Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Low temperature radio-frequency transverse susceptibility measurements using a CMOS oscillator circuit

Identifieur interne : 000156 ( Pascal/Corpus ); précédent : 000155; suivant : 000157

Low temperature radio-frequency transverse susceptibility measurements using a CMOS oscillator circuit

Auteurs : A. I. Figueroa ; J. Bartolome ; J. M. García Del Pozo ; A. Arauzo ; E. Guerrero ; P. Tellez ; F. Bartolome ; L. M. Garia

Source :

RBID : Pascal:12-0219396

Descripteurs français

English descriptors

Abstract

A transverse susceptibility (TS) measurement system based on a simple inverter CMOS cell oscillator cross-coupled to a LC tank is presented. The system has been implemented to operate at a Quantum Design Physical Properties Measurement System (PPMS). We introduce several improvements with respect to similar currently operating TS measurement equipments. The electronics have been redesigned to use CMOS transistors as active devices, which simplifies the circuit design and enlarge the tuning range, thus making the proposed electronic block more feasible, predictable, and precise. Additionally, we propose a newly designed sample holder, which facilitates the procedure to change a sample and improves reproducibility of the circuit. Our design minimizes the thermal leak of the measuring probe by one order of magnitude, allowing to measure from 1.8 K in standard PPMS systems, thanks to the use of a low temperature beryllium-copper coaxial cable instead of the conventional RG402 Cu coaxial cable employed in the insert for the PPMS in similar systems. The data acquisition method is also simplified, so that the measuring sequences are implemented directly in the PPMS controller computer by programming them in the Quantum Design MultiVu software that controls the PPMS. We present the test measurements performed on the system without sample to study the background signal and stability of the circuit. Measurements on a Gd2O3 calibrating sample yield to the estimation of the system sensitivity, which is found to be on the order of 10-6 emu. Finally, measurements on a TmCo2 Laves phase sample with a ferrimagnetic transition temperature around 4 K are described, demonstrating that the developed system is well suited to explore interesting magnetic phenomena at this temperature scale.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0304-8853
A02 01      @0 JMMMDC
A03   1    @0 J. magn. magn. mater.
A05       @2 324
A06       @2 17
A08 01  1  ENG  @1 Low temperature radio-frequency transverse susceptibility measurements using a CMOS oscillator circuit
A11 01  1    @1 FIGUEROA (A. I.)
A11 02  1    @1 BARTOLOME (J.)
A11 03  1    @1 DEL POZO (J. M. García)
A11 04  1    @1 ARAUZO (A.)
A11 05  1    @1 GUERRERO (E.)
A11 06  1    @1 TELLEZ (P.)
A11 07  1    @1 BARTOLOME (F.)
A11 08  1    @1 GARIA (L. M.)
A14 01      @1 Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada @2 50009 Zaragoza @3 ESP @Z 1 aut. @Z 2 aut. @Z 7 aut. @Z 8 aut.
A14 02      @1 Servicio de Instrumentación Electrónica, Universidad de Zaragoza @2 50009 Zaragoza @3 ESP @Z 3 aut. @Z 6 aut.
A14 03      @1 Servicio de Medidas Fisicas, Universidad de Zaragoza @2 50009 Zaragoza @3 ESP @Z 4 aut. @Z 5 aut.
A20       @1 2669-2675
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 17230 @5 354000507710060140
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 27 ref.
A47 01  1    @0 12-0219396
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of magnetism and magnetic materials
A66 01      @0 NLD
C01 01    ENG  @0 A transverse susceptibility (TS) measurement system based on a simple inverter CMOS cell oscillator cross-coupled to a LC tank is presented. The system has been implemented to operate at a Quantum Design Physical Properties Measurement System (PPMS). We introduce several improvements with respect to similar currently operating TS measurement equipments. The electronics have been redesigned to use CMOS transistors as active devices, which simplifies the circuit design and enlarge the tuning range, thus making the proposed electronic block more feasible, predictable, and precise. Additionally, we propose a newly designed sample holder, which facilitates the procedure to change a sample and improves reproducibility of the circuit. Our design minimizes the thermal leak of the measuring probe by one order of magnitude, allowing to measure from 1.8 K in standard PPMS systems, thanks to the use of a low temperature beryllium-copper coaxial cable instead of the conventional RG402 Cu coaxial cable employed in the insert for the PPMS in similar systems. The data acquisition method is also simplified, so that the measuring sequences are implemented directly in the PPMS controller computer by programming them in the Quantum Design MultiVu software that controls the PPMS. We present the test measurements performed on the system without sample to study the background signal and stability of the circuit. Measurements on a Gd2O3 calibrating sample yield to the estimation of the system sensitivity, which is found to be on the order of 10-6 emu. Finally, measurements on a TmCo2 Laves phase sample with a ferrimagnetic transition temperature around 4 K are described, demonstrating that the developed system is well suited to explore interesting magnetic phenomena at this temperature scale.
C02 01  3    @0 001B00G57P
C03 01  X  FRE  @0 Radiofréquence @5 02
C03 01  X  ENG  @0 Radiofrequency @5 02
C03 01  X  SPA  @0 Radiofrecuencia @5 02
C03 02  X  FRE  @0 Technologie MOS complémentaire @5 03
C03 02  X  ENG  @0 Complementary MOS technology @5 03
C03 02  X  SPA  @0 Tecnología MOS complementario @5 03
C03 03  3  FRE  @0 Méthode mesure @5 04
C03 03  3  ENG  @0 Measuring methods @5 04
C03 04  3  FRE  @0 Susceptibilité magnétique @5 05
C03 04  3  ENG  @0 Magnetic susceptibility @5 05
C03 05  3  FRE  @0 Conception @5 11
C03 05  3  ENG  @0 Design @5 11
C03 06  3  FRE  @0 Oscillateur hyperfréquence @5 12
C03 06  3  ENG  @0 Microwave oscillators @5 12
C03 07  3  FRE  @0 Etalonnage @5 13
C03 07  3  ENG  @0 Calibration @5 13
C03 08  3  FRE  @0 Thulium alliage @5 15
C03 08  3  ENG  @0 Thulium alloys @5 15
C03 09  3  FRE  @0 Cobalt alliage @5 16
C03 09  3  ENG  @0 Cobalt alloys @5 16
C03 10  3  FRE  @0 Matériau ferrimagnétique @5 18
C03 10  3  ENG  @0 Ferrimagnetic materials @5 18
C03 11  3  FRE  @0 Lanthanide alliage @5 48
C03 11  3  ENG  @0 Rare earth alloys @5 48
C03 12  3  FRE  @0 Métal transition alliage @5 49
C03 12  3  ENG  @0 Transition element alloys @5 49
N21       @1 170

Format Inist (serveur)

NO : PASCAL 12-0219396 INIST
ET : Low temperature radio-frequency transverse susceptibility measurements using a CMOS oscillator circuit
AU : FIGUEROA (A. I.); BARTOLOME (J.); DEL POZO (J. M. García); ARAUZO (A.); GUERRERO (E.); TELLEZ (P.); BARTOLOME (F.); GARIA (L. M.)
AF : Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada/50009 Zaragoza/Espagne (1 aut., 2 aut., 7 aut., 8 aut.); Servicio de Instrumentación Electrónica, Universidad de Zaragoza/50009 Zaragoza/Espagne (3 aut., 6 aut.); Servicio de Medidas Fisicas, Universidad de Zaragoza/50009 Zaragoza/Espagne (4 aut., 5 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of magnetism and magnetic materials; ISSN 0304-8853; Coden JMMMDC; Pays-Bas; Da. 2012; Vol. 324; No. 17; Pp. 2669-2675; Bibl. 27 ref.
LA : Anglais
EA : A transverse susceptibility (TS) measurement system based on a simple inverter CMOS cell oscillator cross-coupled to a LC tank is presented. The system has been implemented to operate at a Quantum Design Physical Properties Measurement System (PPMS). We introduce several improvements with respect to similar currently operating TS measurement equipments. The electronics have been redesigned to use CMOS transistors as active devices, which simplifies the circuit design and enlarge the tuning range, thus making the proposed electronic block more feasible, predictable, and precise. Additionally, we propose a newly designed sample holder, which facilitates the procedure to change a sample and improves reproducibility of the circuit. Our design minimizes the thermal leak of the measuring probe by one order of magnitude, allowing to measure from 1.8 K in standard PPMS systems, thanks to the use of a low temperature beryllium-copper coaxial cable instead of the conventional RG402 Cu coaxial cable employed in the insert for the PPMS in similar systems. The data acquisition method is also simplified, so that the measuring sequences are implemented directly in the PPMS controller computer by programming them in the Quantum Design MultiVu software that controls the PPMS. We present the test measurements performed on the system without sample to study the background signal and stability of the circuit. Measurements on a Gd2O3 calibrating sample yield to the estimation of the system sensitivity, which is found to be on the order of 10-6 emu. Finally, measurements on a TmCo2 Laves phase sample with a ferrimagnetic transition temperature around 4 K are described, demonstrating that the developed system is well suited to explore interesting magnetic phenomena at this temperature scale.
CC : 001B00G57P
FD : Radiofréquence; Technologie MOS complémentaire; Méthode mesure; Susceptibilité magnétique; Conception; Oscillateur hyperfréquence; Etalonnage; Thulium alliage; Cobalt alliage; Matériau ferrimagnétique; Lanthanide alliage; Métal transition alliage
ED : Radiofrequency; Complementary MOS technology; Measuring methods; Magnetic susceptibility; Design; Microwave oscillators; Calibration; Thulium alloys; Cobalt alloys; Ferrimagnetic materials; Rare earth alloys; Transition element alloys
SD : Radiofrecuencia; Tecnología MOS complementario
LO : INIST-17230.354000507710060140
ID : 12-0219396

Links to Exploration step

Pascal:12-0219396

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Low temperature radio-frequency transverse susceptibility measurements using a CMOS oscillator circuit</title>
<author>
<name sortKey="Figueroa, A I" sort="Figueroa, A I" uniqKey="Figueroa A" first="A. I." last="Figueroa">A. I. Figueroa</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bartolome, J" sort="Bartolome, J" uniqKey="Bartolome J" first="J." last="Bartolome">J. Bartolome</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Del Pozo, J M Garcia" sort="Del Pozo, J M Garcia" uniqKey="Del Pozo J" first="J. M. García" last="Del Pozo">J. M. García Del Pozo</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Servicio de Instrumentación Electrónica, Universidad de Zaragoza</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Arauzo, A" sort="Arauzo, A" uniqKey="Arauzo A" first="A." last="Arauzo">A. Arauzo</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Servicio de Medidas Fisicas, Universidad de Zaragoza</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Guerrero, E" sort="Guerrero, E" uniqKey="Guerrero E" first="E." last="Guerrero">E. Guerrero</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Servicio de Medidas Fisicas, Universidad de Zaragoza</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tellez, P" sort="Tellez, P" uniqKey="Tellez P" first="P." last="Tellez">P. Tellez</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Servicio de Instrumentación Electrónica, Universidad de Zaragoza</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bartolome, F" sort="Bartolome, F" uniqKey="Bartolome F" first="F." last="Bartolome">F. Bartolome</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Garia, L M" sort="Garia, L M" uniqKey="Garia L" first="L. M." last="Garia">L. M. Garia</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0219396</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0219396 INIST</idno>
<idno type="RBID">Pascal:12-0219396</idno>
<idno type="wicri:Area/Pascal/Corpus">000156</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Low temperature radio-frequency transverse susceptibility measurements using a CMOS oscillator circuit</title>
<author>
<name sortKey="Figueroa, A I" sort="Figueroa, A I" uniqKey="Figueroa A" first="A. I." last="Figueroa">A. I. Figueroa</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bartolome, J" sort="Bartolome, J" uniqKey="Bartolome J" first="J." last="Bartolome">J. Bartolome</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Del Pozo, J M Garcia" sort="Del Pozo, J M Garcia" uniqKey="Del Pozo J" first="J. M. García" last="Del Pozo">J. M. García Del Pozo</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Servicio de Instrumentación Electrónica, Universidad de Zaragoza</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Arauzo, A" sort="Arauzo, A" uniqKey="Arauzo A" first="A." last="Arauzo">A. Arauzo</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Servicio de Medidas Fisicas, Universidad de Zaragoza</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Guerrero, E" sort="Guerrero, E" uniqKey="Guerrero E" first="E." last="Guerrero">E. Guerrero</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Servicio de Medidas Fisicas, Universidad de Zaragoza</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tellez, P" sort="Tellez, P" uniqKey="Tellez P" first="P." last="Tellez">P. Tellez</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Servicio de Instrumentación Electrónica, Universidad de Zaragoza</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bartolome, F" sort="Bartolome, F" uniqKey="Bartolome F" first="F." last="Bartolome">F. Bartolome</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Garia, L M" sort="Garia, L M" uniqKey="Garia L" first="L. M." last="Garia">L. M. Garia</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of magnetism and magnetic materials</title>
<title level="j" type="abbreviated">J. magn. magn. mater.</title>
<idno type="ISSN">0304-8853</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of magnetism and magnetic materials</title>
<title level="j" type="abbreviated">J. magn. magn. mater.</title>
<idno type="ISSN">0304-8853</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Calibration</term>
<term>Cobalt alloys</term>
<term>Complementary MOS technology</term>
<term>Design</term>
<term>Ferrimagnetic materials</term>
<term>Magnetic susceptibility</term>
<term>Measuring methods</term>
<term>Microwave oscillators</term>
<term>Radiofrequency</term>
<term>Rare earth alloys</term>
<term>Thulium alloys</term>
<term>Transition element alloys</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Radiofréquence</term>
<term>Technologie MOS complémentaire</term>
<term>Méthode mesure</term>
<term>Susceptibilité magnétique</term>
<term>Conception</term>
<term>Oscillateur hyperfréquence</term>
<term>Etalonnage</term>
<term>Thulium alliage</term>
<term>Cobalt alliage</term>
<term>Matériau ferrimagnétique</term>
<term>Lanthanide alliage</term>
<term>Métal transition alliage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A transverse susceptibility (TS) measurement system based on a simple inverter CMOS cell oscillator cross-coupled to a LC tank is presented. The system has been implemented to operate at a Quantum Design Physical Properties Measurement System (PPMS). We introduce several improvements with respect to similar currently operating TS measurement equipments. The electronics have been redesigned to use CMOS transistors as active devices, which simplifies the circuit design and enlarge the tuning range, thus making the proposed electronic block more feasible, predictable, and precise. Additionally, we propose a newly designed sample holder, which facilitates the procedure to change a sample and improves reproducibility of the circuit. Our design minimizes the thermal leak of the measuring probe by one order of magnitude, allowing to measure from 1.8 K in standard PPMS systems, thanks to the use of a low temperature beryllium-copper coaxial cable instead of the conventional RG402 Cu coaxial cable employed in the insert for the PPMS in similar systems. The data acquisition method is also simplified, so that the measuring sequences are implemented directly in the PPMS controller computer by programming them in the Quantum Design MultiVu software that controls the PPMS. We present the test measurements performed on the system without sample to study the background signal and stability of the circuit. Measurements on a Gd
<sub>2</sub>
O
<sub>3</sub>
calibrating sample yield to the estimation of the system sensitivity, which is found to be on the order of 10
<sup>-6</sup>
emu. Finally, measurements on a TmCo
<sub>2</sub>
Laves phase sample with a ferrimagnetic transition temperature around 4 K are described, demonstrating that the developed system is well suited to explore interesting magnetic phenomena at this temperature scale.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0304-8853</s0>
</fA01>
<fA02 i1="01">
<s0>JMMMDC</s0>
</fA02>
<fA03 i2="1">
<s0>J. magn. magn. mater.</s0>
</fA03>
<fA05>
<s2>324</s2>
</fA05>
<fA06>
<s2>17</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Low temperature radio-frequency transverse susceptibility measurements using a CMOS oscillator circuit</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FIGUEROA (A. I.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BARTOLOME (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DEL POZO (J. M. García)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ARAUZO (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GUERRERO (E.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>TELLEZ (P.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BARTOLOME (F.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>GARIA (L. M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Servicio de Instrumentación Electrónica, Universidad de Zaragoza</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Servicio de Medidas Fisicas, Universidad de Zaragoza</s1>
<s2>50009 Zaragoza</s2>
<s3>ESP</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>2669-2675</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17230</s2>
<s5>354000507710060140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0219396</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of magnetism and magnetic materials</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A transverse susceptibility (TS) measurement system based on a simple inverter CMOS cell oscillator cross-coupled to a LC tank is presented. The system has been implemented to operate at a Quantum Design Physical Properties Measurement System (PPMS). We introduce several improvements with respect to similar currently operating TS measurement equipments. The electronics have been redesigned to use CMOS transistors as active devices, which simplifies the circuit design and enlarge the tuning range, thus making the proposed electronic block more feasible, predictable, and precise. Additionally, we propose a newly designed sample holder, which facilitates the procedure to change a sample and improves reproducibility of the circuit. Our design minimizes the thermal leak of the measuring probe by one order of magnitude, allowing to measure from 1.8 K in standard PPMS systems, thanks to the use of a low temperature beryllium-copper coaxial cable instead of the conventional RG402 Cu coaxial cable employed in the insert for the PPMS in similar systems. The data acquisition method is also simplified, so that the measuring sequences are implemented directly in the PPMS controller computer by programming them in the Quantum Design MultiVu software that controls the PPMS. We present the test measurements performed on the system without sample to study the background signal and stability of the circuit. Measurements on a Gd
<sub>2</sub>
O
<sub>3</sub>
calibrating sample yield to the estimation of the system sensitivity, which is found to be on the order of 10
<sup>-6</sup>
emu. Finally, measurements on a TmCo
<sub>2</sub>
Laves phase sample with a ferrimagnetic transition temperature around 4 K are described, demonstrating that the developed system is well suited to explore interesting magnetic phenomena at this temperature scale.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00G57P</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Radiofréquence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Radiofrequency</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Radiofrecuencia</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Technologie MOS complémentaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Complementary MOS technology</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Tecnología MOS complementario</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Méthode mesure</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Measuring methods</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Susceptibilité magnétique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Magnetic susceptibility</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Conception</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Design</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Oscillateur hyperfréquence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Microwave oscillators</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Etalonnage</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Calibration</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Thulium alliage</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Thulium alloys</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Cobalt alliage</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Cobalt alloys</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Matériau ferrimagnétique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Ferrimagnetic materials</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Lanthanide alliage</s0>
<s5>48</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Rare earth alloys</s0>
<s5>48</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Métal transition alliage</s0>
<s5>49</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Transition element alloys</s0>
<s5>49</s5>
</fC03>
<fN21>
<s1>170</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 12-0219396 INIST</NO>
<ET>Low temperature radio-frequency transverse susceptibility measurements using a CMOS oscillator circuit</ET>
<AU>FIGUEROA (A. I.); BARTOLOME (J.); DEL POZO (J. M. García); ARAUZO (A.); GUERRERO (E.); TELLEZ (P.); BARTOLOME (F.); GARIA (L. M.)</AU>
<AF>Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada/50009 Zaragoza/Espagne (1 aut., 2 aut., 7 aut., 8 aut.); Servicio de Instrumentación Electrónica, Universidad de Zaragoza/50009 Zaragoza/Espagne (3 aut., 6 aut.); Servicio de Medidas Fisicas, Universidad de Zaragoza/50009 Zaragoza/Espagne (4 aut., 5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of magnetism and magnetic materials; ISSN 0304-8853; Coden JMMMDC; Pays-Bas; Da. 2012; Vol. 324; No. 17; Pp. 2669-2675; Bibl. 27 ref.</SO>
<LA>Anglais</LA>
<EA>A transverse susceptibility (TS) measurement system based on a simple inverter CMOS cell oscillator cross-coupled to a LC tank is presented. The system has been implemented to operate at a Quantum Design Physical Properties Measurement System (PPMS). We introduce several improvements with respect to similar currently operating TS measurement equipments. The electronics have been redesigned to use CMOS transistors as active devices, which simplifies the circuit design and enlarge the tuning range, thus making the proposed electronic block more feasible, predictable, and precise. Additionally, we propose a newly designed sample holder, which facilitates the procedure to change a sample and improves reproducibility of the circuit. Our design minimizes the thermal leak of the measuring probe by one order of magnitude, allowing to measure from 1.8 K in standard PPMS systems, thanks to the use of a low temperature beryllium-copper coaxial cable instead of the conventional RG402 Cu coaxial cable employed in the insert for the PPMS in similar systems. The data acquisition method is also simplified, so that the measuring sequences are implemented directly in the PPMS controller computer by programming them in the Quantum Design MultiVu software that controls the PPMS. We present the test measurements performed on the system without sample to study the background signal and stability of the circuit. Measurements on a Gd
<sub>2</sub>
O
<sub>3</sub>
calibrating sample yield to the estimation of the system sensitivity, which is found to be on the order of 10
<sup>-6</sup>
emu. Finally, measurements on a TmCo
<sub>2</sub>
Laves phase sample with a ferrimagnetic transition temperature around 4 K are described, demonstrating that the developed system is well suited to explore interesting magnetic phenomena at this temperature scale.</EA>
<CC>001B00G57P</CC>
<FD>Radiofréquence; Technologie MOS complémentaire; Méthode mesure; Susceptibilité magnétique; Conception; Oscillateur hyperfréquence; Etalonnage; Thulium alliage; Cobalt alliage; Matériau ferrimagnétique; Lanthanide alliage; Métal transition alliage</FD>
<ED>Radiofrequency; Complementary MOS technology; Measuring methods; Magnetic susceptibility; Design; Microwave oscillators; Calibration; Thulium alloys; Cobalt alloys; Ferrimagnetic materials; Rare earth alloys; Transition element alloys</ED>
<SD>Radiofrecuencia; Tecnología MOS complementario</SD>
<LO>INIST-17230.354000507710060140</LO>
<ID>12-0219396</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000156 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Corpus/biblio.hfd -nk 000156 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0219396
   |texte=   Low temperature radio-frequency transverse susceptibility measurements using a CMOS oscillator circuit
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024