Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Preparation and characterization of highly thulium- and alumina-doped optical fibers for single-frequency fiber lasers

Identifieur interne : 000172 ( Pascal/Corpus ); précédent : 000171; suivant : 000173

Preparation and characterization of highly thulium- and alumina-doped optical fibers for single-frequency fiber lasers

Auteurs : P. Honzatko ; A. Dhar ; I. Kaslk ; O. Podrazky ; V. Matejec ; P. Peterka ; W. Blanc ; B. Dussardier

Source :

RBID : Pascal:12-0116066

Descripteurs français

English descriptors

Abstract

Thulium-doped fibers suitable for core-pumped single-frequency lasers were fabricated by the modified chemical vapor deposition (MCVD) method. Refractive index profile, doping profile and spectral absorption was measured. High doping concentration of thulium ions should be achieved to allow for high absorption of light at a pump wavelength while the thulium ions clustering should be avoided to prevent the cooperative upconversion and quenching processes. The fabricated fibers featured pump absorption up to 70dB/m at a pump wavelength of 1611nm. The single-frequency master oscillator with a resonator composed of a pair of fiber Bragg gratings and a thulium-doped fiber was demonstrated with predominantly single ended operation. We achieved a slope efficiency of 22% and a threshold of 22mW at a lasing wavelength of 1944nm.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0277-786X
A02 01      @0 PSISDG
A03   1    @0 Proc. SPIE Int. Soc. Opt. Eng.
A05       @2 8306
A08 01  1  ENG  @1 Preparation and characterization of highly thulium- and alumina-doped optical fibers for single-frequency fiber lasers
A09 01  1  ENG  @1 Photonics, devices, and systems V : 24-26 August 2011, Prague, Czech Republic
A11 01  1    @1 HONZATKO (P.)
A11 02  1    @1 DHAR (A.)
A11 03  1    @1 KASLK (I.)
A11 04  1    @1 PODRAZKY (O.)
A11 05  1    @1 MATEJEC (V.)
A11 06  1    @1 PETERKA (P.)
A11 07  1    @1 BLANC (W.)
A11 08  1    @1 DUSSARDIER (B.)
A12 01  1    @1 TOMANEK (Pavel) @9 ed.
A12 02  1    @1 SENDERAKOVA (Dagmar) @9 ed.
A12 03  1    @1 PATA (Petr) @9 ed.
A14 01      @1 Institute of Photonics and Electronic, Chaberska 57 @2 182 51 Prague @3 CZE @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut.
A14 02      @1 Laboratoire de Physique die la Matière Condensée, CNRS UMR6622, Université de Nice-Sophia Antipolis, Parc Valrose @2 06108 NICE @3 FRA @Z 7 aut. @Z 8 aut.
A18 01  1    @1 European Optical Society @3 INC @9 org-cong.
A18 02  1    @1 Czech and Slovak Society for Photonics @3 INC @9 org-cong.
A18 03  1    @1 Action M Agency @3 INC @9 org-cong.
A18 04  1    @1 Ceské vysoké uceni technické v Praze @3 INC @9 org-cong.
A18 05  1    @1 SPIE @3 USA @9 org-cong.
A20       @2 830608.1-830608.6
A21       @1 2011
A23 01      @0 ENG
A25 01      @1 SPIE @2 Bellingham, Wash.
A26 01      @0 978-0-8194-8953-1
A43 01      @1 INIST @2 21760 @5 354000174766160070
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 6 ref.
A47 01  1    @0 12-0116066
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Proceedings of SPIE, the International Society for Optical Engineering
A66 01      @0 USA
C01 01    ENG  @0 Thulium-doped fibers suitable for core-pumped single-frequency lasers were fabricated by the modified chemical vapor deposition (MCVD) method. Refractive index profile, doping profile and spectral absorption was measured. High doping concentration of thulium ions should be achieved to allow for high absorption of light at a pump wavelength while the thulium ions clustering should be avoided to prevent the cooperative upconversion and quenching processes. The fabricated fibers featured pump absorption up to 70dB/m at a pump wavelength of 1611nm. The single-frequency master oscillator with a resonator composed of a pair of fiber Bragg gratings and a thulium-doped fiber was demonstrated with predominantly single ended operation. We achieved a slope efficiency of 22% and a threshold of 22mW at a lasing wavelength of 1944nm.
C02 01  3    @0 001B00A30C
C02 02  3    @0 001B40B79D
C02 03  3    @0 001B40B55W
C02 04  3    @0 001B40B81W
C03 01  3  FRE  @0 Conversion fréquence optique @5 01
C03 01  3  ENG  @0 Optical frequency conversion @5 01
C03 02  3  FRE  @0 Réseau diffraction @5 09
C03 02  3  ENG  @0 Diffraction gratings @5 09
C03 03  3  FRE  @0 Laser fibre @5 11
C03 03  3  ENG  @0 Fiber lasers @5 11
C03 04  X  FRE  @0 Laser monofréquence @5 12
C03 04  X  ENG  @0 Single frequency laser @5 12
C03 04  X  SPA  @0 Laser monofrecuencia @5 12
C03 05  3  FRE  @0 Résonateur cavité @5 13
C03 05  3  ENG  @0 Cavity resonators @5 13
C03 06  X  FRE  @0 Réseau dans fibre @5 14
C03 06  X  ENG  @0 Grating in fiber @5 14
C03 06  X  SPA  @0 Red en fibra @5 14
C03 07  3  FRE  @0 Réseau Bragg @5 15
C03 07  3  ENG  @0 Bragg gratings @5 15
C03 08  3  FRE  @0 Optique non linéaire @5 17
C03 08  3  ENG  @0 Nonlinear optics @5 17
C03 09  3  FRE  @0 Etude expérimentale @5 29
C03 09  3  ENG  @0 Experimental study @5 29
C03 10  3  FRE  @0 Dépôt chimique phase vapeur @5 30
C03 10  3  ENG  @0 CVD @5 30
C03 11  3  FRE  @0 Effet concentration @5 31
C03 11  3  ENG  @0 Quantity ratio @5 31
C03 12  3  FRE  @0 Indice réfraction @5 41
C03 12  3  ENG  @0 Refractive index @5 41
C03 13  3  FRE  @0 Fibre optique @5 47
C03 13  3  ENG  @0 Optical fibers @5 47
C03 14  3  FRE  @0 Thulium @2 NC @5 61
C03 14  3  ENG  @0 Thulium @2 NC @5 61
C03 15  3  FRE  @0 Alumine @5 62
C03 15  3  ENG  @0 Alumina @5 62
C03 16  3  FRE  @0 Profil dopage @5 63
C03 16  3  ENG  @0 Doping profiles @5 63
C03 17  3  FRE  @0 Ion thulium @2 NC @5 64
C03 17  3  ENG  @0 Thulium ions @2 NC @5 64
C03 18  3  FRE  @0 Système optique @5 65
C03 18  3  ENG  @0 Optical systems @5 65
C03 19  3  FRE  @0 0130C @4 INC @5 83
C03 20  3  FRE  @0 4279 @4 INC @5 84
C03 21  3  FRE  @0 4255W @4 INC @5 91
C03 22  3  FRE  @0 4281W @4 INC @5 92
C03 23  3  FRE  @0 4265K @4 INC @5 93
C03 24  3  FRE  @0 4279D @4 INC @5 94
C03 25  3  FRE  @0 Fibre dopée thulium @4 CD @5 96
C03 25  3  ENG  @0 Thulium-doped fibers @4 CD @5 96
C03 26  3  FRE  @0 Upconversion @4 CD @5 97
C03 26  3  ENG  @0 Upconversion @4 CD @5 97
N21       @1 086
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 International Conference on Photonics, Devices, and Systems @2 07 @3 Prague CZE @4 2011-08-24

Format Inist (serveur)

NO : PASCAL 12-0116066 INIST
ET : Preparation and characterization of highly thulium- and alumina-doped optical fibers for single-frequency fiber lasers
AU : HONZATKO (P.); DHAR (A.); KASLK (I.); PODRAZKY (O.); MATEJEC (V.); PETERKA (P.); BLANC (W.); DUSSARDIER (B.); TOMANEK (Pavel); SENDERAKOVA (Dagmar); PATA (Petr)
AF : Institute of Photonics and Electronic, Chaberska 57/182 51 Prague/Tchèque, République (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut.); Laboratoire de Physique die la Matière Condensée, CNRS UMR6622, Université de Nice-Sophia Antipolis, Parc Valrose/06108 NICE/France (7 aut., 8 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Proceedings of SPIE, the International Society for Optical Engineering; ISSN 0277-786X; Coden PSISDG; Etats-Unis; Da. 2011; Vol. 8306; 830608.1-830608.6; Bibl. 6 ref.
LA : Anglais
EA : Thulium-doped fibers suitable for core-pumped single-frequency lasers were fabricated by the modified chemical vapor deposition (MCVD) method. Refractive index profile, doping profile and spectral absorption was measured. High doping concentration of thulium ions should be achieved to allow for high absorption of light at a pump wavelength while the thulium ions clustering should be avoided to prevent the cooperative upconversion and quenching processes. The fabricated fibers featured pump absorption up to 70dB/m at a pump wavelength of 1611nm. The single-frequency master oscillator with a resonator composed of a pair of fiber Bragg gratings and a thulium-doped fiber was demonstrated with predominantly single ended operation. We achieved a slope efficiency of 22% and a threshold of 22mW at a lasing wavelength of 1944nm.
CC : 001B00A30C; 001B40B79D; 001B40B55W; 001B40B81W
FD : Conversion fréquence optique; Réseau diffraction; Laser fibre; Laser monofréquence; Résonateur cavité; Réseau dans fibre; Réseau Bragg; Optique non linéaire; Etude expérimentale; Dépôt chimique phase vapeur; Effet concentration; Indice réfraction; Fibre optique; Thulium; Alumine; Profil dopage; Ion thulium; Système optique; 0130C; 4279; 4255W; 4281W; 4265K; 4279D; Fibre dopée thulium; Upconversion
ED : Optical frequency conversion; Diffraction gratings; Fiber lasers; Single frequency laser; Cavity resonators; Grating in fiber; Bragg gratings; Nonlinear optics; Experimental study; CVD; Quantity ratio; Refractive index; Optical fibers; Thulium; Alumina; Doping profiles; Thulium ions; Optical systems; Thulium-doped fibers; Upconversion
SD : Laser monofrecuencia; Red en fibra
LO : INIST-21760.354000174766160070
ID : 12-0116066

Links to Exploration step

Pascal:12-0116066

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Preparation and characterization of highly thulium- and alumina-doped optical fibers for single-frequency fiber lasers</title>
<author>
<name sortKey="Honzatko, P" sort="Honzatko, P" uniqKey="Honzatko P" first="P." last="Honzatko">P. Honzatko</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Photonics and Electronic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dhar, A" sort="Dhar, A" uniqKey="Dhar A" first="A." last="Dhar">A. Dhar</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Photonics and Electronic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kaslk, I" sort="Kaslk, I" uniqKey="Kaslk I" first="I." last="Kaslk">I. Kaslk</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Photonics and Electronic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Podrazky, O" sort="Podrazky, O" uniqKey="Podrazky O" first="O." last="Podrazky">O. Podrazky</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Photonics and Electronic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Matejec, V" sort="Matejec, V" uniqKey="Matejec V" first="V." last="Matejec">V. Matejec</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Photonics and Electronic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Peterka, P" sort="Peterka, P" uniqKey="Peterka P" first="P." last="Peterka">P. Peterka</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Photonics and Electronic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Blanc, W" sort="Blanc, W" uniqKey="Blanc W" first="W." last="Blanc">W. Blanc</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Physique die la Matière Condensée, CNRS UMR6622, Université de Nice-Sophia Antipolis, Parc Valrose</s1>
<s2>06108 NICE</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dussardier, B" sort="Dussardier, B" uniqKey="Dussardier B" first="B." last="Dussardier">B. Dussardier</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Physique die la Matière Condensée, CNRS UMR6622, Université de Nice-Sophia Antipolis, Parc Valrose</s1>
<s2>06108 NICE</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0116066</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0116066 INIST</idno>
<idno type="RBID">Pascal:12-0116066</idno>
<idno type="wicri:Area/Pascal/Corpus">000172</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Preparation and characterization of highly thulium- and alumina-doped optical fibers for single-frequency fiber lasers</title>
<author>
<name sortKey="Honzatko, P" sort="Honzatko, P" uniqKey="Honzatko P" first="P." last="Honzatko">P. Honzatko</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Photonics and Electronic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dhar, A" sort="Dhar, A" uniqKey="Dhar A" first="A." last="Dhar">A. Dhar</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Photonics and Electronic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kaslk, I" sort="Kaslk, I" uniqKey="Kaslk I" first="I." last="Kaslk">I. Kaslk</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Photonics and Electronic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Podrazky, O" sort="Podrazky, O" uniqKey="Podrazky O" first="O." last="Podrazky">O. Podrazky</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Photonics and Electronic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Matejec, V" sort="Matejec, V" uniqKey="Matejec V" first="V." last="Matejec">V. Matejec</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Photonics and Electronic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Peterka, P" sort="Peterka, P" uniqKey="Peterka P" first="P." last="Peterka">P. Peterka</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institute of Photonics and Electronic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Blanc, W" sort="Blanc, W" uniqKey="Blanc W" first="W." last="Blanc">W. Blanc</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Physique die la Matière Condensée, CNRS UMR6622, Université de Nice-Sophia Antipolis, Parc Valrose</s1>
<s2>06108 NICE</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dussardier, B" sort="Dussardier, B" uniqKey="Dussardier B" first="B." last="Dussardier">B. Dussardier</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Physique die la Matière Condensée, CNRS UMR6622, Université de Nice-Sophia Antipolis, Parc Valrose</s1>
<s2>06108 NICE</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<idno type="ISSN">0277-786X</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<idno type="ISSN">0277-786X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alumina</term>
<term>Bragg gratings</term>
<term>CVD</term>
<term>Cavity resonators</term>
<term>Diffraction gratings</term>
<term>Doping profiles</term>
<term>Experimental study</term>
<term>Fiber lasers</term>
<term>Grating in fiber</term>
<term>Nonlinear optics</term>
<term>Optical fibers</term>
<term>Optical frequency conversion</term>
<term>Optical systems</term>
<term>Quantity ratio</term>
<term>Refractive index</term>
<term>Single frequency laser</term>
<term>Thulium</term>
<term>Thulium ions</term>
<term>Thulium-doped fibers</term>
<term>Upconversion</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Conversion fréquence optique</term>
<term>Réseau diffraction</term>
<term>Laser fibre</term>
<term>Laser monofréquence</term>
<term>Résonateur cavité</term>
<term>Réseau dans fibre</term>
<term>Réseau Bragg</term>
<term>Optique non linéaire</term>
<term>Etude expérimentale</term>
<term>Dépôt chimique phase vapeur</term>
<term>Effet concentration</term>
<term>Indice réfraction</term>
<term>Fibre optique</term>
<term>Thulium</term>
<term>Alumine</term>
<term>Profil dopage</term>
<term>Ion thulium</term>
<term>Système optique</term>
<term>0130C</term>
<term>4279</term>
<term>4255W</term>
<term>4281W</term>
<term>4265K</term>
<term>4279D</term>
<term>Fibre dopée thulium</term>
<term>Upconversion</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thulium-doped fibers suitable for core-pumped single-frequency lasers were fabricated by the modified chemical vapor deposition (MCVD) method. Refractive index profile, doping profile and spectral absorption was measured. High doping concentration of thulium ions should be achieved to allow for high absorption of light at a pump wavelength while the thulium ions clustering should be avoided to prevent the cooperative upconversion and quenching processes. The fabricated fibers featured pump absorption up to 70dB/m at a pump wavelength of 1611nm. The single-frequency master oscillator with a resonator composed of a pair of fiber Bragg gratings and a thulium-doped fiber was demonstrated with predominantly single ended operation. We achieved a slope efficiency of 22% and a threshold of 22mW at a lasing wavelength of 1944nm.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>8306</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Preparation and characterization of highly thulium- and alumina-doped optical fibers for single-frequency fiber lasers</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Photonics, devices, and systems V : 24-26 August 2011, Prague, Czech Republic</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>HONZATKO (P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DHAR (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KASLK (I.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PODRAZKY (O.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MATEJEC (V.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PETERKA (P.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BLANC (W.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>DUSSARDIER (B.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>TOMANEK (Pavel)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SENDERAKOVA (Dagmar)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>PATA (Petr)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institute of Photonics and Electronic, Chaberska 57</s1>
<s2>182 51 Prague</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire de Physique die la Matière Condensée, CNRS UMR6622, Université de Nice-Sophia Antipolis, Parc Valrose</s1>
<s2>06108 NICE</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>European Optical Society</s1>
<s3>INC</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="02" i2="1">
<s1>Czech and Slovak Society for Photonics</s1>
<s3>INC</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="03" i2="1">
<s1>Action M Agency</s1>
<s3>INC</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="04" i2="1">
<s1>Ceské vysoké uceni technické v Praze</s1>
<s3>INC</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="05" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>830608.1-830608.6</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-8953-1</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174766160070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>6 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0116066</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Thulium-doped fibers suitable for core-pumped single-frequency lasers were fabricated by the modified chemical vapor deposition (MCVD) method. Refractive index profile, doping profile and spectral absorption was measured. High doping concentration of thulium ions should be achieved to allow for high absorption of light at a pump wavelength while the thulium ions clustering should be avoided to prevent the cooperative upconversion and quenching processes. The fabricated fibers featured pump absorption up to 70dB/m at a pump wavelength of 1611nm. The single-frequency master oscillator with a resonator composed of a pair of fiber Bragg gratings and a thulium-doped fiber was demonstrated with predominantly single ended operation. We achieved a slope efficiency of 22% and a threshold of 22mW at a lasing wavelength of 1944nm.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B79D</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B40B55W</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B40B81W</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Conversion fréquence optique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Optical frequency conversion</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Réseau diffraction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Diffraction gratings</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Laser fibre</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Fiber lasers</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Laser monofréquence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Single frequency laser</s0>
<s5>12</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Laser monofrecuencia</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Résonateur cavité</s0>
<s5>13</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Cavity resonators</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Réseau dans fibre</s0>
<s5>14</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Grating in fiber</s0>
<s5>14</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Red en fibra</s0>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Réseau Bragg</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Bragg gratings</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Optique non linéaire</s0>
<s5>17</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Nonlinear optics</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>29</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>29</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Dépôt chimique phase vapeur</s0>
<s5>30</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>CVD</s0>
<s5>30</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Effet concentration</s0>
<s5>31</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Quantity ratio</s0>
<s5>31</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Indice réfraction</s0>
<s5>41</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Refractive index</s0>
<s5>41</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Fibre optique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Optical fibers</s0>
<s5>47</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Thulium</s0>
<s2>NC</s2>
<s5>61</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Thulium</s0>
<s2>NC</s2>
<s5>61</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Alumine</s0>
<s5>62</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Alumina</s0>
<s5>62</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Profil dopage</s0>
<s5>63</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Doping profiles</s0>
<s5>63</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Ion thulium</s0>
<s2>NC</s2>
<s5>64</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Thulium ions</s0>
<s2>NC</s2>
<s5>64</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Système optique</s0>
<s5>65</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Optical systems</s0>
<s5>65</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>4279</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>4255W</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>4281W</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>4265K</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>4279D</s0>
<s4>INC</s4>
<s5>94</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Fibre dopée thulium</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Thulium-doped fibers</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Upconversion</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Upconversion</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fN21>
<s1>086</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Conference on Photonics, Devices, and Systems</s1>
<s2>07</s2>
<s3>Prague CZE</s3>
<s4>2011-08-24</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 12-0116066 INIST</NO>
<ET>Preparation and characterization of highly thulium- and alumina-doped optical fibers for single-frequency fiber lasers</ET>
<AU>HONZATKO (P.); DHAR (A.); KASLK (I.); PODRAZKY (O.); MATEJEC (V.); PETERKA (P.); BLANC (W.); DUSSARDIER (B.); TOMANEK (Pavel); SENDERAKOVA (Dagmar); PATA (Petr)</AU>
<AF>Institute of Photonics and Electronic, Chaberska 57/182 51 Prague/Tchèque, République (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut.); Laboratoire de Physique die la Matière Condensée, CNRS UMR6622, Université de Nice-Sophia Antipolis, Parc Valrose/06108 NICE/France (7 aut., 8 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Proceedings of SPIE, the International Society for Optical Engineering; ISSN 0277-786X; Coden PSISDG; Etats-Unis; Da. 2011; Vol. 8306; 830608.1-830608.6; Bibl. 6 ref.</SO>
<LA>Anglais</LA>
<EA>Thulium-doped fibers suitable for core-pumped single-frequency lasers were fabricated by the modified chemical vapor deposition (MCVD) method. Refractive index profile, doping profile and spectral absorption was measured. High doping concentration of thulium ions should be achieved to allow for high absorption of light at a pump wavelength while the thulium ions clustering should be avoided to prevent the cooperative upconversion and quenching processes. The fabricated fibers featured pump absorption up to 70dB/m at a pump wavelength of 1611nm. The single-frequency master oscillator with a resonator composed of a pair of fiber Bragg gratings and a thulium-doped fiber was demonstrated with predominantly single ended operation. We achieved a slope efficiency of 22% and a threshold of 22mW at a lasing wavelength of 1944nm.</EA>
<CC>001B00A30C; 001B40B79D; 001B40B55W; 001B40B81W</CC>
<FD>Conversion fréquence optique; Réseau diffraction; Laser fibre; Laser monofréquence; Résonateur cavité; Réseau dans fibre; Réseau Bragg; Optique non linéaire; Etude expérimentale; Dépôt chimique phase vapeur; Effet concentration; Indice réfraction; Fibre optique; Thulium; Alumine; Profil dopage; Ion thulium; Système optique; 0130C; 4279; 4255W; 4281W; 4265K; 4279D; Fibre dopée thulium; Upconversion</FD>
<ED>Optical frequency conversion; Diffraction gratings; Fiber lasers; Single frequency laser; Cavity resonators; Grating in fiber; Bragg gratings; Nonlinear optics; Experimental study; CVD; Quantity ratio; Refractive index; Optical fibers; Thulium; Alumina; Doping profiles; Thulium ions; Optical systems; Thulium-doped fibers; Upconversion</ED>
<SD>Laser monofrecuencia; Red en fibra</SD>
<LO>INIST-21760.354000174766160070</LO>
<ID>12-0116066</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000172 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Corpus/biblio.hfd -nk 000172 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0116066
   |texte=   Preparation and characterization of highly thulium- and alumina-doped optical fibers for single-frequency fiber lasers
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024