotube carbone @5 48
C03 12  3  ENG  @0 Carbon nanotubes @5 48
C03 13  3  FRE  @0 Matériau laser @5 57
C03 13  3  ENG  @0 Laser materials @5 57
C03 14  X  FRE  @0 Cristal monoclinique @5 61
C03 14  X  ENG  @0 Monoclinic crystals @5 61
C03 14  X  SPA  @0 Cristal monoclínico @5 61
C03 15  3  FRE  @0 Addition thulium @5 62
C03 15  3  ENG  @0 Thulium additions @5 62
C03 16  3  FRE  @0 Arséniure d'aluminium @2 NK @5 63
C03 16  3  ENG  @0 Aluminium arsenides @2 NK @5 63
C03 17  3  FRE  @0 Absorbant saturable @5 64
C03 17  3  ENG  @0 Saturable absorbers @5 64
C03 18  3  FRE  @0 Domaine temps ns @5 65
C03 18  3  ENG  @0 ns range @5 65
C03 19  X  FRE  @0 Application militaire @5 66
C03 19  X  ENG  @0 Military application @5 66
C03 19  X  SPA  @0 Aplicación militar @5 66
C03 20  3  FRE  @0 Laser solide @5 67
C03 20  3  ENG  @0 Solid state lasers @5 67
C03 21  3  FRE  @0 ZnSe:Cr @4 INC @5 71
C03 22  3  FRE  @0 ZnS @4 INC @5 72
C03 23  3  FRE  @0 Déclenchement passif @4 INC @5 83
C03 24  3  FRE  @0 Blocage mode passif @4 INC @5 84
C03 25  3  FRE  @0 AlGaAs @4 INC @5 85
C03 26  3  FRE  @0 Laser Ti:saphir @4 INC @5 86
C03 27  3  FRE  @0 0130C @4 INC @5 87
C03 28  3  FRE  @0 4262 @4 INC @5 88
C03 29  3  FRE  @0 4260G @4 INC @5 89
C03 30  3  FRE  @0 4270H @4 INC @5 91
C03 31  3  FRE  @0 4255P @4 INC @5 92
C03 32  3  FRE  @0 4265R @4 INC @5 93
C03 33  3  FRE  @0 8920D @4 INC @5 94
N21       @1 002
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 Laser technology for defense and security. Conference @2 07 @3 Orlando FL USA @4 2011-04-25

Format Inist (serveur)

NO : PASCAL 12-0011732 INIST
ET : Pulsed 2-micron lasers based on Tm3+-doped monoclinic double tungstate crystals
AU : MATEOS (X.); SEGURA (M.); CHO (W. B.); SCHMIDT (A.); ROTERMUND (F.); PUJOL (M. C.); CARVAJAL (J. J.); AGUILO (M.); DIAZ (F.); PANYUTIN (V.); GRIEBNER (U.); PETROV (V.); DUBINSKII (Mark A.); POST (Stephen G.)
AF : Física i Cristal.lografia de Materials i Nanomaterials, FiCMA-FiCNA/43007 Tarragona/Espagne (1 aut., 2 aut., 6 aut., 7 aut., 8 aut., 9 aut.); Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a/12489 Berlin/Allemagne (1 aut., 4 aut., 10 aut., 11 aut., 12 aut.); Division of Energy Systems Research, Ajou University, San 5 Wonchun-dong/443-749 Suwon/Corée, République de (3 aut., 5 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Proceedings of SPIE, the International Society for Optical Engineering; ISSN 0277-786X; Coden PSISDG; Etats-Unis; Da. 2011; Vol. 8039; 803902.1-803902.9; Bibl. 28 ref.
LA : Anglais
EA : Monoclinic crystals of Tm-doped KLu(WO4)2 were used to demonstrate pulsed laser operation near 2 μm. Passive Q-switching and passive mode-locking were the techniques employed to produce such laser pulses. For passive Q-switching we used an AlGaAs -based diode laser to pump the active elements and Cr:ZnSe and Cr:ZnS crystals as saturable absorbers. For passive mode-locking we used a Ti:sapphire laser as pump source and single-walled carbon nanotubes as saturable absorbers. In the former case, maximum pulse energies of 200 μJ for a pulse duration of 70 ns were achieved at a repetition rate of 3 kHz with Cr:ZnS saturable absorber, while in the latter case, ultrashort pulse durations of ∼10 ps were measured with a maximum average power of 240 mW. In both laser regimes the oscillation wavelength was ∼1945 nm.
CC : 001B00A30C; 001B40B62; 001B40B70H; 001B40B55P
FD : Blocage mode laser; Pompage par laser; Impulsion ultracourte; Laser déclenché; Laser semiconducteur; Laser pulsé; Diode laser; Application laser; Durée impulsion; Domaine temps ps; Nanotube monofeuillet; Nanotube carbone; Matériau laser; Cristal monoclinique; Addition thulium; Arséniure d'aluminium; Absorbant saturable; Domaine temps ns; Application militaire; Laser solide; ZnSe:Cr; ZnS; Déclenchement passif; Blocage mode passif; AlGaAs; Laser Ti:saphir; 0130C; 4262; 4260G; 4270H; 4255P; 4265R; 8920D
ED : Laser mode locking; Laser pumping; Ultrashort pulse; Q switched laser; Semiconductor lasers; Pulsed lasers; Laser diodes; Laser beam applications; Pulse width; ps range; Singlewalled nanotube; Carbon nanotubes; Laser materials; Monoclinic crystals; Thulium additions; Aluminium arsenides; Saturable absorbers; ns range; Military application; Solid state lasers
SD : Impulsión ultracorto; Laser disparado; Duración impulso; Cristal monoclínico; Aplicación militar
LO : INIST-21760.354000174755190010
ID : 12-0011732

Links to Exploration step

Pascal:12-0011732

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Pulsed 2-micron lasers based on Tm
<sup>3+</sup>
-doped monoclinic double tungstate crystals</title>
<author>
<name sortKey="Mateos, X" sort="Mateos, X" uniqKey="Mateos X" first="X." last="Mateos">X. Mateos</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Física i Cristal.lografia de Materials i Nanomaterials, FiCMA-FiCNA</s1>
<s2>43007 Tarragona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Segura, M" sort="Segura, M" uniqKey="Segura M" first="M." last="Segura">M. Segura</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Física i Cristal.lografia de Materials i Nanomaterials, FiCMA-FiCNA</s1>
<s2>43007 Tarragona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cho, W B" sort="Cho, W B" uniqKey="Cho W" first="W. B." last="Cho">W. B. Cho</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Energy Systems Research, Ajou University, San 5 Wonchun-dong</s1>
<s2>443-749 Suwon</s2>
<s3>KOR</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, A" sort="Schmidt, A" uniqKey="Schmidt A" first="A." last="Schmidt">A. Schmidt</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rotermund, F" sort="Rotermund, F" uniqKey="Rotermund F" first="F." last="Rotermund">F. Rotermund</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Energy Systems Research, Ajou University, San 5 Wonchun-dong</s1>
<s2>443-749 Suwon</s2>
<s3>KOR</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pujol, M C" sort="Pujol, M C" uniqKey="Pujol M" first="M. C." last="Pujol">M. C. Pujol</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Física i Cristal.lografia de Materials i Nanomaterials, FiCMA-FiCNA</s1>
<s2>43007 Tarragona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Carvajal, J J" sort="Carvajal, J J" uniqKey="Carvajal J" first="J. J." last="Carvajal">J. J. Carvajal</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Física i Cristal.lografia de Materials i Nanomaterials, FiCMA-FiCNA</s1>
<s2>43007 Tarragona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Aguilo, M" sort="Aguilo, M" uniqKey="Aguilo M" first="M." last="Aguilo">M. Aguilo</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Física i Cristal.lografia de Materials i Nanomaterials, FiCMA-FiCNA</s1>
<s2>43007 Tarragona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Diaz, F" sort="Diaz, F" uniqKey="Diaz F" first="F." last="Diaz">F. Diaz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Física i Cristal.lografia de Materials i Nanomaterials, FiCMA-FiCNA</s1>
<s2>43007 Tarragona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Panyutin, V" sort="Panyutin, V" uniqKey="Panyutin V" first="V." last="Panyutin">V. Panyutin</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Griebner, U" sort="Griebner, U" uniqKey="Griebner U" first="U." last="Griebner">U. Griebner</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Petrov, V" sort="Petrov, V" uniqKey="Petrov V" first="V." last="Petrov">V. Petrov</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0011732</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0011732 INIST</idno>
<idno type="RBID">Pascal:12-0011732</idno>
<idno type="wicri:Area/Pascal/Corpus">000191</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Pulsed 2-micron lasers based on Tm
<sup>3+</sup>
-doped monoclinic double tungstate crystals</title>
<author>
<name sortKey="Mateos, X" sort="Mateos, X" uniqKey="Mateos X" first="X." last="Mateos">X. Mateos</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Física i Cristal.lografia de Materials i Nanomaterials, FiCMA-FiCNA</s1>
<s2>43007 Tarragona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Segura, M" sort="Segura, M" uniqKey="Segura M" first="M." last="Segura">M. Segura</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Física i Cristal.lografia de Materials i Nanomaterials, FiCMA-FiCNA</s1>
<s2>43007 Tarragona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cho, W B" sort="Cho, W B" uniqKey="Cho W" first="W. B." last="Cho">W. B. Cho</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Energy Systems Research, Ajou University, San 5 Wonchun-dong</s1>
<s2>443-749 Suwon</s2>
<s3>KOR</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, A" sort="Schmidt, A" uniqKey="Schmidt A" first="A." last="Schmidt">A. Schmidt</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rotermund, F" sort="Rotermund, F" uniqKey="Rotermund F" first="F." last="Rotermund">F. Rotermund</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Energy Systems Research, Ajou University, San 5 Wonchun-dong</s1>
<s2>443-749 Suwon</s2>
<s3>KOR</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pujol, M C" sort="Pujol, M C" uniqKey="Pujol M" first="M. C." last="Pujol">M. C. Pujol</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Física i Cristal.lografia de Materials i Nanomaterials, FiCMA-FiCNA</s1>
<s2>43007 Tarragona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Carvajal, J J" sort="Carvajal, J J" uniqKey="Carvajal J" first="J. J." last="Carvajal">J. J. Carvajal</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Física i Cristal.lografia de Materials i Nanomaterials, FiCMA-FiCNA</s1>
<s2>43007 Tarragona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Aguilo, M" sort="Aguilo, M" uniqKey="Aguilo M" first="M." last="Aguilo">M. Aguilo</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Física i Cristal.lografia de Materials i Nanomaterials, FiCMA-FiCNA</s1>
<s2>43007 Tarragona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Diaz, F" sort="Diaz, F" uniqKey="Diaz F" first="F." last="Diaz">F. Diaz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Física i Cristal.lografia de Materials i Nanomaterials, FiCMA-FiCNA</s1>
<s2>43007 Tarragona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Panyutin, V" sort="Panyutin, V" uniqKey="Panyutin V" first="V." last="Panyutin">V. Panyutin</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Griebner, U" sort="Griebner, U" uniqKey="Griebner U" first="U." last="Griebner">U. Griebner</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Petrov, V" sort="Petrov, V" uniqKey="Petrov V" first="V." last="Petrov">V. Petrov</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<idno type="ISSN">0277-786X</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<idno type="ISSN">0277-786X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium arsenides</term>
<term>Carbon nanotubes</term>
<term>Laser beam applications</term>
<term>Laser diodes</term>
<term>Laser materials</term>
<term>Laser mode locking</term>
<term>Laser pumping</term>
<term>Military application</term>
<term>Monoclinic crystals</term>
<term>Pulse width</term>
<term>Pulsed lasers</term>
<term>Q switched laser</term>
<term>Saturable absorbers</term>
<term>Semiconductor lasers</term>
<term>Singlewalled nanotube</term>
<term>Solid state lasers</term>
<term>Thulium additions</term>
<term>Ultrashort pulse</term>
<term>ns range</term>
<term>ps range</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Blocage mode laser</term>
<term>Pompage par laser</term>
<term>Impulsion ultracourte</term>
<term>Laser déclenché</term>
<term>Laser semiconducteur</term>
<term>Laser pulsé</term>
<term>Diode laser</term>
<term>Application laser</term>
<term>Durée impulsion</term>
<term>Domaine temps ps</term>
<term>Nanotube monofeuillet</term>
<term>Nanotube carbone</term>
<term>Matériau laser</term>
<term>Cristal monoclinique</term>
<term>Addition thulium</term>
<term>Arséniure d'aluminium</term>
<term>Absorbant saturable</term>
<term>Domaine temps ns</term>
<term>Application militaire</term>
<term>Laser solide</term>
<term>ZnSe:Cr</term>
<term>ZnS</term>
<term>Déclenchement passif</term>
<term>Blocage mode passif</term>
<term>AlGaAs</term>
<term>Laser Ti:saphir</term>
<term>0130C</term>
<term>4262</term>
<term>4260G</term>
<term>4270H</term>
<term>4255P</term>
<term>4265R</term>
<term>8920D</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Monoclinic crystals of Tm-doped KLu(WO
<sub>4</sub>
)
<sub>2</sub>
were used to demonstrate pulsed laser operation near 2 μm. Passive Q-switching and passive mode-locking were the techniques employed to produce such laser pulses. For passive Q-switching we used an AlGaAs -based diode laser to pump the active elements and Cr:ZnSe and Cr:ZnS crystals as saturable absorbers. For passive mode-locking we used a Ti:sapphire laser as pump source and single-walled carbon nanotubes as saturable absorbers. In the former case, maximum pulse energies of 200 μJ for a pulse duration of 70 ns were achieved at a repetition rate of 3 kHz with Cr:ZnS saturable absorber, while in the latter case, ultrashort pulse durations of ∼10 ps were measured with a maximum average power of 240 mW. In both laser regimes the oscillation wavelength was ∼1945 nm.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>8039</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Pulsed 2-micron lasers based on Tm
<sup>3+</sup>
-doped monoclinic double tungstate crystals</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Laser technology for defense and security VII : 25-27 April 2011, Orlando, Florida, United States</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>MATEOS (X.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SEGURA (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHO (W. B.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SCHMIDT (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ROTERMUND (F.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PUJOL (M. C.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>CARVAJAL (J. J.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>AGUILO (M.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>DIAZ (F.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>PANYUTIN (V.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>GRIEBNER (U.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>PETROV (V.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>DUBINSKII (Mark A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>POST (Stephen G.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Física i Cristal.lografia de Materials i Nanomaterials, FiCMA-FiCNA</s1>
<s2>43007 Tarragona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Division of Energy Systems Research, Ajou University, San 5 Wonchun-dong</s1>
<s2>443-749 Suwon</s2>
<s3>KOR</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>803902.1-803902.9</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham WA</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-8613-4</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174755190010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0011732</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Monoclinic crystals of Tm-doped KLu(WO
<sub>4</sub>
)
<sub>2</sub>
were used to demonstrate pulsed laser operation near 2 μm. Passive Q-switching and passive mode-locking were the techniques employed to produce such laser pulses. For passive Q-switching we used an AlGaAs -based diode laser to pump the active elements and Cr:ZnSe and Cr:ZnS crystals as saturable absorbers. For passive mode-locking we used a Ti:sapphire laser as pump source and single-walled carbon nanotubes as saturable absorbers. In the former case, maximum pulse energies of 200 μJ for a pulse duration of 70 ns were achieved at a repetition rate of 3 kHz with Cr:ZnS saturable absorber, while in the latter case, ultrashort pulse durations of ∼10 ps were measured with a maximum average power of 240 mW. In both laser regimes the oscillation wavelength was ∼1945 nm.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B62</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B40B70H</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Blocage mode laser</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Laser mode locking</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Pompage par laser</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Laser pumping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Impulsion ultracourte</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Ultrashort pulse</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Impulsión ultracorto</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Laser déclenché</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Q switched laser</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Laser disparado</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Laser pulsé</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Pulsed lasers</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Diode laser</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Laser diodes</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Application laser</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Laser beam applications</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Durée impulsion</s0>
<s5>41</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Pulse width</s0>
<s5>41</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Duración impulso</s0>
<s5>41</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Domaine temps ps</s0>
<s5>42</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>ps range</s0>
<s5>42</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Nanotube monofeuillet</s0>
<s5>47</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Singlewalled nanotube</s0>
<s5>47</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Nanotube carbone</s0>
<s5>48</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Carbon nanotubes</s0>
<s5>48</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Matériau laser</s0>
<s5>57</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Laser materials</s0>
<s5>57</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Cristal monoclinique</s0>
<s5>61</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Monoclinic crystals</s0>
<s5>61</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Cristal monoclínico</s0>
<s5>61</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Addition thulium</s0>
<s5>62</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Thulium additions</s0>
<s5>62</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Arséniure d'aluminium</s0>
<s2>NK</s2>
<s5>63</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Aluminium arsenides</s0>
<s2>NK</s2>
<s5>63</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Absorbant saturable</s0>
<s5>64</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Saturable absorbers</s0>
<s5>64</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Domaine temps ns</s0>
<s5>65</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>ns range</s0>
<s5>65</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Application militaire</s0>
<s5>66</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Military application</s0>
<s5>66</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Aplicación militar</s0>
<s5>66</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Laser solide</s0>
<s5>67</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Solid state lasers</s0>
<s5>67</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>ZnSe:Cr</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>ZnS</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Déclenchement passif</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Blocage mode passif</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>AlGaAs</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Laser Ti:saphir</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>87</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>4262</s0>
<s4>INC</s4>
<s5>88</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>4260G</s0>
<s4>INC</s4>
<s5>89</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>4270H</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>4255P</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>4265R</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>8920D</s0>
<s4>INC</s4>
<s5>94</s5>
</fC03>
<fN21>
<s1>002</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Laser technology for defense and security. Conference</s1>
<s2>07</s2>
<s3>Orlando FL USA</s3>
<s4>2011-04-25</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 12-0011732 INIST</NO>
<ET>Pulsed 2-micron lasers based on Tm
<sup>3+</sup>
-doped monoclinic double tungstate crystals</ET>
<AU>MATEOS (X.); SEGURA (M.); CHO (W. B.); SCHMIDT (A.); ROTERMUND (F.); PUJOL (M. C.); CARVAJAL (J. J.); AGUILO (M.); DIAZ (F.); PANYUTIN (V.); GRIEBNER (U.); PETROV (V.); DUBINSKII (Mark A.); POST (Stephen G.)</AU>
<AF>Física i Cristal.lografia de Materials i Nanomaterials, FiCMA-FiCNA/43007 Tarragona/Espagne (1 aut., 2 aut., 6 aut., 7 aut., 8 aut., 9 aut.); Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a/12489 Berlin/Allemagne (1 aut., 4 aut., 10 aut., 11 aut., 12 aut.); Division of Energy Systems Research, Ajou University, San 5 Wonchun-dong/443-749 Suwon/Corée, République de (3 aut., 5 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Proceedings of SPIE, the International Society for Optical Engineering; ISSN 0277-786X; Coden PSISDG; Etats-Unis; Da. 2011; Vol. 8039; 803902.1-803902.9; Bibl. 28 ref.</SO>
<LA>Anglais</LA>
<EA>Monoclinic crystals of Tm-doped KLu(WO
<sub>4</sub>
)
<sub>2</sub>
were used to demonstrate pulsed laser operation near 2 μm. Passive Q-switching and passive mode-locking were the techniques employed to produce such laser pulses. For passive Q-switching we used an AlGaAs -based diode laser to pump the active elements and Cr:ZnSe and Cr:ZnS crystals as saturable absorbers. For passive mode-locking we used a Ti:sapphire laser as pump source and single-walled carbon nanotubes as saturable absorbers. In the former case, maximum pulse energies of 200 μJ for a pulse duration of 70 ns were achieved at a repetition rate of 3 kHz with Cr:ZnS saturable absorber, while in the latter case, ultrashort pulse durations of ∼10 ps were measured with a maximum average power of 240 mW. In both laser regimes the oscillation wavelength was ∼1945 nm.</EA>
<CC>001B00A30C; 001B40B62; 001B40B70H; 001B40B55P</CC>
<FD>Blocage mode laser; Pompage par laser; Impulsion ultracourte; Laser déclenché; Laser semiconducteur; Laser pulsé; Diode laser; Application laser; Durée impulsion; Domaine temps ps; Nanotube monofeuillet; Nanotube carbone; Matériau laser; Cristal monoclinique; Addition thulium; Arséniure d'aluminium; Absorbant saturable; Domaine temps ns; Application militaire; Laser solide; ZnSe:Cr; ZnS; Déclenchement passif; Blocage mode passif; AlGaAs; Laser Ti:saphir; 0130C; 4262; 4260G; 4270H; 4255P; 4265R; 8920D</FD>
<ED>Laser mode locking; Laser pumping; Ultrashort pulse; Q switched laser; Semiconductor lasers; Pulsed lasers; Laser diodes; Laser beam applications; Pulse width; ps range; Singlewalled nanotube; Carbon nanotubes; Laser materials; Monoclinic crystals; Thulium additions; Aluminium arsenides; Saturable absorbers; ns range; Military application; Solid state lasers</ED>
<SD>Impulsión ultracorto; Laser disparado; Duración impulso; Cristal monoclínico; Aplicación militar</SD>
<LO>INIST-21760.354000174755190010</LO>
<ID>12-0011732</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000191 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Corpus/biblio.hfd -nk 000191 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0011732
   |texte=   Pulsed 2-micron lasers based on Tm3+-doped monoclinic double tungstate crystals
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024