Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Upconversion luminescence of Tm3+ and Yb3+-codoped lutetium oxide nanopowders

Identifieur interne : 000539 ( Pascal/Checkpoint ); précédent : 000538; suivant : 000540

Upconversion luminescence of Tm3+ and Yb3+-codoped lutetium oxide nanopowders

Auteurs : LIQIONG AN [République populaire de Chine] ; JIAN ZHANG [République populaire de Chine] ; MIN LIU [République populaire de Chine] ; SHIWEI WANG [République populaire de Chine]

Source :

RBID : Pascal:08-0402967

Descripteurs français

English descriptors

Abstract

Lutetium oxide nanopowders codoped with Tm3+ and Yb3+ were synthesized by the co-precipitation method. Upconversion luminescence properties of the powder compacts have been investigated upon continuous wave excitation at 980 nm. Blue emission band was observed by naked eye, which was corresponded to the 1G43H6 transition of Tm3+ ions. However, upconversion spectra revealed that the strongest emission was centered at 809 nm, assigned to the 3H43H6 transition. Weak red emission centered at 651.5 nm was attributed to the 1G43F4 transition while considerably weaker ultraviolet emission centered at 361 nm was ascribed to the 1D23H6transition. The dependence of the intensity of upconversion emissions on the pump power implies two-step and three-step excitation mechanisms of the 3H4 and 1G4 levels, respectively. The possible upconversion schemes are discussed in this paper. Lutetium oxide powders can be sintered into transparent ceramics and high intensity of up-converted IR and blue emissions associated with the 3H43H6 and 1G43H6 transitions of Tm3+ in this matrix may offer lasers potential.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0402967

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Upconversion luminescence of Tm
<sup>3+</sup>
and Yb
<sup>3+</sup>
-codoped lutetium oxide nanopowders</title>
<author>
<name sortKey="Liqiong An" sort="Liqiong An" uniqKey="Liqiong An" last="Liqiong An">LIQIONG AN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jian Zhang" sort="Jian Zhang" uniqKey="Jian Zhang" last="Jian Zhang">JIAN ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Min Liu" sort="Min Liu" uniqKey="Min Liu" last="Min Liu">MIN LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shiwei Wang" sort="Shiwei Wang" uniqKey="Shiwei Wang" last="Shiwei Wang">SHIWEI WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0402967</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0402967 INIST</idno>
<idno type="RBID">Pascal:08-0402967</idno>
<idno type="wicri:Area/Pascal/Corpus">000616</idno>
<idno type="wicri:Area/Pascal/Curation">000616</idno>
<idno type="wicri:Area/Pascal/Checkpoint">000539</idno>
<idno type="wicri:explorRef" wicri:stream="Pascal" wicri:step="Checkpoint">000539</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Upconversion luminescence of Tm
<sup>3+</sup>
and Yb
<sup>3+</sup>
-codoped lutetium oxide nanopowders</title>
<author>
<name sortKey="Liqiong An" sort="Liqiong An" uniqKey="Liqiong An" last="Liqiong An">LIQIONG AN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jian Zhang" sort="Jian Zhang" uniqKey="Jian Zhang" last="Jian Zhang">JIAN ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Min Liu" sort="Min Liu" uniqKey="Min Liu" last="Min Liu">MIN LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shiwei Wang" sort="Shiwei Wang" uniqKey="Shiwei Wang" last="Shiwei Wang">SHIWEI WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of alloys and compounds</title>
<title level="j" type="abbreviated">J. alloys compd.</title>
<idno type="ISSN">0925-8388</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of alloys and compounds</title>
<title level="j" type="abbreviated">J. alloys compd.</title>
<idno type="ISSN">0925-8388</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Codoping</term>
<term>Coprecipitation</term>
<term>Energy transfer</term>
<term>Energy-level transitions</term>
<term>Frequency conversion</term>
<term>Lutetium oxides</term>
<term>Nanopowder</term>
<term>Photoluminescence</term>
<term>Powder compaction</term>
<term>Sintering</term>
<term>Thulium additions</term>
<term>Ytterbium additions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photoluminescence</term>
<term>Codopage</term>
<term>Coprécipitation</term>
<term>Compactage poudre</term>
<term>Transition niveau énergie</term>
<term>Conversion fréquence</term>
<term>Frittage</term>
<term>Transfert énergie</term>
<term>Addition thulium</term>
<term>Addition ytterbium</term>
<term>Oxyde de lutétium</term>
<term>Nanopoudre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lutetium oxide nanopowders codoped with Tm
<sup>3+</sup>
and Yb
<sup>3+</sup>
were synthesized by the co-precipitation method. Upconversion luminescence properties of the powder compacts have been investigated upon continuous wave excitation at 980 nm. Blue emission band was observed by naked eye, which was corresponded to the
<sup>1</sup>
G
<sub>4</sub>
<sup>3</sup>
H
<sub>6</sub>
transition of Tm
<sup>3+</sup>
ions. However, upconversion spectra revealed that the strongest emission was centered at 809 nm, assigned to the
<sup>3</sup>
H
<sub>4</sub>
<sup>3</sup>
H
<sub>6</sub>
transition. Weak red emission centered at 651.5 nm was attributed to the
<sup>1</sup>
G
<sub>4</sub>
<sup>3</sup>
F
<sub>4</sub>
transition while considerably weaker ultraviolet emission centered at 361 nm was ascribed to the
<sup>1</sup>
D
<sub>2</sub>
<sup>3</sup>
H
<sub>6</sub>
transition. The dependence of the intensity of upconversion emissions on the pump power implies two-step and three-step excitation mechanisms of the
<sup>3</sup>
H
<sub>4</sub>
and
<sup>1</sup>
G
<sub>4</sub>
levels, respectively. The possible upconversion schemes are discussed in this paper. Lutetium oxide powders can be sintered into transparent ceramics and high intensity of up-converted IR and blue emissions associated with the
<sup>3</sup>
H
<sub>4</sub>
<sup>3</sup>
H
<sub>6</sub>
and
<sup>1</sup>
G
<sub>4</sub>
<sup>3</sup>
H
<sub>6</sub>
transitions of Tm
<sup>3+</sup>
in this matrix may offer lasers potential.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>451</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Upconversion luminescence of Tm
<sup>3+</sup>
and Yb
<sup>3+</sup>
-codoped lutetium oxide nanopowders</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>The 6th International Conference on f-Elements (ICFE-6), September 4-9, 2006, Wrocław, Poland</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>LIQIONG AN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JIAN ZHANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MIN LIU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SHIWEI WANG</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>LEGENDZIEWICZ (J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>HANUZA (J.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>MALTA (O.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>STREK (W.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Shanghai Institute of Ceramics, Chinese Academy of Sciences</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>538-541</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000175013971260</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0402967</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Lutetium oxide nanopowders codoped with Tm
<sup>3+</sup>
and Yb
<sup>3+</sup>
were synthesized by the co-precipitation method. Upconversion luminescence properties of the powder compacts have been investigated upon continuous wave excitation at 980 nm. Blue emission band was observed by naked eye, which was corresponded to the
<sup>1</sup>
G
<sub>4</sub>
<sup>3</sup>
H
<sub>6</sub>
transition of Tm
<sup>3+</sup>
ions. However, upconversion spectra revealed that the strongest emission was centered at 809 nm, assigned to the
<sup>3</sup>
H
<sub>4</sub>
<sup>3</sup>
H
<sub>6</sub>
transition. Weak red emission centered at 651.5 nm was attributed to the
<sup>1</sup>
G
<sub>4</sub>
<sup>3</sup>
F
<sub>4</sub>
transition while considerably weaker ultraviolet emission centered at 361 nm was ascribed to the
<sup>1</sup>
D
<sub>2</sub>
<sup>3</sup>
H
<sub>6</sub>
transition. The dependence of the intensity of upconversion emissions on the pump power implies two-step and three-step excitation mechanisms of the
<sup>3</sup>
H
<sub>4</sub>
and
<sup>1</sup>
G
<sub>4</sub>
levels, respectively. The possible upconversion schemes are discussed in this paper. Lutetium oxide powders can be sintered into transparent ceramics and high intensity of up-converted IR and blue emissions associated with the
<sup>3</sup>
H
<sub>4</sub>
<sup>3</sup>
H
<sub>6</sub>
and
<sup>1</sup>
G
<sub>4</sub>
<sup>3</sup>
H
<sub>6</sub>
transitions of Tm
<sup>3+</sup>
in this matrix may offer lasers potential.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Codopage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Codoping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Codrogado</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Coprécipitation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Coprecipitation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Compactage poudre</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Powder compaction</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Compactación polvo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Transition niveau énergie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Energy-level transitions</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Conversion fréquence</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Frequency conversion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Conversión frecuencia</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Frittage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Sintering</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Transfert énergie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Energy transfer</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Addition thulium</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Thulium additions</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Addition ytterbium</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Ytterbium additions</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Oxyde de lutétium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Lutetium oxides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Nanopoudre</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Nanopowder</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Nanopolvo</s0>
<s5>16</s5>
</fC03>
<fN21>
<s1>259</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Conference on f-Elements (ICFE-6)</s1>
<s2>6</s2>
<s3>Wrocław POL</s3>
<s4>2009-09-04</s4>
</fA30>
</pR>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Liqiong An" sort="Liqiong An" uniqKey="Liqiong An" last="Liqiong An">LIQIONG AN</name>
</noRegion>
<name sortKey="Jian Zhang" sort="Jian Zhang" uniqKey="Jian Zhang" last="Jian Zhang">JIAN ZHANG</name>
<name sortKey="Min Liu" sort="Min Liu" uniqKey="Min Liu" last="Min Liu">MIN LIU</name>
<name sortKey="Shiwei Wang" sort="Shiwei Wang" uniqKey="Shiwei Wang" last="Shiwei Wang">SHIWEI WANG</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pascal/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000539 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pascal/Checkpoint/biblio.hfd -nk 000539 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pascal
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:08-0402967
   |texte=   Upconversion luminescence of Tm3+ and Yb3+-codoped lutetium oxide nanopowders
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024