Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative analysis of energy transfer processes in Thulium-Bismuth germanate co-doped fiber amplifier

Identifieur interne : 000096 ( Pascal/Corpus ); précédent : 000095; suivant : 000097

Quantitative analysis of energy transfer processes in Thulium-Bismuth germanate co-doped fiber amplifier

Auteurs : A. Zarifi ; S. D. Emami ; F. Z. Zahedi ; H. Fatehi ; S. E. Mirnia ; H. Ahmad ; S. W. Harun

Source :

RBID : Pascal:13-0121464

Descripteurs français

English descriptors

Abstract

Energy transfer processes in Thulium-Bismuth co-doped germanate fiber amplifier at 1800 nm region have been studied quantitatively in this work. Energy transfer models are utilized in order to investigate the effect of dopants concentration on energy transfer parameters. A series of non-linear rate equations were derived using the energy transfer parameters and solved by means of a semi-analytical method. A general model of optical fiber amplifier in conjunction with rate equations is employed to simulate Thulium and Bismuth ions population distribution along the fiber. Thulium and Bismuth concentrations are noted as critical factors that control the output power and saturation length. The optimum values of Thulium and Bismuth concentration which result in maximum gain at 1800 nm are 0.5 wt.% and 2 wt.% respectively.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0925-3467
A03   1    @0 Opt. mater. : (Amst.)
A05       @2 35
A06       @2 2
A08 01  1  ENG  @1 Quantitative analysis of energy transfer processes in Thulium-Bismuth germanate co-doped fiber amplifier
A11 01  1    @1 ZARIFI (A.)
A11 02  1    @1 EMAMI (S. D.)
A11 03  1    @1 ZAHEDI (F. Z.)
A11 04  1    @1 FATEHI (H.)
A11 05  1    @1 MIRNIA (S. E.)
A11 06  1    @1 AHMAD (H.)
A11 07  1    @1 HARUN (S. W.)
A14 01      @1 Department of Electrical Engineering, Faculty of Engineering, University of Malaya @2 50603 Kuala Lumpur @3 MYS @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 7 aut.
A14 02      @1 Photonics Research Center, Department of Physics, University of Malaya @2 50603 Kuala Lumpur @3 MYS @Z 6 aut.
A20       @1 231-239
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 22598 @5 354000173213410240
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 17 ref.
A47 01  1    @0 13-0121464
A60       @1 P
A61       @0 A
A64 01  1    @0 Optical materials : (Amsterdam)
A66 01      @0 GBR
C01 01    ENG  @0 Energy transfer processes in Thulium-Bismuth co-doped germanate fiber amplifier at 1800 nm region have been studied quantitatively in this work. Energy transfer models are utilized in order to investigate the effect of dopants concentration on energy transfer parameters. A series of non-linear rate equations were derived using the energy transfer parameters and solved by means of a semi-analytical method. A general model of optical fiber amplifier in conjunction with rate equations is employed to simulate Thulium and Bismuth ions population distribution along the fiber. Thulium and Bismuth concentrations are noted as critical factors that control the output power and saturation length. The optimum values of Thulium and Bismuth concentration which result in maximum gain at 1800 nm are 0.5 wt.% and 2 wt.% respectively.
C02 01  3    @0 001B40B60D
C02 02  3    @0 001B40B70C
C03 01  X  FRE  @0 Transfert énergie excitation @5 03
C03 01  X  ENG  @0 Excitation energy transfer @5 03
C03 01  X  SPA  @0 Transferencia energía excitación @5 03
C03 02  X  FRE  @0 Amplificateur optique @5 09
C03 02  X  ENG  @0 Optical amplifier @5 09
C03 02  X  SPA  @0 Amplificador óptico @5 09
C03 03  3  FRE  @0 Amplificateur fibre optique @5 11
C03 03  3  ENG  @0 Optical fiber amplifiers @5 11
C03 04  3  FRE  @0 Etude théorique @5 21
C03 04  3  ENG  @0 Theoretical study @5 21
C03 05  X  FRE  @0 Méthode analytique @5 23
C03 05  X  ENG  @0 Analytical method @5 23
C03 05  X  SPA  @0 Método analítico @5 23
C03 06  3  FRE  @0 Effet concentration @5 30
C03 06  3  ENG  @0 Quantity ratio @5 30
C03 07  3  FRE  @0 Rayonnement IR @5 37
C03 07  3  ENG  @0 Infrared radiation @5 37
C03 08  X  FRE  @0 Puissance sortie @5 41
C03 08  X  ENG  @0 Output power @5 41
C03 08  X  SPA  @0 Potencia salida @5 41
C03 09  3  FRE  @0 Matériau dopé @5 50
C03 09  3  ENG  @0 Doped materials @5 50
C03 10  X  FRE  @0 Codopage @5 57
C03 10  X  ENG  @0 Codoping @5 57
C03 10  X  SPA  @0 Codrogado @5 57
C03 11  3  FRE  @0 Addition bismuth @5 58
C03 11  3  ENG  @0 Bismuth additions @5 58
C03 12  3  FRE  @0 Verre germanate @5 59
C03 12  3  ENG  @0 Germanate glasses @5 59
C03 13  3  FRE  @0 Matériau optique @5 60
C03 13  3  ENG  @0 Optical materials @5 60
C03 14  3  FRE  @0 Addition thulium @5 61
C03 14  3  ENG  @0 Thulium additions @5 61
C03 15  3  FRE  @0 Germanate de bismuth @2 NK @5 62
C03 15  3  ENG  @0 Bismuth germanates @2 NK @5 62
C03 16  3  FRE  @0 4270C @4 INC @5 83
C03 17  3  FRE  @0 4260D @4 INC @5 91
C03 18  3  FRE  @0 Equation bilan transfert énergie @4 CD @5 96
C03 18  3  ENG  @0 Rate equation @4 CD @5 96
N21       @1 098

Format Inist (serveur)

NO : PASCAL 13-0121464 INIST
ET : Quantitative analysis of energy transfer processes in Thulium-Bismuth germanate co-doped fiber amplifier
AU : ZARIFI (A.); EMAMI (S. D.); ZAHEDI (F. Z.); FATEHI (H.); MIRNIA (S. E.); AHMAD (H.); HARUN (S. W.)
AF : Department of Electrical Engineering, Faculty of Engineering, University of Malaya/50603 Kuala Lumpur/Malaisie (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 7 aut.); Photonics Research Center, Department of Physics, University of Malaya/50603 Kuala Lumpur/Malaisie (6 aut.)
DT : Publication en série; Niveau analytique
SO : Optical materials : (Amsterdam); ISSN 0925-3467; Royaume-Uni; Da. 2012; Vol. 35; No. 2; Pp. 231-239; Bibl. 17 ref.
LA : Anglais
EA : Energy transfer processes in Thulium-Bismuth co-doped germanate fiber amplifier at 1800 nm region have been studied quantitatively in this work. Energy transfer models are utilized in order to investigate the effect of dopants concentration on energy transfer parameters. A series of non-linear rate equations were derived using the energy transfer parameters and solved by means of a semi-analytical method. A general model of optical fiber amplifier in conjunction with rate equations is employed to simulate Thulium and Bismuth ions population distribution along the fiber. Thulium and Bismuth concentrations are noted as critical factors that control the output power and saturation length. The optimum values of Thulium and Bismuth concentration which result in maximum gain at 1800 nm are 0.5 wt.% and 2 wt.% respectively.
CC : 001B40B60D; 001B40B70C
FD : Transfert énergie excitation; Amplificateur optique; Amplificateur fibre optique; Etude théorique; Méthode analytique; Effet concentration; Rayonnement IR; Puissance sortie; Matériau dopé; Codopage; Addition bismuth; Verre germanate; Matériau optique; Addition thulium; Germanate de bismuth; 4270C; 4260D; Equation bilan transfert énergie
ED : Excitation energy transfer; Optical amplifier; Optical fiber amplifiers; Theoretical study; Analytical method; Quantity ratio; Infrared radiation; Output power; Doped materials; Codoping; Bismuth additions; Germanate glasses; Optical materials; Thulium additions; Bismuth germanates; Rate equation
SD : Transferencia energía excitación; Amplificador óptico; Método analítico; Potencia salida; Codrogado
LO : INIST-22598.354000173213410240
ID : 13-0121464

Links to Exploration step

Pascal:13-0121464

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Quantitative analysis of energy transfer processes in Thulium-Bismuth germanate co-doped fiber amplifier</title>
<author>
<name sortKey="Zarifi, A" sort="Zarifi, A" uniqKey="Zarifi A" first="A." last="Zarifi">A. Zarifi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Faculty of Engineering, University of Malaya</s1>
<s2>50603 Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emami, S D" sort="Emami, S D" uniqKey="Emami S" first="S. D." last="Emami">S. D. Emami</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Faculty of Engineering, University of Malaya</s1>
<s2>50603 Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zahedi, F Z" sort="Zahedi, F Z" uniqKey="Zahedi F" first="F. Z." last="Zahedi">F. Z. Zahedi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Faculty of Engineering, University of Malaya</s1>
<s2>50603 Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fatehi, H" sort="Fatehi, H" uniqKey="Fatehi H" first="H." last="Fatehi">H. Fatehi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Faculty of Engineering, University of Malaya</s1>
<s2>50603 Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mirnia, S E" sort="Mirnia, S E" uniqKey="Mirnia S" first="S. E." last="Mirnia">S. E. Mirnia</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Faculty of Engineering, University of Malaya</s1>
<s2>50603 Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ahmad, H" sort="Ahmad, H" uniqKey="Ahmad H" first="H." last="Ahmad">H. Ahmad</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Photonics Research Center, Department of Physics, University of Malaya</s1>
<s2>50603 Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Harun, S W" sort="Harun, S W" uniqKey="Harun S" first="S. W." last="Harun">S. W. Harun</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Faculty of Engineering, University of Malaya</s1>
<s2>50603 Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0121464</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0121464 INIST</idno>
<idno type="RBID">Pascal:13-0121464</idno>
<idno type="wicri:Area/Pascal/Corpus">000096</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Quantitative analysis of energy transfer processes in Thulium-Bismuth germanate co-doped fiber amplifier</title>
<author>
<name sortKey="Zarifi, A" sort="Zarifi, A" uniqKey="Zarifi A" first="A." last="Zarifi">A. Zarifi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Faculty of Engineering, University of Malaya</s1>
<s2>50603 Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emami, S D" sort="Emami, S D" uniqKey="Emami S" first="S. D." last="Emami">S. D. Emami</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Faculty of Engineering, University of Malaya</s1>
<s2>50603 Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zahedi, F Z" sort="Zahedi, F Z" uniqKey="Zahedi F" first="F. Z." last="Zahedi">F. Z. Zahedi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Faculty of Engineering, University of Malaya</s1>
<s2>50603 Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fatehi, H" sort="Fatehi, H" uniqKey="Fatehi H" first="H." last="Fatehi">H. Fatehi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Faculty of Engineering, University of Malaya</s1>
<s2>50603 Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mirnia, S E" sort="Mirnia, S E" uniqKey="Mirnia S" first="S. E." last="Mirnia">S. E. Mirnia</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Faculty of Engineering, University of Malaya</s1>
<s2>50603 Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ahmad, H" sort="Ahmad, H" uniqKey="Ahmad H" first="H." last="Ahmad">H. Ahmad</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Photonics Research Center, Department of Physics, University of Malaya</s1>
<s2>50603 Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Harun, S W" sort="Harun, S W" uniqKey="Harun S" first="S. W." last="Harun">S. W. Harun</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, Faculty of Engineering, University of Malaya</s1>
<s2>50603 Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Optical materials : (Amsterdam)</title>
<title level="j" type="abbreviated">Opt. mater. : (Amst.)</title>
<idno type="ISSN">0925-3467</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Optical materials : (Amsterdam)</title>
<title level="j" type="abbreviated">Opt. mater. : (Amst.)</title>
<idno type="ISSN">0925-3467</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analytical method</term>
<term>Bismuth additions</term>
<term>Bismuth germanates</term>
<term>Codoping</term>
<term>Doped materials</term>
<term>Excitation energy transfer</term>
<term>Germanate glasses</term>
<term>Infrared radiation</term>
<term>Optical amplifier</term>
<term>Optical fiber amplifiers</term>
<term>Optical materials</term>
<term>Output power</term>
<term>Quantity ratio</term>
<term>Rate equation</term>
<term>Theoretical study</term>
<term>Thulium additions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transfert énergie excitation</term>
<term>Amplificateur optique</term>
<term>Amplificateur fibre optique</term>
<term>Etude théorique</term>
<term>Méthode analytique</term>
<term>Effet concentration</term>
<term>Rayonnement IR</term>
<term>Puissance sortie</term>
<term>Matériau dopé</term>
<term>Codopage</term>
<term>Addition bismuth</term>
<term>Verre germanate</term>
<term>Matériau optique</term>
<term>Addition thulium</term>
<term>Germanate de bismuth</term>
<term>4270C</term>
<term>4260D</term>
<term>Equation bilan transfert énergie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Energy transfer processes in Thulium-Bismuth co-doped germanate fiber amplifier at 1800 nm region have been studied quantitatively in this work. Energy transfer models are utilized in order to investigate the effect of dopants concentration on energy transfer parameters. A series of non-linear rate equations were derived using the energy transfer parameters and solved by means of a semi-analytical method. A general model of optical fiber amplifier in conjunction with rate equations is employed to simulate Thulium and Bismuth ions population distribution along the fiber. Thulium and Bismuth concentrations are noted as critical factors that control the output power and saturation length. The optimum values of Thulium and Bismuth concentration which result in maximum gain at 1800 nm are 0.5 wt.% and 2 wt.% respectively.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-3467</s0>
</fA01>
<fA03 i2="1">
<s0>Opt. mater. : (Amst.)</s0>
</fA03>
<fA05>
<s2>35</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Quantitative analysis of energy transfer processes in Thulium-Bismuth germanate co-doped fiber amplifier</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZARIFI (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>EMAMI (S. D.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZAHEDI (F. Z.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FATEHI (H.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MIRNIA (S. E.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>AHMAD (H.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>HARUN (S. W.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical Engineering, Faculty of Engineering, University of Malaya</s1>
<s2>50603 Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Photonics Research Center, Department of Physics, University of Malaya</s1>
<s2>50603 Kuala Lumpur</s2>
<s3>MYS</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>231-239</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22598</s2>
<s5>354000173213410240</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0121464</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Optical materials : (Amsterdam)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Energy transfer processes in Thulium-Bismuth co-doped germanate fiber amplifier at 1800 nm region have been studied quantitatively in this work. Energy transfer models are utilized in order to investigate the effect of dopants concentration on energy transfer parameters. A series of non-linear rate equations were derived using the energy transfer parameters and solved by means of a semi-analytical method. A general model of optical fiber amplifier in conjunction with rate equations is employed to simulate Thulium and Bismuth ions population distribution along the fiber. Thulium and Bismuth concentrations are noted as critical factors that control the output power and saturation length. The optimum values of Thulium and Bismuth concentration which result in maximum gain at 1800 nm are 0.5 wt.% and 2 wt.% respectively.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B60D</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B70C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Transfert énergie excitation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Excitation energy transfer</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Transferencia energía excitación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Amplificateur optique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Optical amplifier</s0>
<s5>09</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Amplificador óptico</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Amplificateur fibre optique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Optical fiber amplifiers</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>21</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Méthode analytique</s0>
<s5>23</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Analytical method</s0>
<s5>23</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Método analítico</s0>
<s5>23</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Effet concentration</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Quantity ratio</s0>
<s5>30</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Rayonnement IR</s0>
<s5>37</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Infrared radiation</s0>
<s5>37</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Puissance sortie</s0>
<s5>41</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Output power</s0>
<s5>41</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Potencia salida</s0>
<s5>41</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>50</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>50</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Codopage</s0>
<s5>57</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Codoping</s0>
<s5>57</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Codrogado</s0>
<s5>57</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Addition bismuth</s0>
<s5>58</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Bismuth additions</s0>
<s5>58</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Verre germanate</s0>
<s5>59</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Germanate glasses</s0>
<s5>59</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Matériau optique</s0>
<s5>60</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Optical materials</s0>
<s5>60</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Addition thulium</s0>
<s5>61</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Thulium additions</s0>
<s5>61</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Germanate de bismuth</s0>
<s2>NK</s2>
<s5>62</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Bismuth germanates</s0>
<s2>NK</s2>
<s5>62</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>4270C</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>4260D</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Equation bilan transfert énergie</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Rate equation</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>098</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 13-0121464 INIST</NO>
<ET>Quantitative analysis of energy transfer processes in Thulium-Bismuth germanate co-doped fiber amplifier</ET>
<AU>ZARIFI (A.); EMAMI (S. D.); ZAHEDI (F. Z.); FATEHI (H.); MIRNIA (S. E.); AHMAD (H.); HARUN (S. W.)</AU>
<AF>Department of Electrical Engineering, Faculty of Engineering, University of Malaya/50603 Kuala Lumpur/Malaisie (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 7 aut.); Photonics Research Center, Department of Physics, University of Malaya/50603 Kuala Lumpur/Malaisie (6 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Optical materials : (Amsterdam); ISSN 0925-3467; Royaume-Uni; Da. 2012; Vol. 35; No. 2; Pp. 231-239; Bibl. 17 ref.</SO>
<LA>Anglais</LA>
<EA>Energy transfer processes in Thulium-Bismuth co-doped germanate fiber amplifier at 1800 nm region have been studied quantitatively in this work. Energy transfer models are utilized in order to investigate the effect of dopants concentration on energy transfer parameters. A series of non-linear rate equations were derived using the energy transfer parameters and solved by means of a semi-analytical method. A general model of optical fiber amplifier in conjunction with rate equations is employed to simulate Thulium and Bismuth ions population distribution along the fiber. Thulium and Bismuth concentrations are noted as critical factors that control the output power and saturation length. The optimum values of Thulium and Bismuth concentration which result in maximum gain at 1800 nm are 0.5 wt.% and 2 wt.% respectively.</EA>
<CC>001B40B60D; 001B40B70C</CC>
<FD>Transfert énergie excitation; Amplificateur optique; Amplificateur fibre optique; Etude théorique; Méthode analytique; Effet concentration; Rayonnement IR; Puissance sortie; Matériau dopé; Codopage; Addition bismuth; Verre germanate; Matériau optique; Addition thulium; Germanate de bismuth; 4270C; 4260D; Equation bilan transfert énergie</FD>
<ED>Excitation energy transfer; Optical amplifier; Optical fiber amplifiers; Theoretical study; Analytical method; Quantity ratio; Infrared radiation; Output power; Doped materials; Codoping; Bismuth additions; Germanate glasses; Optical materials; Thulium additions; Bismuth germanates; Rate equation</ED>
<SD>Transferencia energía excitación; Amplificador óptico; Método analítico; Potencia salida; Codrogado</SD>
<LO>INIST-22598.354000173213410240</LO>
<ID>13-0121464</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000096 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Corpus/biblio.hfd -nk 000096 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0121464
   |texte=   Quantitative analysis of energy transfer processes in Thulium-Bismuth germanate co-doped fiber amplifier
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024